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Cigarette smoking reduces DNA methylation
levels at multiple genomic loci but the effect is
partially reversible upon cessation
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Smoking is a major risk factor in many diseases. Genome wide association studies have linked genes for nicotine
dependence and smoking behavior to increased risk of cardiovascular, pulmonary, and malignant diseases. We conducted
an epigenome wide association study in peripheral-blood DNA in 464 individuals (22 current smokers and 263 ex-
smokers), using the Human Methylation 450 K array. Upon replication in an independent sample of 356 twins (41 current
and 104 ex-smokers), we identified 30 probes in 15 distinct loci, all of which reached genome-wide significance in the
combined analysis P < 5 x 102 All but one probe (cg17024919) remained significant after adjusting for blood cell
counts. We replicated all 9 known loci and found an independent signal at CPOX near GPR15. In addition, we found 6 new
loci at PRSS23, AVPR1B, PSEN2, LINC00299, RPS6KA2, and KIAA0087. Most of the lead probes (13 out of 15) associated with
cigarette smoking, overlapped regions of open chromatin (FAIRE and DNasel hypersensitive sites) or / and H3K27Ac peaks
(ENCODE data set), which mark regulatory elements. The effect of smoking on DNA methylation was partially reversible
upon smoking cessation for longer than 3 months. We report the first statistically significant interaction between a SNP
(rs2697768) and cigarette smoking on DNA methylation (cg03329539). We provide evidence that the metSNP for
€g03329539 regulates expression of the CHRND gene located circa 95 Kb downstream of the methylation site. Our
findings suggest the existence of dynamic, reversible site-specific methylation changes in response to cigarette smoking ,
which may contribute to the extended health risks associated with cigarette smoking.

Introduction mechanisms by which tobacco consumption causes harm have

not been fully elucidated. Twin studies document substantial

Cigarette smoking is a significant cause of premature death  heritability to smoking initiation, smoking persistence, and nico-
and disease being one of the most important risk factors for can-  tine dependence, suggesting a substantial genetic component in
cer, heart disease, stroke, and chronic lung disease. The inter-individual differences in the ability to quit smoking." There
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is increasing evidence that epigenetic variation plays an important
role in several complex traits,”” for example, nicotine exposure
has an effect on promoter methylation® and has also been associ-
ated with lung cancer.” An association of the offspring’s DNA
methylation with paternal DNA methylation that is strongest if
both have never smoked® has been recently reported while the
degree of global hypomethylation was associated with smoking
history in squamous cell carcinoma.®”

Promoter hypermethylation represents an epigenetic hit that
inactivates gene expression by extensive methylation of cytosines
in CpG dinucleotide-rich islands in the promoter-enhancer
region of a gene. Significant associations have been established
between smoking and promoter hypermethylation. It has been
shown that the frequency of promoter methylation is significantly
higher among smokers, compared to never-smokers.® As DNA
hypermethylation is now recognized as an alternative, epigenetic
mechanism for gene silencing in lung cancer, several environ-
mental exposures are thought to cause aberrant DNA methyla-
tion, including dietary factors and chemotherapeutic agents,
among others. Interestingly, as well as gene specific hypermethy-
lation,” smoking has also been associated with global hypomethy-
lation.'® Genome-wide association studies (GWAS) have
established one locus associated with nicotine dependence and
smoking quantity, on chromosome 15q25."" The same locus is
also associated with lung cancer, peripheral arterial disease and
chronic obstructive pulmonary disease (COPD) and lung func-
tion."” Animal models suggest that epigenetic changes arise in
lung tissue following short-term exposure to tobacco smoke con-
densate and precede histopathological changes.'? Exposure to
tobacco smoke is also believed to alter expression of DNA meth-
yltransferase (DNMT) enzymes'* and modulate histone modifi-
cations, including acetylation and methylation.15 However, these
results do not reveal whether (i) DNA hyper- or hypo-methyla-
tion occur early or late in the pathogenesis of tobacco smoke
related diseases and; (i) methylation precedes the pathology of
the disease or is a direct consequence of smoking. Early epige-
netic changes in carcinogenesis (especially those related to smok-
ing) are hypothesized to occur somewhat diffusely in the lung
and may therefore be detectable in noncancerous lung tissue, as
well as in any cancers that arise.'®'” Many of the effects of smok-
ing on the lung are thought to result from the direct effects of cig-
epithelium and
macrophages. However, the exact mechanism(s) through which
smoking increases the risk for disease in non-pulmonary tissues,
such as blood and brain, are unclear. Recently, sets of convergent

