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Abstract

We propose a novel framework for exploring patterns of respiratory pathophysiology from paired 

breath-hold CT scans. This is designed to enable analysis of large datasets with the view of 

determining relationships between functional measures, disease state and the likelihood of disease 

progression. The framework is based on the local distribution of image features at various 

anatomical scales. Principal Component Analysis is used to visualise and quantify the multi-scale 

anatomical variation of features, whilst the distribution subspace can be exploited within a 

classification setting. This framework enables hypothesis testing related to the different 

phenotypes implicated in Chronic Obstructive Pulmonary Disease (COPD). We illustrate the 

potential of our method on initial results from a subset of patients from the COPDGene study, who 

are exacerbation susceptible and non-susceptible.

1 Introduction

Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) are defined as a sudden 

worsening of symptoms, which accelerate the decline in lung function leading to an 

increased risk of mortality. Understanding their pathophysiology is critical for predicting the 

patients at greatest risk of hospitalisation. Recent work suggests that the frequency of 

exacerbations is a distinct phenotype [1]. This is described as an exacerbation susceptible 

phenotype, where a patient may exhibit distinct physiological patterns resulting in an 

intrinsic susceptibility.

Recent studies have suggested a potential link between changes in lung structure, function 

and exacerbations. A correlation between the progression of emphysema and the presence of 

exacerbations has been observed [2] whilst pulmonary arterial enlargement has been seen to 

be a related factor [3]. Further, regional ventilation defects have been observed prior to acute 

exacerbations [4]. These suggest a dependence between abnormalities in lung structure, the 

distribution of disease and exacerbations, which motivates our algorithm.

There is a growing interest in employing machine learning for the study and diagnosis of 

COPD. Classifiers are frequently trained with scalar values representing the whole lung [5] 
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or individual lobes [6]. This ignores the spatial distribution of disease; which may be a 

signature of various COPD phenotypes.

We propose a novel framework for the analysis of lung pathophysiology. We hypothesise 

that the spatial distribution of disease is a discriminating factor in the presence of pathology. 

Our method is based on the measurement of image features representing the biomechanics 

and density of tissue, using a sliding box window at various anatomical scales. This is to 

deal with the bifurcating nature of the respiratory system. We apply it to the study of 

exacerbation susceptible and non-susceptible patients. The distributions measured at 

multiple scales are exploited to investigate differences between subtypes whilst classifying 

for the first time, those at greatest risk of further exacerbations.

2 Method

2.1 Non-rigid Registration

The NiftyReg registration platform1 [7] is employed to find the spatial mapping between the 

lung at full inhalation (Ω*) and end exhalation (Ω). This is performed using a stationary 

velocity field, parameterised through a cubic B-spline interpolation. The Local Normalised 

Cross Correlation (LNCC) drives the registration whilst the bending energy of the velocity 

field is used as the regularisation. The registration is performed by considering only the 

lungs, delineated by segmented masks. The background volume is set to 0 Hounsfield Units 

upon which the masks are diluted to include a 0 HU border within the lung volume.

2.2 Feature Extraction

The transformation φ: Ω → Ω*, resulting from the registration serves to map each coordinate 

x ∈ Ω to x* ∈ Ω*, such that the position of voxels at expiration (x ∈ Ω) is known within the 

inspiratory phase (x* ∈ Ω*). Biomechanical and density-based feature sets are derived using 

the information embed within φ.

Biomechanical Feature Set—To quantify the transformation φ, we consider the 

deformation gradient tensor F, which is defined as ∇x*φ(x). We derive 3 features from F to 

capture the respiratory process; the Jacobian determinant (det(F)) and the first 2 moments of 

the distribution of the eigenvalues of the Lagrangian strain tensor (E). The Jacobian 

determinant is defined as

(1)

and measures the fractional volume change of voxels. The Lagrangian Strain Tensor E is 

derived from F, by considering the Right Cauchy-Green Strain (C)

1http://sourceforge.net/projects/niftyreg
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We are interested in analysing the stretches captured by F. The tensor C results from a polar 

decomposition of F, where the rotation component R is discarded by considering its 

orthogonal properties. The tensor C is thus rotation free, solely containing information about 

the stretches U. The computation of the Lagrangian Strain Tensor (E) follows

(2)

We derive the principal strains (λ = {λi | i = 1, 2, 3}) via an eigen-decomposition of E. The 

trace (Σλ), provides an overall measure of the magnitude of tissue strain whilst the variance 

(Var(λ)) characterises anisotropy in the strain profile.

Density-Based Feature Set—The transformation φ allows us to compute corresponding 

measures of voxel density (HU) at inspiration (Iins) and expiration (Iexp). We consider the 

distribution of HU in Iins and Iexp and 2 scalar values; the percentage of emphysema 

(%LAAins −950HU) and gas trapping (%LAAexp − 856HU). The %LAAins/exp metrics are 

computed as follows:

(3a)

and

(3b)

They are expressed as the percentage of voxels below −950 HU and −856 HU within Iins 

and Iexp. Within our framework, all features are calculated within local neighbourhoods 

across the lung, which is discussed below in Sect. 2.3.

