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Abstract

The earliest abnormality in the lung associated with smoking
is hyperplasia of airway basal cells, the stem/progenitor cells of
the ciliated and secretory cells that are central to pulmonary host
defense. Using cell biology and ’omics technologies to assess basal
cells isolated from bronchoscopic brushings of nonsmokers,
smokers, and smokers with chronic obstructive pulmonary
disease (COPD), compelling evidence has been provided in
support of the concept that airway basal cells are central to the
pathogenesis of smoking-associated lung diseases. When confronted
by the chronic stress of smoking, airway basal cells become
disorderly, regress to a more primitive state, behave as dictated by

their inheritance, are susceptible to acquired changes in their
genome, lose the capacity to regenerate the epithelium, are
responsible for the major changes in the airway that characterize
COPD, and, with persistent stress, can undergo malignant
transformation. Together, these observations led to the conclusion
that accelerated loss of lung function in susceptible individuals
begins with disordered airway basal cell biology (i.e., that airway
basal cells are the “smoking gun” of COPD, a potential target for the
development of therapies to prevent smoking-related lung
disorders).
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Chronic obstructive pulmonary disease
(COPD), the third leading cause of death
in the United States, is characterized by
chronic obstruction to expiratory airflow
that is not reversible by bronchodilators (1).
The overwhelming cause of COPD is
cigarette smoking, although inherited
genetic variability plays a significant role in
modulating the susceptibility of the lung
to the stress of smoking (1, 2). For the past
40 years, the underlying concept of the
pathogenesis of COPD has been that
smoking induces damage to pulmonary
structures directly and through chronic
inflammation, resulting in the derangement
of the airways and alveoli that manifests
clinically as bronchitis and emphysema
(1, 3). Although smoking affects to some
degree all of the cell populations in the
lung, in this Perspective, based on my
Amberson lecture at the American

Thoracic Society International Meeting in
May 2014, I present evidence to support the
concept that the key to understanding the
early events in the pathogenesis of COPD is
that smoking deranges the biology of the
basal stem/progenitor cell population of
airway epithelium (i.e., that airway basal
cells are the “smoking gun” of COPD).

Early Lung Abnormalities
Associated with Smoking

Our focus on the airway epithelium, and
specifically on the basal cell population,
is based on the classic histologic studies
of smokers by Auerbach and colleagues
(4) demonstrating that the earliest
abnormalities associated with smoking are
derangements of the airway epithelial
architecture, with characteristic changes in

the epithelial cell populations. These studies
demonstrated that the first histologic
change associated with smoking is
hyperplasia of the airway epithelial basal
cell population. Furthermore, although
clinicians tend to think of the airway and
alveolar disease of COPD as distinct
entities, the work of Hogg and colleagues
(5, 6) has shown that these pathologic
processes are linked, with the initial
development of emphysema centered
around the early derangements of the
airway epithelium of the small airways
(i.e., bronchi of more than six generations).

The normal human airway epithelium
is comprised of four major cells types,
including ciliated, secretory, intermediate,
and basal cells (Figure 1A). Ciliated and
secretory cells are terminally differentiated
cells central to pulmonary host defense,
comprising the physical barrier that
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protects the airways and provides the
mucociliary escalator function that clears
the respiratory tract from inhaled
pathogens, particulates, and other foreign
material (7, 8). Basal cells are keratin
5–positive cuboidal cells that are tightly
attached to the basement membrane
(Figure 1B). Unlike the secretory and
ciliated cells, basal cells are unremarkable
in appearance, with a high nuclear to
cytoplasmic ratio, a paucity of organelles,
and scattered microvilli (Figure 1C). The
proportion of basal cells in the airway
epithelium is highest in the large airways
and progressively decreases going down the
tracheobronchial tree, representing an
average of 34% in the trachea, 27% in the

large airways, and 10% in the small airways
(9, 10). Basal cells have a central and
irreplaceable role: they function as
progenitors of the ciliated and secretory
cells (11, 12). Intermediate cells (also
known as “parabasal” and “indetermined”
cells) are located between the basal cells and
differentiated cells and are thought to
represent basal cell–derived precursors of
ciliated and secretory cells (9, 13). Under
physiological conditions—the normal adult
human airway epithelium turns over
relatively slowly, approximately every 1 to
4 months (14)—basal cells are relatively
quiescent, and only few intermediate cells
can be observed (9). However, in response
to injury, such as with the stress of cigarette

smoking, airway basal cells proliferate, form
clonal patches, expand the pool of intermediate
cells, and, under the influence of various
factors present in the microenvironment,
can either regenerate normally differentiated
airway epithelium or, as often occurs in
the airways of smokers, generate altered
histologic phenotypes (4, 15–21).