arette smoke on pulmonary alveolar

findings have suggested that a portion of that vulnerability may
be driven by differential DNA methylation acquired by smok-
ing."®!??* To date, 9 loci have been confirmed at the genome-
wide level of significance to show differential methylation
between current smokers and non-smokers™ >’

The aim of this study was to investigate the genome-wide
methylation status of current and ex-smokers versus non-smokers
taking advantage of recent technological advancements that allow
interrogation of methylation levels at 485,577 sites in the human
genome.”® Those sites are located both at gene promoters and
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other genomic features (e.g., intra- and inter-genic CpG islands).
We hypothesize not only that specific CpG sites are differentially
methylated in smokers and non-smokers in a tissue specific man-
ner, but also that specific genes associated with smoking also
show altered methylation in peripheral blood.

Results

Epigenome-wide screen

We assessed methylation levels across the genome with the
[lumina HumanMethylation450K array in peripheral-blood
DNA samples from 464 CARDIOGENICS individuals (Fig. 1).
Among this discovery cohort of European descent, 22 were cur-
rent, 263 were ex-smokers and 179 were never-smokers ranging
from 38 to 68 years of age (Table S1). In the discovery phase, we
found 53 probes to be associated with smoking at P < 107°
(Table S2). We then tested these 53 probes for replication in an
independent cohort of 356 unselected female twins (41 current,
104 former and 211 non-smokers) from the TwinsUK Registry
that were profiled for DNA methylation using the same array
platform. In this instance, we applied a linear mixed model to
adjust for random effects consisting of family ID and zygosity in
this analysis. Of the 53 probes tested, 30 replicated after applying
Bonferroni correction (adjusted P < 9.43 x 10™%) and checking
that signals were directionally consistent (Table 1) in the 2
cohorts; one probe, ¢g27537125, was significant but was
removed as it showed an opposite effect. We combined P-values
from the discovery stage with their respective replication P-values
using Fisher’s method and found all 30 replicating probes, which
represent 15 distinct loci, to exceed the genome-wide threshold
of significance (P < 5 x 1078) (Table 1). We defined indepen-
dent loci when probes were at least 1 Mb apart.

Of the 30 probes corresponding to 15 loci, 6 have not been
previously reported at the genome-wide level of significance
(Table 1; Box 1 provides a brief description of the genes linked
to the associated probes). All 9 loci previously known to be asso-
ciated with differential methylation upon cigarette smoking'®**>’
replicated in our study reaching genome-wide significance
(Table 1; F2RL3, AHRR, GPRI15, IER3, ALPP, RARA,
GNG12, ZNF385D, and LRP5). The strongest signal was in
AHRR (cg05575921; P = 9.04 x 10~°°) followed by probe
cg05951221 (P = 2.92 x 107°%), which is located near the
alkaline phosphatase gene cluster on chromosome 2q37°°. In
total, 7 probes reached genome wide significance in this locus
(Fig. 2A), which harbors 2 CpG islands at 233, 251, 361-233,
253, 414 and 233, 283, 397-233, 285, 959 bp, respectively.28
A single probe, cg27241845, was significant in the first CpG
island and was located near the alkaline phosphatase, placental
(ALPP) gene. The remaining 6 probes, including cg05951221,
are located in the second CpG island nearest to the ALPPL2
gene. Of notice is the presence of a cholinergic nicotinic recep-
tor (CHRND) gene ~100 Kb downstream of ¢g05951221. It
is also worth noting that in addition to theGPRI5 signal
(cg19859270, P = 3.37 x 10734 Fig. 2B), we detected a sec-
ond one with probe ¢g02657160 (P = 1.22 X 10~'%), which
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Figure 1. EWAS Manhattan plot for smoking status in the CARDIOGENICS cohort and QQ plot (A). The vertical axis indicates (-log10 transformed)
observed P-values, and the dotted horizontal line indicates the threshold of significance (P = 10°) to select markers for replication. Previously reported
loci are indicated in blue, new loci and new signals in known loci are marked in red. Panel (B) illustrates a QQ plot of the distribution of the P values.

is located 60 Kb away in the intron of the coproporphyrinogen
oxidase (CPOX) gene (Fig. 2B).

