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Abstract

We propose a novel framework for exploring patterns of respiratory pathophysiology from paired
breath-hold CT scans. This is designed to enable analysis of large datasets with the view of
determining relationships between functional measures, disease state and the likelihood of disease
progression. The framework is based on the local distribution of image features at various
anatomical scales. Principal Component Analysis is used to visualise and quantify the multi-scale
anatomical variation of features, whilst the distribution subspace can be exploited within a
classification setting. This framework enables hypothesis testing related to the different
phenotypes implicated in Chronic Obstructive Pulmonary Disease (COPD). We illustrate the
potential of our method on initial results from a subset of patients from the COPDGene study, who
are exacerbation susceptible and non-susceptible.

1 Introduction

Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) are defined as a sudden
worsening of symptoms, which accelerate the decline in lung function leading to an
increased risk of mortality. Understanding their pathophysiology is critical for predicting the
patients at greatest risk of hospitalisation. Recent work suggests that the frequency of
exacerbations is a distinct phenotype [1]. This is described as an exacerbation susceptible
phenotype, where a patient may exhibit distinct physiological patterns resulting in an
intrinsic susceptibility.

Recent studies have suggested a potential link between changes in lung structure, function
and exacerbations. A correlation between the progression of emphysema and the presence of
exacerbations has been observed [2] whilst pulmonary arterial enlargement has been seen to
be a related factor [3]. Further, regional ventilation defects have been observed prior to acute
exacerbations [4]. These suggest a dependence between abnormalities in lung structure, the
distribution of disease and exacerbations, which motivates our algorithm.

There is a growing interest in employing machine learning for the study and diagnosis of
COPD. Classifiers are frequently trained with scalar values representing the whole lung [5]
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or individual lobes [6]. This ignores the spatial distribution of disease; which may be a
signature of various COPD phenotypes.

We propose a novel framework for the analysis of lung pathophysiology. We hypothesise
that the spatial distribution of disease is a discriminating factor in the presence of pathology.
Our method is based on the measurement of image features representing the biomechanics
and density of tissue, using a sliding box window at various anatomical scales. This is to
deal with the bifurcating nature of the respiratory system. We apply it to the study of
exacerbation susceptible and non-susceptible patients. The distributions measured at
multiple scales are exploited to investigate differences between subtypes whilst classifying
for the first time, those at greatest risk of further exacerbations.

2.1 Non-rigid Registration

The NiftyReg registration platform1 [7] is employed to find the spatial mapping between the
lung at full inhalation (£2*) and end exhalation (f2). This is performed using a stationary
velocity field, parameterised through a cubic B-spline interpolation. The Local Normalised
Cross Correlation (LNCC) drives the registration whilst the bending energy of the velocity
field is used as the regularisation. The registration is performed by considering only the
lungs, delineated by segmented masks. The background volume is set to 0 Hounsfield Units
upon which the masks are diluted to include a 0 HU border within the lung volume.

2.2 Feature Extraction

The transformation ¢: 2— 2%, resulting from the registration serves to map each coordinate
X € £2to x* € £2*, such that the position of voxels at expiration (x € £2) is known within the
inspiratory phase (x* € £2*). Biomechanical and density-based feature sets are derived using
the information embed within ¢.

Biomechanical Feature Set—To quantify the transformation ¢, we consider the
deformation gradient tensor F, which is defined as Vy+@(x). We derive 3 features from F to
capture the respiratory process; the Jacobian determinant (det(F)) and the first 2 moments of
the distribution of the eigenvalues of the Lagrangian strain tensor (E). The Jacobian
determinant is defined as

det(F)=det(Va-¢(z)) (1)

and measures the fractional volume change of voxels. The Lagrangian Strain Tensor E is
derived from F, by considering the Right Cauchy-Green Strain (C)

C=F'F,F=RU,F'F=U'R'RU=U'U.

1http://sourceforge.net/projects/niftyreg
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We are interested in analysing the stretches captured by F. The tensor C results from a polar
decomposition of F, where the rotation component R is discarded by considering its
orthogonal properties. The tensor C is thus rotation free, solely containing information about
the stretches U. The computation of the Lagrangian Strain Tensor (E) follows

E:%(C -I). ©

We derive the principal strains (A = {\j | i = 1, 2, 3}) via an eigen-decomposition of E. The
trace (X)), provides an overall measure of the magnitude of tissue strain whilst the variance
(\ar()\)) characterises anisotropy in the strain profile.

Density-Based Feature Set—The transformation ¢ allows us to compute corresponding
measures of voxel density (HU) at inspiration (ljys) and expiration (lexp). We consider the
distribution of HU in ljhs and leyp and 2 scalar values; the percentage of emphysema
(YoLAAns ~950HU) and gas trapping (Y%LAAgyp — 856HU). The %LAAjng/exp Metrics are
computed as follows:

ZJJ*GQ* (Ijns($*)< — 950)

%LAA,, — 950HU= -
Zm*eﬂ*x

(3a)

and

5 cor (lexp()o)< — 856)

HLAA, — 856HU=
P ZI*EQ/'T*

(3b)

They are expressed as the percentage of voxels below —950 HU and —856 HU within ljns
and leyp. Within our framework, all features are calculated within local neighbourhoods
across the lung, which is discussed below in Sect. 2.3.