The mechanisms that induce the basal
cells to differentiate and what controls the
specificity of differentiation to ciliated or
secretory cells are only partially understood.
The ratio of ciliated to secretory cells is
tightly controlled at approximately 10 to 1
throughout the tracheobronchial tree,
except for the most distal bronchioles,
despite the fact that the proportions of
basal cells are different going down the
tracheobronchial tree and the secretory
population changes from mucus-producing
cells in the large airways to nonmucous
secretory cells in the small airways (7, 18).
Studies in mice, and to a lesser extent in
humans, have shown that ciliated cell
differentiation is governed by a network
of transcription factors and regulators,
including FOXJ1, multicilin, cyclin O,
Myb, and RFX family proteins (22–30).
Differentiation to the secretory lineage is
mediated by the Notch pathway, whereas
generation of mucus-producing cells largely
depends on activation of transcription
factors SPDEF and FOXA3 (12, 31–34)
(Figure 1D). Although relatively little is
known about the plasticity of human
airway epithelial cells in vivo, evidence
derived from mouse studies suggests the
possibility that committed progenitors or
even differentiated cells, in response to
injury, may de-differentiate to cells
expressing basal cell markers (35–37).

With chronic smoking and the
development of COPD, there are
characteristic derangements to the airway
epithelium structure. The first abnormality
is basal cell hyperplasia. This is followed
by loss of ciliated cells, shorter cilia, mucus
cell hyperplasia, squamous metaplasia
(replacement of the normal differentiated
cells with flat, squamous cells), and loss of
cell junctions (with concomitant “leaky”
epithelium) (4, 15–20, 38). Basal cell
hyperplasia is seen throughout the airways
of smokers, often underlying squamous
metaplasia and secretory cell hyperplasia.
It is based on these observations that my
colleagues and I began focusing on the
basal cells as the cell population central to
the early abnormalities that initiate COPD.
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Figure 1. Basal cells and the airway epithelium in the normal human nonsmoker. (A) Schematic of the
normal human airway epithelium. Basal cells represent 34% of the cell population in the trachea,
decreasing generally to 10% in the small airways. Ciliated, secretory, and undifferentiated
intermediate cells represent the other cell types. Tight junctions connecting the differentiated ciliated
and secretory cells contribute to the integrity of the epithelial barrier. All of the epithelial cells are
attached to the basement membrane. (B and C) Basal cells in the normal nonsmoker. (B) Human
large airway epithelium. The basal cells are cuboidal, KRT51 cells lining the basement membrane.
Hematoxylin and eosin; bar = 50 mm. (C) Transmission electron microscopy of a basal cell purified
from the normal human airway epithelium. Bar = 2 mm. (D) Normal differentiation of the airway
epithelium. The basal cell population contains stem/progenitor cells, which can self-renew and
generate differentiated airway epithelium. During normal turnover and repair, the basal cells proliferate
and differentiate, generating undifferentiated intermediate cells, which further differentiate into ciliated
cells under the control of FOXJ1 and other transcriptional regulators shown and to secretory cells
under the control of the Notch pathway. Generation of mucus-producing cells is governed by
transcription factors SPDEF and FOXA3.

PULMONARY PERSPECTIVE

1356 American Journal of Respiratory and Critical Care Medicine Volume 190 Number 12 | December 15 2014



Normal Human Basal Cells

Extensive studies of airway basal cells using
animal models have led to many insights
into their function (see References 12 and
39 for excellent reviews), but there has been
little attention focused on human airway
basal cells in health and disease. Although
significant progress has been achieved
regarding isolation, culture, and in vitro
analysis of epithelial cells obtained from the
human airways (40, 41), the “basal cell”
identity of isolated cells had not been firmly
established, and the cultures have been
traditionally called primary “human
bronchial epithelial cells”. However, the
contribution of individual cell populations
and, particularly, airway basal cells, to the
phenotype and functional properties of
isolated human bronchial epithelial cells
from healthy individuals and patients with
lung disease remained unclear. We solved
this problem by developing culture
methods to isolate primary (not passaged)
normal human airway basal cells from
brushed airway epithelium (42)
(Figure 2A). To accomplish this, flexible
bronchoscopy is used to collect the cells by
brushing. The cells are detached from the
brush by flicking into culture media,