We then examined the location of the most associated probes
with respect to regulatory elements from the ENCODE data as
well as DNasel peaks which mark regions of open chromatin.”
Among the 6 new loci (see Fig. S2 for each locus’ regional associ-
ation plot and genomic context), 2 harbor probes overlapping an
H3K27Ac peak. Probe cg03547355 (P = 1.47 X 10719 is
located at 1q42.12 in an intergenic region 54 Kb away from the
presenilin-2 gene (PSEN2) and the overlapping H3K27Ac peak
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was found in 3 cell lines.”® The last significant probe to overlap a
strong H3K27Ac peak, cgl1660018 (P = 121 x 107",
mapped at the promoter of the serine protease 23 (PRSS23) gene.

A further 2 new loci overlapped open chromatin regions
marked by DNasel and/or FAIRE peaks detected in the
ENCODE study.”” Probe ¢g22717080 (P = 2.02 x 10~%°) was
located in an intron of the ribosomal protein S6 kinase
(RPS6KA2) gene and overlapped a FAIRE peak. Probe
cg20295214 (P = 5.20 x 107" was located in an intron of the
arginine vasopressin (AVPRIB) gene and overlapped a DNasel
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Box 1. Literature based functional annotation for candidate genes in the 15 known and new loci associated with DNA methylation in response to cigarette

smoking.
Gene Function
RARA Retinoic acid receptor, nuclear receptor, steroid hormone receptor
PRSS23 Extracellular region, nucleus, proteolysis, serine-type endopeptidase activity
CPOX Heme biosynthetic process, small molecule metabolic process
GNG12 Energy reserve metabolic process, cerebral cortex development, small molecule metabolic process, phosphate ion binding, G-protein
coupled receptor signaling pathway
RPS6KA2 Toll signaling pathway, toll-like receptor 1 signaling pathway, positive regulation of apoptotic process, TRIF-dependent toll-like receptor
signaling pathway, cardiac muscle cell apoptotic process
AVPR1B Vasopressin receptor activity, response to stress, positive regulation of blood pressure, positive regulation of heart rate, peptide hormone
binding, regulation of systemic arterial blood pressure by vasopressin
GPR15 G-protein coupled receptor signaling pathway, integral to plasma membrane
ZNF385D Nucleic acid binding, zinc ion binding
LRP5 Positive regulation of cell proliferation, cholesterol metabolic process, induction of apoptosis, regulation of blood pressure, regulation of
insulin secretion, transcription factor activity, Wnt-activated receptor activity,
CHRND lon transport, postsynaptic membrane, neuromuscular process, muscle contraction, receptor activity, acetylcholine binding, nicotinic
receptor
KIAA0087 IncRNA
IER3 Anti-apoptotic gene involved in cellular stress responses, inflammation and tumorigenesis. May play a role in the ERK signaling pathway
by inhibiting the dephosphorylation of ERK by phosphatase PP2A-PPP2R5C holoenzyme
AHRR DNA binding, DNA-dependent, regulation of transcription, negative regulation of transcription from RNA polymerase Il promoter, positive
regulation of protein sumoylation
LRP5 Whnt receptor signaling pathway
LINC00299 Long intergenic non-protein coding RNA 299
RPS6KA2 Serine/threonine-protein kinase downstream of ERK, stress-induced activation of transcription factors, May function as tumor suppressor

in epithelial ovarian cancer cells

hypersensitivity site reported by ENCODE in HepG2 cells
(weaker signals were observed in other cell types).

Finally, for 2 of the new loci the associated probe did not
overlap any element. Probe ¢g02451831 (P = 1.79 x 1071
mapped to the 3> UTR of the KIAA40087gene andcg23079012
(P = 4.76 x 107" in an intron of a long non-coding RNA
gene, LINC00299, at chromosome 2q25.1.