2.3 Multi-scale Analysis of Imaging Features

Feature Distributions—We propose to sample the local variation of features (fi) to
quantify their distribution across the lung. This is performed by considering histograms
(hi(fi; Xj, ¢)) of the local distributions of f,. Each local feature distribution is centered at a
voxel xj (j = 1 --- J) within a neighbourhood » governed by the scale ¢, wherei=1---n
and j is the jt" sampled neighbourhood. Thus, distributions at increasing scales of analysis
(¢) can be computed (Fig. 1). The histograms are modelled by the first 4 statistical moments
and the median. The feature fi within o centered at x; is defined by:

H (fi(zj))={p(h)v(h)o(h)y(h)ye(ha) - p(hn)v(hn)o (hn) 1 (ha )2 (he)} @)

where | is the mean, vthe median, o the variance, y; the skewness and y» is the kurtosis. A
patient-specific matrix (Hp, p =1 ... P) is created such that
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’V Hl(fl (Ij)) o HY (fk(x])) %LAAilns/exp(‘Tj)vqb -‘
{ HJ(fl(wJ)) HJ(fk(‘/EJ)) %LAAi{ls/exp(xJ)v¢ J

The Jacobian determinant (det(F)), the trace (X)) and variance (Var ())) of the strain
eigenvalues and the voxel densities in lj,s and lgxp are modelled locally across the lung (k =
5). We incorporate the %LAA —950HU and %LAA -856HU for all ¢;, leading to 27n
features per xj. The number of sampled regions is determined by the sampling frequency of
Xj at the finest scale (¢y).

Statistical Analysis of Features

Hypothesis testing using Hy: Analysis of the distribution of values contained within each
Hp allows hypotheses of changes in the global nature of local features to be made. For
instance, consider the distribution of the variance of det(F) at all x. Each value demonstrates
the local variation in volume change. The distribution of this measure across the lung will
illustrate how the local variation is expressed, which may vary across subtypes. This
facilitates a direct comparison of patient-specific distributions across phenotypes.

Principal Component Analysis of X: We are interested in modelling the distribution of

parameters across the studied population. We apply PCA on X=[H] - - H;,r]. This seeks a
low-dimensional projection (d < 27n) of X, where the variance of the projected features is
maximised. The entries of X are representative of the local histogram features measured at
multiple scales. PCA of X allows one to compute the component scores within each
neighbourhood defined by x;. Thus, the computed scores can be projected to the image space
to assess their distribution across the lung. Since the component scores are linear projections
of the features measured at various scales, they will capture potential fractal properties in
line with the nature of the lung anatomy. The distribution of the principal component scores
can be analysed to model patient-specific distributions by computing their respective mean
and variance. Thus, phenotype-specific distributions can be estimated to produce a clinically
meaningful classifier. Importantly, classification in the PCA subspace prevents overfitting as
PCA removes colinearity in the features.

3 Experiments and Results

3.1 Clinical Data

Inhale and exhale breath-hold CT images from the COPDGene study [8] were used. CT
scans were acquired from multi-detector CT scanners, at full inspiration (200mAs) and at
the end of normal expiration (50 mAs) with resolutions approximately equal to 0.66mm x
0.66mm x 0.73mm [8].

We tested our framework on P = 20 subjects with a GOLD 3 severity stage exhibiting f =0
(n=10) or f =6 (n = 10) exacerbations per year. GOLD 3 patients were chosen due to their
low variation in FEV4. We chose two extreme sets (f = 0 and = 6) to gauge the applicability
of our framework in discriminating these phenotypes. The patient sets had a mean age of
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60.2 and 67.5, a mean FEV1%predicted of 42.1 and 40.5 and a mean revy/rve ratio of 42.4 and
47.2.

3.2 Algorithm Parameters

Prior to the registration, the masks were dilated with a sphere of 3 voxel radius. An analysis
of the registration parameters was performed; demonstrating robustness in the registration to
small parameter changes. The standard deviation of the LNCC Gaussian kernel was set to 33
voxels, whilst the weighting of the regularisation was 0.05% of the overall optimised cost
function. The finest control point spacing of the B-spline grid was set to 5 voxels along each
axis. After registration, the inhale lung mask was eroded by a spherical element with a 7
voxel radius. This was performed to ignore regions prone to discontinuities and which
experience an extreme degree of motion. We performed the sampling using a cubic box
window at scales 10, 20 and 30 mm?3 (n = 3), which is consistent with the size of the
secondary pulmonary lobule. A sampling frequency of 10mm was used yielding
approximately 7, 500 regions per lung. We ignored regions at all scales where 50% of the
voxels fell outside the lung mask.

3.3 Multi-scale Analysis of Imaging Features

We investigated feature distributions at the 3 scales using Hp,. We calculated the mean and
standard deviation of each feature within Hy, for all 3 scales. This provided two patient-
specific distributions of values for each feature. We performed a two-sample t-test for each
subtype mean and standard deviation set to determine discriminating factors between both
subtypes.