disaggregated, and cultured in growth
media (43). With periodic changes of the
media to remove unattached cells, by 7 days
the remaining cells are a pure culture of
airway basal cells. Quantitative assessment
of the cells by immunohistochemistry
demonstrated that the cell population
is .95% basal cells expressing the markers
cytokeratin 5, p63, and CD151 but negative
for the mesenchymal marker N-cadherin,
the secretory cells markers mucin 5A and
trefoil factor 3, the ciliated markers
b-tubulin IV and dynein intermediate
chain 1, and the neuroendocrine cell
markers chromogranin A and calcitonin
gene-related polypeptide a (see Figure 2A
for examples) (42). As definitive proof
that the isolated basal cells are indeed the
stem/progenitor cells of the ciliated and
secretory cells, the cultured basal cell
population is seeded on type IV collagen on
so-called “air–liquid interface” cultures,
where the basal side of cells is exposed to
growth media and the apical side is exposed
to air (42). Over 28 days, the basal cells
isolated from the airway brushes formed
a complete differentiated airway epithelium,
with progressive increase in the numbers
of ciliated and secretory cells, tight

junctions, and increased transepithelial
resistance (Figure 2B).

Comparison of the transcriptome of
normal human airway basal cells to the
transcriptome of the entire differentiated
human airway epithelium has permitted
identification of the “human airway
basal cells transcriptional signature,”
with .1,100 genes having .5-fold higher
expression level in basal cells compared
with the transcriptome of the differentiated
epithelium (42). This basal cell signature
is characterized by genes encoding
growth factors, growth factor receptors,
extracellular matrix components, G
protein–coupled receptors, neuroactive
ligands, and receptors and ion channels.

Normal basal cells not only have
the ability to proliferate and generate
differentiated secretory and ciliated cells, but
they also secrete proteins that can influence
their neighbor cells and have receptors
that can be influenced by products from
other cells (39, 44, 45). For example,
assessment of the supernatants of cultured
normal human airway basal cells
demonstrates that these cells secrete a variety
of growth factors that likely influence
surrounding cells, including vascular
endothelial growth factors A and C,
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Figure 2. Isolation of basal cells from human the airway epithelium. (A) Basal cells are obtained from the airway epithelium using fiberoptic bronchoscopy
and brushing (42). The purified basal cells were cytokeratin 5, p63, and CD151 positive but were negative for mesenchymal (N-cadherin), secretory
(MUC5AC), or ciliated (b-tubulin) lineages. Bar = 10 mm. (B) Progenitor function of basal cells. The purified basal cells differentiate to ciliated and secretory
lineages when placed in air–liquid interface cultures. Shown is evidence of the ciliated lineage (b-tubulin IV positive). Bar = 10 mm.
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angiopoietin, platelet-derived growth
factors A and C, placental growth factor,
bone morphogenetic proteins 1 and 2,
transforming growth factors 1 and 2,
fibroblast growth factors 2 and 11,
endothelin, IL-1b and IL-8, and the
Notch ligand Jagged. Furthermore,
transcriptional analysis has demonstrated
that normal human airway basal cells
express receptors for epidermal growth
factor, transforming growth factor,
tumor necrosis factors, ephrin, leptin,
vasopressin, histamine, serotonin, IL-1,
and low-density lipoprotein. Together,
these data suggest that basal cells can
“talk” to and influence surrounding cells
by secreting polypeptides and “listen” and
respond to surrounding cells by expressing
a variety of receptors (i.e., the basal cells
play a central role in the biologic
homeostasis of the airways far beyond that
of being responsible for replenishing the
differentiated cells). Indeed, various
cytokines and growth factors, such as IL-
1a, IL-33, and TGF-b, have been found to
be up-regulated in airway basal cells of
smokers and patients with COPD in
association with airway remodeling

(46–48), suggesting that, in addition to the
ability to generate pathologic airway
epithelial phenotypes through abnormal
proliferation and/or differentiation, airway
basal cells may contribute to disease
pathogenesis by creating proinflammatory
microenvironment and altering
epithelial–mesenchymal interactions
relevant to the pathogenesis of COPD.