Differential DNA methylation is known to be strongly associ-
ated with age.” We found no overlap between the 30 probes sig-
nificantly associated with smoking and known DMRs associated
with age.” Furthermore, in the discovery cohort we found no
overlap between the 30 CpG sites associated with smoking
(adjusted for age and gender) and the 1,210 and 11,751 CpG
sites associated with age and gender at P < 107, respectively.
Association results for the 30 probes from the age and gender
analyses are given in Table S4. Blood is composed of different
cell types and thus signals detected in EWASs may be con-
founded to DNA methylation changes caused by differences in
cell counts of the main blood cell types.”® We compared our
EWAS results for exposure to cigarette smoking with EWAS
results we generated for lymphocyte, monocyte and neutrophil
counts respectively in the discovery cohort. As shown in
Figure S3 several probes associated with cigarette smoking in our
study, show evidence of association with neutrophil and lympho-
cyte counts (none with monocyte counts) at P < 10~°. We note
that among the significant loci, the probes for RARA and PRSS23
showed very strong evidence for association with lymphocyte
(P=8.1x 10""%) and neutrophil (P =1.17 x 107?) cell counts
respectively. To assess confounding effects, we re-analyzed the 30
probes including lymphocyte, monocyte and neutrophil counts
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as covariates in the model. Table 1 shows that all probes but
cg17024919 in ZNF385D remained significant in the adjusted
model in both the discovery and replication cohort after Bonfer-
roni correction (P = 1.6 x 1072). Finally, we cross checked the
30 probes against a recently reported list of 1865 differentially
methylated probes in isolated cells from blood®' and found no
overlap.

In summary, we identified 6 new loci showing differential
DNA methylation upon cigarette smoking of which 4 had the
most associated probe overlapping a putative regulatory element.
The new loci have effect sizes ranging from 1.7 to 5.6% differ-
ence in median methylation between current and never smokers

(CARDIOGENICS, Table 1).

Correlation of DNA methylation with gene expression levels

DNA methylation is known to play an important role in tran-
scriptional regulation. We set to explore whether the observed
changes in DNA methylation levels upon exposure to cigarette
smoking were correlated to changes in gene expression levels of
the corresponding gene(s). To do so we analyzed whole blood
RNA-Seq data from 322 female Twins with available smoking
history which overlapped by 129 samples with the EPITWIN
replication cohort; 77 never, 39 former and 13 current smokers
(data were scaled to 10 million reads per sample filtering out any
exons with multiple missing values). In this data set, 8 of the
16 genes linked to the top associated probes showed evidence of
expression, PSEN2, PRSS23, RARA, F2RL3, GPRI5, CPOX,
AHRR, and RPS6KA2. Only GPRI5 showed a clear trend of
increased gene expression in smokers compared to non-smokers
(Fig. S4) suggesting that the reduction in methylation levels we
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Figure 2. Regional plots of known and new loci associated with cigarette smoking. For each locus the association plot (bottom half of each panel
plotting all probes and their respective —log10(P) values) is shown in the context of genomic annotation tracks (e.g., CpG islands, RefSeq gene structures,
regulatory elements reported by ENCODE) available in the UCSC genome browser (http://genome.ucsc.edu/) - correlated regions are marked by red
lines. The location of the 450 K array probes in the UCSC display is shown as gray rectangles. The depicted loci are: (A) the known locus 2g37.1 in which
we detected an interaction between rs12996863 and smoking on DNA methylation levels and (B) the known locus GPR15 in which we identified a new,
possibly independent, signal near CPOX.
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observed in smokers leads to increased transcription (the reverse
cannot be excluded). We then tested whether there is any correla-
tion between gene expression and DNA methylation (accounting
for age and chip batch id) levels for these genes and found a
strong negative correlation for GPRI5 (B = —713.01, P = 1.05
x 1077) and weaker correlations for CPOX (B = 31.31, P=7.1
x 107°) and AHRR (B = —45.5, P=2.19 x 107?) (Table S5).
To assess the effect of smoking and DNA methylation on gene
expression we analyzed the 77 never and 13 current smokers with
a linear regression model (see Methods). We found a strong posi-
tive effect of cigarette smoke exposure on GPRI5 expression
(B = 0.489, P = 2.52 x 10_9) and weaker, nominally sig-
nificant, signals for CPOX and RARA (Table S5). In contrast,
we found no statistically significant effects of DNA methyla-
tion on gene expression after correcting for cigarette smoke
exposure (Table S5). Taken together, our data suggests that
exposure to cigarette smoking leads to differential DNA
methylation in PSEN2, PRSS23, RARA, F2RL3, GPRI5,
CPOX, AHRR, and RPS6KA2, which is not linked to differen-
tial gene expression. However, exposure to cigarette smoking
is associated with differential gene expression in GPRI5 and
possibly CPOX and AHRR.