A significant difference in the mean of o (det(F)) (.12 = .01 and .21 £ .02) at all scales of
analysis was found (p < .03). The feature o (det(F)) illustrates the variation in local volume
change. The lower variation seen by the exacerbation susceptible group suggested that they
exhibit a more homogeneous pattern in their volume change. No significance was seen in the
standard deviation of o (det(F)) (p < .20). We observed a marked difference (p <.05) in the
mean (.15+.02 and .27+.04) and standard deviation (.12+.01 and .22+.02) of o (X(\)) at all
scales. This insinuated that for the susceptible group, the anisotropy in the magnitude of
local tissue strain and its variation throughout the lung is more homogeneous compared to
the non-susceptible patients. These suggested a possible distinction in physiological
patterns, which were exploited in the classification.

Results from the PCA of matrix X corroborated the above, displaying evidence of distinct
feature distributions across subtypes. (Figs. 2 and 3). Figure 2 illustrates 2 patient-specific
principal component distributions for each subtype. These are characteristic of the
phenotype distributions and are mostly consistent across each group. As the component
scores are a linear projection of the features, Figure 2 suggests that there is a consistent
physiological pattern per subtype. This is illustrated by a variation in the heterogeneity of
the scores as observed in the analysis of Hy,. This reinforces the notion of phenotype-specific
distributions and the discriminating power of the distribution of disease.
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As the principal component scores were computed per sampled region (xj), we were able to
couple them with their respective anatomical location (Fig. 3). This displays varying
patterns in the physiology of the lung, consistently within and across subtypes. As the
principal components aimed to fully explain the lung macrostructure and the deformation
captured within Hp, these maps display a novel way of viewing how lung physiology differs
with the COPD phenotype and the frequency of exacerbations.

3.4 Classification of COPD exacerbation-susceptible patients

We aimed to classify exacerbation susceptible and non-susceptible patients based on the
hypothesis that global and local patterns of disease differed across subtypes. This was shown
in Fig. 2 and 3, where a rise in feature homogeneity coincided with exacerbation
susceptibility. We performed the classification on the feature projections using the mean and
the variance of the principal component scores as features. The set explaining 90% (17/81)
of the variance of X was chosen.

A leave-one-out cross validation (LOOCV) was employed to test the classifier. LOOCV
iteratively selects one patient (Hnseen) as the testing data whilst the remaining are used for
training. We assumed independence amongst each training set during the LOOCV to
calculate accuracy and precision rates. For the classification, we projected H nseen into the
principal component space of Xp - 1 and used the mean and variance of the principal
component scores as features. We used Support Vector Machines (SVM) as a classifier with
a Gaussian radial basis function kernel o= 2.25 and a soft-margin constant C = 0.5. Our
framework has the unique ability to classify an unseen patient as either exacerbation
susceptible (f = 6) or non-susceptible (f = 0) with a total accuracy of 75% (Table 1). This
supports the applicability of our framework towards determining relationships between the
distribution of disease with the clinical outcome.

4 Conclusions

We have presented a novel framework for investigating global and local patterns of lung
pathophysiology. The applicability of our framework in determining relationships between
functional measures and the severity of disease has been shown, through an analysis of the
exacerbation susceptible phenotype. Analysis of the local feature distributions displayed
significant differences in the nature of lung function across subtypes. This translated to
subtype-specific distributions after dimensionality reduction, suggesting an intrinsic
physiological behaviour attributed to both sets of patients. The main limitation of our work
is due to the lack of patients analysed. We aim to include a larger population of patients to
better demonstrate the clinical applicability of our work. This will allow us to correctly
evaluate the performance of our classifier, and the consistency and utility of the derived
feature distributions. Moreover, we intend to construct anatomical atlases to perform
regional inter-patient statistics to investigate whether the spatial location of disease provides
a further dimension to the analysis.
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Fig. 1.

Iustration of the framework. 1) A feature fy (e.g. £ }) at xj is sampled at n = 3 scales,
leading to 3 local histograms hj(fy; Xj, ¢j). 2) Statistical moments and the median of h;(fy; x;,
@) are calculated for all ¢;, leading to the set Hi (f(x}))-
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Fig. 2.

An example of the multi-scale principal component distributions for each sampled
neighbourhood X for 4 patients (2 susceptible and 2 non-susceptible patients). The first 3
principal components explain ~ 55% of the variance of X.
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(b) PC2

Fig. 3.
Projection of the first 3 principal components of the multi-scale PCA into the image space.

Coronal slice is at the mid-section. Top row: exacerbation susceptible phenotype. Bottom
row: exacerbation non-susceptible phenotype.

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 June 16.



1duosnue Joyiny 1duosnuen Joyiny 1duasnuen Joyiny

1duasnuen Joyiny

Bragman et al.

Table 1
Classification results using L eave One-Out Cross Validation

Susceptible  Non-Susceptible  Total

Classification accuracy (%) 80 70 7575
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