Although the airway basal cells are
conventionally considered a homogenous
population of cuboidal cells attached to the
basement membrane, there is increasing
evidence that there are basal cell subsets.
For example, whereas all basal cells express
KRT5, only a subset expresses KRT14,
with the KRT141 cells likely representing
an activated basal cells population that
is proliferating and moving down the
differentiation path (12, 49). Extensive
data, including data generated in our
laboratory, suggest a possibility that
distinct subsets of basal cells may exist
in the human airways based on the
expression of integrins, different growth
factor receptors, and components of the
blood coagulation cascade (11, 39, 42,
49–51).

Consequences of Smoking
on Basal Cell Biology

There is extensive data from our laboratory
and others (43, 52–55) that cigarette
smoking is associated with significant
changes in the messenger RNA program of
the airway epithelium, with, on average,
hundreds of genes up- and down-regulated
compared with that of the normal
nonsmoker. Central to the concept that
basal cells are the “smoking gun” of COPD
was the observation by Ryan and colleagues
(48) that the airway basal cells isolated
from the airway epithelium of healthy
smokers (with normal lung function and
chest imaging) have a markedly different
transcriptome than that of healthy
nonsmokers, with 673 genes differentially
expressed, primarily up-regulated. These
up-regulated genes are in a variety of
categories but are dominated by genes
related to development, metabolism, signal
transduction, transcription, and transport.
These dramatic changes in gene expression
were detectable even though the basal cells
had been in primary culture for 1 week and
thereby removed from the chronic stress of
smoking. Although the mechanisms of
these transcriptional differences are likely
complex, we know that there are marked
differences in methylation patterns of the
small airway epithelium of healthy smokers
compared with that of nonsmokers, mostly
decreased methylation, consistent with the
general up-regulation of the transcriptome
program by smoking (56).

Among the basal cell genes up-
regulated by smoking are several genes that
had been thought to be a part of the human
embryonic stem cell (hESC) molecular
signature. Although not yet purified and
characterized, it is very likely that a small
subset of the basal cells are adult stem cells,
which, by contrast to all other cells in the
body that are derived from ESC, can self-
renew and differentiate, but, compared with
the latter, have limited differentiation
repertoire (i.e., whereas ESCs are
pluripotent, with the potential to
differentiate into all human cell types, basal
cells can only differentiate into secretory and
ciliated cells). Although normal basal cells
have suppressed the expression of many
ESC-specific genes, the basal cells of
smokers manifest a more “primitive”
transcriptome phenotype, with the gene
expression signature thought to be ESC
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Figure 3. Abnormalities of the biology, function, and differentiation of the airway epithelium with
cigarette smoking and the development of chronic obstructive pulmonary disease. The initial changes
are in disordered biology, with a distorted transcriptome and regression to a more primitive state
under the influence of inherited and acquired genetics. This evolves into disordered function and
differentiation, with stem/progenitor cell fatigue, distorted differentiation, and, in some cases,
malignant transformation. The first histologic abnormality associated with smoking is basal cell
hyperplasia, followed by loss of ciliated cells, shorter cilia, mucus cell hyperplasia, loss of cell
junctions, and squamous metaplasia.
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specific (57). Although this observation
does not necessarily imply that smoking
“reprograms” adult airway basal cells to
ESCs, smoking-induced transcriptome
modification, or “reprogramming,” of
airway basal cells made these cells
remarkably similar to hESCs at the global
gene expression level, a feature shared by
a subset of lung carcinomas characterized
by up-regulation of the same set of hESC
genes, as in the airway basal cells of
smokers (57).

Genetic Influence on
Smoking-induced Deranged
Basal Cell Biology

One important concept relating to the
pathogenesis of COPD is that although the
evidence is overwhelming that smoking
markedly increases the risk for COPD, only
20% of smokers develop the disease (58).
Genetics modulates this risk, with
increasing evidence that genetic variability
plays an important role in the risk for
COPD (2). In this context, if basal cells play
a central role in the pathogenesis of COPD,
we hypothesized that the smoking-induced
disordering of the biology of basal cells
may represent one link between genetic
susceptibility to COPD and the early
disordered lung biology associated with
smoking. To assess this hypothesis, we
compared the location of the 673 basal cell
smoking-dysregulated genes with known
COPD risk loci (48). Interestingly, 25% of
the smoking-dysregulated genes were
localized to chromosome 19, with 13 of
these genes localized to 19q13.2, a known
COPD risk locus. Of these 13 genes which
were up-regulated in basal cells of smokers,
four (EGLN2, LTBP4, TGFB1, and
NFKB1B) have been linked by genome-
wide association studies or candidate gene
studies to a risk for COPD (59–61). This
observation provides a link between known
genetic risks for COPD and airway basal
cells, the airway cell population that
exhibits the first histologic abnormalities
associated with smoking.