2.3 Multi-scale Analysis of Imaging Features

Feature Distributions—We propose to sample the local variation of features (fk) to 

quantify their distribution across the lung. This is performed by considering histograms 

(hi(fk; xj, ϕi)) of the local distributions of fk. Each local feature distribution is centered at a 

voxel xj (j = 1 ⋯ J) within a neighbourhood ω governed by the scale ϕi, where i = 1 ⋯ n 

and j is the jth sampled neighbourhood. Thus, distributions at increasing scales of analysis 

(ϕi) can be computed (Fig. 1). The histograms are modelled by the first 4 statistical moments 

and the median. The feature fk within ω centered at xj is defined by:

(4)

where μ is the mean, ν the median, σ the variance, γ1 the skewness and γ2 is the kurtosis. A 

patient-specific matrix (Hp, p = 1 … P) is created such that
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(5)

The Jacobian determinant (det(F)), the trace (Σλ) and variance (Var (λ)) of the strain 

eigenvalues and the voxel densities in Iins and Iexp are modelled locally across the lung (k = 

5). We incorporate the %LAA –950HU and %LAA –856HU for all ϕi, leading to 27n 

features per xj. The number of sampled regions is determined by the sampling frequency of 

xj at the finest scale (ϕi).

Statistical Analysis of Features

Hypothesis testing using Hp: Analysis of the distribution of values contained within each 

Hp allows hypotheses of changes in the global nature of local features to be made. For 

instance, consider the distribution of the variance of det(F) at all xj. Each value demonstrates 

the local variation in volume change. The distribution of this measure across the lung will 

illustrate how the local variation is expressed, which may vary across subtypes. This 

facilitates a direct comparison of patient-specific distributions across phenotypes.

Principal Component Analysis of X: We are interested in modelling the distribution of 

parameters across the studied population. We apply PCA on . This seeks a 

low-dimensional projection (d ≪ 27n) of X, where the variance of the projected features is 

maximised. The entries of X are representative of the local histogram features measured at 

multiple scales. PCA of X allows one to compute the component scores within each 

neighbourhood defined by xj. Thus, the computed scores can be projected to the image space 

to assess their distribution across the lung. Since the component scores are linear projections 

of the features measured at various scales, they will capture potential fractal properties in 

line with the nature of the lung anatomy. The distribution of the principal component scores 

can be analysed to model patient-specific distributions by computing their respective mean 

and variance. Thus, phenotype-specific distributions can be estimated to produce a clinically 

meaningful classifier. Importantly, classification in the PCA subspace prevents overfitting as 

PCA removes colinearity in the features.

3 Experiments and Results

3.1 Clinical Data

Inhale and exhale breath-hold CT images from the COPDGene study [8] were used. CT 

scans were acquired from multi-detector CT scanners, at full inspiration (200mAs) and at 

the end of normal expiration (50 mAs) with resolutions approximately equal to 0.66mm × 

0.66mm × 0.73mm [8].

We tested our framework on P = 20 subjects with a GOLD 3 severity stage exhibiting f = 0 

(n = 10) or f ≥ 6 (n = 10) exacerbations per year. GOLD 3 patients were chosen due to their 

low variation in FEV1. We chose two extreme sets (f = 0 and ≥ 6) to gauge the applicability 

of our framework in discriminating these phenotypes. The patient sets had a mean age of 
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60.2 and 67.5, a mean FEV1%predicted of 42.1 and 40.5 and a mean FEV1/FVC ratio of 42.4 and 

47.2.

3.2 Algorithm Parameters

Prior to the registration, the masks were dilated with a sphere of 3 voxel radius. An analysis 

of the registration parameters was performed; demonstrating robustness in the registration to 

small parameter changes. The standard deviation of the LNCC Gaussian kernel was set to 33 

voxels, whilst the weighting of the regularisation was 0.05% of the overall optimised cost 

function. The finest control point spacing of the B-spline grid was set to 5 voxels along each 

axis. After registration, the inhale lung mask was eroded by a spherical element with a 7 

voxel radius. This was performed to ignore regions prone to discontinuities and which 

experience an extreme degree of motion. We performed the sampling using a cubic box 

window at scales 10, 20 and 30 mm3 (n = 3), which is consistent with the size of the 

secondary pulmonary lobule. A sampling frequency of 10mm was used yielding 

approximately 7, 500 regions per lung. We ignored regions at all scales where 50% of the 

voxels fell outside the lung mask.

3.3 Multi-scale Analysis of Imaging Features

We investigated feature distributions at the 3 scales using Hp. We calculated the mean and 

standard deviation of each feature within Hp for all 3 scales. This provided two patient-

specific distributions of values for each feature. We performed a two-sample t-test for each 

subtype mean and standard deviation set to determine discriminating factors between both 

subtypes.