DNA methylation patterns upon smoking cessation

All but one (cg23480021) of the 30 probes showed a clear
trend that smokers have lower methylation levels than non-
smokers. Interestingly, we observed that for all 30 probes methyl-
ation levels were, at least partially, restored in former-smokers
(Fig. 3A and data not shown). However, for none of the probes
is DNA methylation completely reversed to non-smoking levels.
This suggests that the impact of cigarette exposure on DNA
methylation is partially reversible after smoking cessation at least
for our 30 most significant probes. We were able to assess,
though in a crude way, the timing of this reversal effect in the
CARDIOGENICS study where it was recorded whether partici-
pants ceased smoking more or less than 12 weeks prior to the
recruitment day. We divided all ex-smokers (n = 263) in 2
groups (A) those who had ceased smoking for more than 12
weeks (n = 251) and (B) those who were still ‘active smokers’ up
to 12 weeks prior to the recruitment day (n = 12) and compared
the 2 groups to the never- and current-smokers. Figure S5 shows
the results for the lead probe of each locus associated with ciga-
rette smoking in this study, in most cases (12 out of 15 loci)
group (A) had DNA methylation levels almost identical to the
never-smokers and group (B) had DNA methylation levels simi-
lar to those of the current-smokers (results were consistent for
loci with multiple probes, data not shown).

cis metQTL analysis

To assess whether any of the probes associated with cigarette
smoking (Table 1) is under genetic control iz cis we undertook
methylation quantitative trait loci (metQTL) analysis in a subset
of the CARDIOGENICS samples corresponding to healthy con-
trols (n = 247). We considered all SNPs (1000 Genomes
imputed GWAS data) within a 200 Kb window centered on the
probe position. In total, we found 61,951 out of the 355,628
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(17.42%) CpG probes to have at least one significant metSNP at
an FDR of 1%; we note that probes overlapping known SNPs
had been removed during QC (Methods).

We then assessed whether probes associated with smoking
exposure are more likely to be under genetic control. Looking at
the discovery EWAS, we found 329 of the 1,172 probes with a
suggestive association (P < 1.00 x 107°) to have a metSNP
(28.07%). We observed a further enrichment among the 31
probes that replicated in our study (Table 1); 45.16% (15 probes
in 8 loci) had a metSNP.

Table 1 lists the lead metSNP of each of the 15 probes
associated with smoking exposure (see Table S6 for a full
list). Taking advantage of the twin design in the EPITWIN
study we also estimated narrow-sense heritability (4°) for all
significant probes in Table 1. We found 15 probes (10 loci)
being heritable (4 20.3) of which 7 have metQTLs (Table 1).
Highly heritable probes (4° > 0.5) were more likely to have a
metQTL (55%).

In summary, we found wide spread genetic regulation of
DNA methylation in 8 of the loci associated with cigarette smok-
ing. Methylation was heritable in 6 out of these 8 loci.