Not all of the genetic influences on
basal cell behavior are inherited; there may
also be smoking-induced somatic variants
that affect basal cell function. Because basal
stem/progenitor cells are responsible for
generating all airway epithelial cells, if
correct, somatic variants induced by
smoking in basal cells may have significant

influence on the derangement of airway
epithelial biology associated with smoking.
Relevant to this concept, using massive
parallel exome sequencing to compare the
coding sequences in the DNA of airway
basal cells of smokers compared with the
same individual’s exome sequences in
blood DNA, preliminary data suggest
a significantly higher somatic mutation
score in smoker basal cells compared with
their own blood (i.e., COPD could, in part,
be an acquired genetic disease).

Transition from “Healthy”
Smoking to COPD

The airway basal cells of the “healthy”
smoker, with normal lung function and
normal chest imaging, are clearly not
“normal” at the biologic level, with marked
changes in the transcriptional program,
dictated in part by genetic variability and by
epigenic modifications. There is ample
evidence that the basal cell biology gets
further deranged as the smoker transitions
to clinically defined COPD.

The airway basal cells of individuals
with COPD exhibit “stem/progenitor
fatigue,” with a loss of the capacity to
regenerate a normal differentiated
epithelium. Staudt and colleagues (62)
demonstrated that when basal cells
obtained from the small airway epithelium
are placed on air–liquid interface and
allowed to differentiate to a mucociliated
epithelium over 28 days, 88% of samples
isolated from healthy nonsmokers
successfully regenerated airway epithelium,
but only 64% of those from normal
smokers and only 44% of those from
smokers with COPD regenerated. Inability
to form mechanically stable and properly
differentiated airway epithelium by basal
cells of smokers with COPD may underlie
decreased host defense function and barrier
integrity of the airway epithelium in
patients with COPD, potentially leading
to infection and inflammation, which
contribute to progression of COPD as
chronic disease. Although the mechanisms
underlying this “stem/progenitor fatigue”
must be complex, analysis of genome-wide
DNA methylation of basal cell DNA from
the small airway epithelium of normal
nonsmokers, normal smokers, and smokers
with COPD demonstrated marked
differences. Comparison of the basal cell
samples that failed to normally differentiate

to the basal cell samples that were
successful demonstrated 423 significantly
different methylation probe sets
(i.e., changes in methylation may be one
mechanism that limits the ability of basal
cells to regenerate a normal epithelium).
Furthermore, the majority of the probe sets
that differentiated the “successful” versus
“not successful” basal cells were
hypomethylated, consistent with the
observed dominance of up-regulation of
genes in basal cells isolated from smokers.
Because the failure of the basal cells to
regenerate a complete epithelium was
observed in vitro over weeks after removal
of the basal cells from the smoking stress
in vivo, the data suggest that smoking and
COPD create an environment in the airway
epithelium inducing epigenetic changes
in the basal cells, resulting in a reduced
regenerative capacity of these cells.

In addition to the regenerative fatigue
of the smoker and COPD smoker basal cells,
basal cells have to contend with the stress
of mediators induced in the local milieu
by smoking. Two of these mediators are
epidermal growth factor (EGF) and
amphiregulin (AREG) (51, 63). EGF is
a 6.4-kD protein involved in cell growth,
proliferation, differentiation, and survival,
whereas AREG is a 28-kD protein member
of the EGF family, with similar functions
as EGF. Both of these mediators function
through the EGF receptor (EGFR),
a member of the ErbB tyrosine kinase
receptor family that is highly expressed
on human airway basal cells (42, 64).
Relevant to the disordered epithelium that
characterizes COPD, smoking up-regulates
the expression of EGF and AREG in the
airway epithelium, exposing the EGFR on
basal cells to chronic stimulation. In vitro
studies with normal human airway basal
cells differentiating on air–liquid interface
have demonstrated that EGF induces
squamous cell metaplasia and decreased
airway epithelial resistance, whereas AREG
induces basal cell hyperplasia, mucous
cell hyperplasia, and shorter cilia and
contributes to reducing airway epithelial
resistance (i.e., together, EGF and AREG
generate all of the pathologic features of the
deranged epithelium that characterize
COPD) (51, 63). Given that EGF and
AREG are up-regulated in the airway
epithelium of smokers and that both of
these growth factors suppress integrity of
the airway epithelial tight junctional barrier
and normal differentiation, it is possible