A significant difference in the mean of σ (det(F)) (.12 ± .01 and .21 ± .02) at all scales of 

analysis was found (p < .03). The feature σ (det(F)) illustrates the variation in local volume 

change. The lower variation seen by the exacerbation susceptible group suggested that they 

exhibit a more homogeneous pattern in their volume change. No significance was seen in the 

standard deviation of σ (det(F)) (p < .20). We observed a marked difference (p < .05) in the 

mean (.15±.02 and .27±.04) and standard deviation (.12±.01 and .22±.02) of σ (Σ(λ)) at all 

scales. This insinuated that for the susceptible group, the anisotropy in the magnitude of 

local tissue strain and its variation throughout the lung is more homogeneous compared to 

the non-susceptible patients. These suggested a possible distinction in physiological 

patterns, which were exploited in the classification.

Results from the PCA of matrix X corroborated the above, displaying evidence of distinct 

feature distributions across subtypes. (Figs. 2 and 3). Figure 2 illustrates 2 patient-specific 

principal component distributions for each subtype. These are characteristic of the 

phenotype distributions and are mostly consistent across each group. As the component 

scores are a linear projection of the features, Figure 2 suggests that there is a consistent 

physiological pattern per subtype. This is illustrated by a variation in the heterogeneity of 

the scores as observed in the analysis of Hp. This reinforces the notion of phenotype-specific 

distributions and the discriminating power of the distribution of disease.
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As the principal component scores were computed per sampled region (xj), we were able to 

couple them with their respective anatomical location (Fig. 3). This displays varying 

patterns in the physiology of the lung, consistently within and across subtypes. As the 

principal components aimed to fully explain the lung macrostructure and the deformation 

captured within Hp, these maps display a novel way of viewing how lung physiology differs 

with the COPD phenotype and the frequency of exacerbations.

3.4 Classification of COPD exacerbation-susceptible patients

We aimed to classify exacerbation susceptible and non-susceptible patients based on the 

hypothesis that global and local patterns of disease differed across subtypes. This was shown 

in Fig. 2 and 3, where a rise in feature homogeneity coincided with exacerbation 

susceptibility. We performed the classification on the feature projections using the mean and 

the variance of the principal component scores as features. The set explaining 90% (17/81) 

of the variance of X was chosen.

A leave-one-out cross validation (LOOCV) was employed to test the classifier. LOOCV 

iteratively selects one patient (Hunseen) as the testing data whilst the remaining are used for 

training. We assumed independence amongst each training set during the LOOCV to 

calculate accuracy and precision rates. For the classification, we projected Hunseen into the 

principal component space of XP − 1 and used the mean and variance of the principal 

component scores as features. We used Support Vector Machines (SVM) as a classifier with 

a Gaussian radial basis function kernel σ = 2.25 and a soft-margin constant C = 0.5. Our 

framework has the unique ability to classify an unseen patient as either exacerbation 

susceptible (f ≥ 6) or non-susceptible (f = 0) with a total accuracy of 75% (Table 1). This 

supports the applicability of our framework towards determining relationships between the 

distribution of disease with the clinical outcome.

4 Conclusions

We have presented a novel framework for investigating global and local patterns of lung 

pathophysiology. The applicability of our framework in determining relationships between 

functional measures and the severity of disease has been shown, through an analysis of the 

exacerbation susceptible phenotype. Analysis of the local feature distributions displayed 

significant differences in the nature of lung function across subtypes. This translated to 

subtype-specific distributions after dimensionality reduction, suggesting an intrinsic 

physiological behaviour attributed to both sets of patients. The main limitation of our work 

is due to the lack of patients analysed. We aim to include a larger population of patients to 

better demonstrate the clinical applicability of our work. This will allow us to correctly 

evaluate the performance of our classifier, and the consistency and utility of the derived 

feature distributions. Moreover, we intend to construct anatomical atlases to perform 

regional inter-patient statistics to investigate whether the spatial location of disease provides 

a further dimension to the analysis.
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Fig. 1. 
Illustration of the framework. 1) A feature fk (e.g. Σ λ) at xj is sampled at n = 3 scales, 

leading to 3 local histograms hi(fk; xj, ϕi). 2) Statistical moments and the median of hi(fk; xj, 

ϕi) are calculated for all ϕi, leading to the set Hj (fk(xj)).
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Fig. 2. 
An example of the multi-scale principal component distributions for each sampled 

neighbourhood xj for 4 patients (2 susceptible and 2 non-susceptible patients). The first 3 

principal components explain ≈ 55% of the variance of X.

Bragman et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Projection of the first 3 principal components of the multi-scale PCA into the image space. 

Coronal slice is at the mid-section. Top row: exacerbation susceptible phenotype. Bottom 

row: exacerbation non-susceptible phenotype.
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Table 1
Classification results using Leave One-Out Cross Validation

Susceptible Non-Susceptible Total

Classification accuracy (%) 80 70 75 ± 7.5
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