Interaction analysis in loci associated with cigarette smoking
and harboring metSNPs

We then tested whether there is an interaction between
genetic effects (metSNPs) and smoking on DNA methylation
levels in the 8 loci, which were both associated with smoking sta-
tus and harbored metQTLs. Of the 495 metSNPs, we considered
for further analysis 119 LD pruned metSNPs (removed SNPs
with 12 0.9 with a lead metSNP) present in both cohorts (CAR-
DIOGENICS and EPITWIN; SNPs are listed in Table S6).
Interaction analysis was carried out in PLINK and association
results were meta-analyzed using GWAMA to increase power.
Table 2 lists the top 17 SNPxSmoking interactions significant at
P < 1077, After applying a Bonferroni correction for the 119
tests (P < 4.2 x 10_4), we found 2 probe-metSNP pairs,
cg03329539-1s2697768 and ¢g03329539-rs55781386, both at
the chromosome 2q37.1 locus (Table 2) showing evidence of
interaction. Methylation at cg03329539 is highly heritable (4° =
0.53). The 2 SNPs are in LD r* = 0.826 and as expected were
not independent upon conditional analysis (P = 0.27 for
152697768 conditioned on 1s55781386). Therefore, we consid-
ered only 152697768 for further analyses. Figure 3A shows that
current smokers have reduced methylation levels (5.7% in CAR-
DIOGENICS and 2.5% in the EPITWIN cohort) compared to
the never-smokers for the top SNP. The minor allele
(rs2697768-C) is associated with lower methylation levels in the
never-smokers (Fig. 3B) but appears to have a ‘protective effect’
in the current smokers (Fig. 3C) where most of the observed
reduction in methylation levels is driven by the major allele,
1s2697768-A. The SNP 12697768 (2:233,270,916) maps
between 2 ENCODE DNasel hypersensitive site clusters at
233,270,707-233,270,898 and 233,271,004-233,275,292,
18bp and 88bp away respectively. Only the latter site was found
in a blood related cell line (lymphoblastoid).
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Figure 3. Genetic interaction at the 2q37.1 locus. The first 2 panels show the effect of (A) smoking on methylation levels at probe cg03329539 in cur-
rent-, ex- and never- smokers and (B) of SNP rs2697768 on DNA methylation levels of probe cg03329539. (C) shows the allele effect of rs2697768 on
methylation levels in current, former and never smokers. The rs2697768-C allele is associated with lower methylation levels in the never-smokers but
appears to stay stable in the current smokers where most of the observed reduction in methylation levels is driven by the major allele, rs2697768-A.

Is the interaction SNP rs2697768 affecting expression levels
of a nearby gene?

We undertook expression QTL analysis of rs2697768
(included all 1000 Genomes proxies at an 2 > 0.6) in 7 different
cell types (monocytes, macrophages, lymphoblastoid cell lines

(LCLs), T-cells, fibroblasts, fat and skin) from published data
sets.”>>> Analysis was performed in a 2 Mb window centered on
the SNP position. The only association detected at an FDR of
5% was between rs12996863 (r* of 0.66 with rs2697768) and
CHRND expression in LCLs (P = 9.9 x 10743 Interestingly,
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Figure 4. eQTL SNP (rs12996863) of the CHRND gene is associated with regulation of DNA methylation levels at cg03329539. A regional plot of
rs12996863 showing a weak eQTL effect (blue line) on CHRND expression in lymphoblastoid cell lines from the MUTHER study [27. No eQTL effect was
detected for rs12996863 in adipose (red) or skin (green) tissue from the same MuTHER individuals.

1512996863 which is the lead eSNP for CHRND, is in LD (+* =
0.73) with rs2697794, which is the lead metSNP for the interac-
tion probe ¢g03329539 (Fig. 4).

Based on Illumina’s human BodyMap v2.0 data (this data was
recently added to Ensembl release 62 and is presented as an
optional track), expression levels of CHRND in whole blood are
very low (< 107" fragments per Kb of exon per million frag-
ments mapped). We also assessed CHRND expression levels
based in our whole blood RNA-seq data. Given the very low
expression of CHRND in whole blood and the available RNA
sequence depth in the 322 twins (129 overlap with the EPI-
TWIN cohort) we cannot extract firm conclusions but we did
observe that current smokers have a higher median RNA read
count than never smokers (Table 3; scaled read count ranged
from 0 to 12). The data, although not confirming, point to the
assumption that reduced DNA methylation at cg03329539
caused by smoking may induce CHRND expression.