PULMONARY PERSPECTIVE

Pulmonary Perspective 1359



that EGFR signaling driven my these
mediators is central to the complex
derangement of the normal airway epithelial
architecture and its host defense and barrier
function. Although there are undoubtedly
other mediators that contribute to
the deranged COPD airway epithelial
differentiation, the EGF/AREG data provide
a paradigm for understanding the central
role that basal cells play in the pathogenesis
of COPD, making the basal cell population
a target for drug development to protect
the lung from the stress of smoking.

Basal Cells and Lung Cancer

The evidence strongly supports the concept
that, with the continued stress of smoking,
airway basal cells are modified at the gene
expression and functional levels and play
a significant role in the pathogenesis of lung
cancer, a disorder also caused primarily
by smoking (i.e., with the continued stress of
smoking, basal stem/progenitor cells can
undergo malignant transformation, with
specific “driver” mutations that lead to the
development of bronchogenic carcinoma)
(20). Fukui and colleagues (65)
hypothesized that basal cells are the
cell-of-origin of at least a subset of lung
adenocarcinoma. Lung adenocarcinoma
transcriptome data sets were assessed for
their “basal cell signature,” based on the
identification of the human airway basal
cell transcriptome by Hackett and
colleagues (42). Transcriptome analysis of
lung adenocarcinomas from three different
data sets was categorized into basal cell
“high” and “low” expressors. Assessment of
the basal cell “high” adenocarcinomas
demonstrated that they have a poor tumor
grade, high frequency of vascular invasion,

high frequency of KRAS mutations,
suppression of ciliated and nonmucous
secretory cell genes, and up-regulation of
the epithelial–mesenchymal transition
program. In all three data sets, representing
together 318 lung adenocarcinomas, the
individuals with adenocarcinomas in the
airway basal cell “high expressor” group
had a markedly shorter survival, typically
by 50%. These data support the concept
that basal cells are the potential cell-of-
origin of these cancers and that these “basal
cell–high” lung adenocarcinomas are much
more aggressive. Several mechanisms
might contribute to up-regulation of the
airway basal cell transcriptome features
in this “basal cell–high” subset of lung
adenocarcinomas, including expansion of
basal cell population or distinct subset(s)
of basal cells in these tumors and the
possibility of dedifferentiation or
transdifferentiation of non–basal cell
population(s) into cells expressing basal
cell features in response to injury or
oncogenic stress (66, 67). However, in all
scenarios, acquisition of the basal
cell–associated molecular phenotype
seems to be critical for this subtype of
lung adenocarcinoma in smokers.

How Does COPD Begin? The
Basal Cell “Smoking Gun”
Hypothesis

In 1977, Fletcher and Peto (68) reported on
792 working men in London followed with
lung function studies over 8 years. They
observed that most nonsmokers and many
smokers never develop airflow obstruction
but that in susceptible smokers smoking
causes progressive, irreversible obstruction

to expiratory airflow. In this Perspective,
I have compiled evidence that, when
confronted by the chronic stress of
smoking, airway basal cells become
disorderly, acquire a more primitive state,
behave as dictated by their inheritance, are
susceptible to acquired changes in their
genome, lose the capacity to regenerate the
epithelium, are responsible for the major
changes in the airway epithelium that
characterizes COPD, and, with persistent
stress, might undergo malignant
transformation and potentially become
the cell-of-origin of a subset of smoking-
associated lung carcinomas (Figure 3).
Thirty-seven years later, using the advances
in cell biology and ’omics technology,
studies of airway basal cells in health and
disease have provided a novel insight into
the biologic mechanisms underlying the
Fletcher and Peto observations (i.e., that
airway basal cells are the “smoking gun” of
COPD with the accelerated loss of lung
function in susceptible smokers starting
with disordered airway basal cell biology).
As evidence mounts to support this
concept, airway basal cells are an inviting
target to prevent and treat smoking-related
lung disorders. n
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