Network analysis

To assess whether genes in the loci showing differential DNA
methylation in response to cigarette smoke fall in to specific bio-
logical pathways, we performed network analysis with the 17
genes (GNGI12, AVPRIB, LINC00299, ALPPL2-CHRND,
PSEN2, ZNF385D, GPRI5-CPOX, AHRR, LRP5 PRSS23,
RPS6KA2, KIAA0087, RARA, F2RL3, and [ER3) in the 15 dis-
tinct loci significantly associated with smoking. Genes were
selected on the basis of overlap or proximity with one of the 30
associated probes except CHRND, which was included because

Table 3. Whole blood RNA-Seq data of CHRND in female twins

Smoking Status Available No of Subjects Median (scl)’

Non smoker 89 1.50173
Ex-smoker 50 1.62522
Current smoker 10 2.10951

! Scaled data: number of reads / library depth *10.000.000.
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of a common metQTL/eQTL. Including neighboring genes,
Ingenuity generated 2 networks, A and B, which included 10
(AHRR, AVPRIB, CHRND, CPOX, F2RL3, GNGI12, LRP5,
PRSS23, RPS6KA2, and PSEN2) and 2 (IER3 and RARA) of the
17 genes, respectively (Fig. §6). The 2 networks were enriched
for genes known to be involved in cardiovascular disease (P =
6.95 x 1074), cancer (P = 9.77 x 1074), connective tissue and
developmental disorders (P = 9.77 x 10_4), and cell death, cell
survival and cell-cell interactions (P = 9.77 x 10~%). We then
assessed how genes in the networks overlap with canonical path-
ways in the Ingenuity database. The top canonical pathways asso-
ciated with the 2 networks were the heme biosynthetic pathways
I and 1T (P = 3.9 x 107?) and the Aryl Hydrocarbon receptor
signaling (P = 7.69 x 107%).

Discussion

We undertook an EWAS for cigarette smoking in 464 indi-
viduals of European descent and identified 30 probes that repli-
cated in an independent sample of 356 individuals after
Bonferroni correction. We replicated all 9 known loci associated
with differential DNA methylation upon cigarette smoking in
adults. Two of these loci AHRR and F2LR3 have been recently
associated with DNA methylation changes in newborns whose
mothers smoked during pregnancy.** The same study reported
GFI1, which did not reach significance in our study although sev-
eral probes showed evidence for association (cg12876356 had P
= 1.65 x 10~* in CARDIOGENICS and P = 9.81 x 10 * in
EPITWIN). GFII encodes a nuclear zinc finger protein that
functions as a transcriptional repressor involved in diverse devel-
opmental contexts, including hematopoiesis and oncogenesis.
Therefore it is possible that GF/I methylation status is affected
by exposure to cigarette smoking in newborns as found by Jou-
bert et al. 2% but this effect is much weaker in adults (this study).
We note that probes in CYPIAI and MYOI1G showed strong evi-
dence for association at the discovery stage in both our study and
that by Joubert ez a/ but did not replicate at the Bonferroni
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threshold of significance (Table S2, this study). Finally, the study
by Sun et al,” analyzed an African American sample and
reported 5 significant loci of which 3, HNRPULI, LIM2, and
AKT3, have not been reported by any study in Caucasians
(including this study in which none of the reported probes
showed any trend of association in the discovery cohort P > 0.1).
This may be due to differences in smoking habits and / or diver-
sity of the genetic background. Furthermore, the significance of
the genetic background has been highlighted by a recent report
that showed differences in DNA methylation patterns in loci
6p21.23 and GNG12 in Europeans and East Asians.*®

Beside the 9 known loci, 6 other loci had probes that reached
genome-wide significance (P < 5 X 1078 for the first time
(Table 1). Several of the lead probes in both known and new loci
showed strong association with neutrophil and lymphocyte cell
counts but their association to cigarette smoke exposure remained
significant (pass Bonferroni correction and reach genome-wide sig-
nificance in the combined analysis) after adjustment for blood cell
counts. Whether blood cell counts change in response to differen-
tial DNA methylation triggered by cigarette smoking in some loci
e.g RARA and PRSS523 cannot be resolved with the current study
design and will require further experiments. The new loci that
remained highly significant, after adjusting for blood cell counts,
brought the total number of independent CpG sites to 17 (15 dis-
tinct loci) showing differential methylation in response to cigarette
smoking. Based on the ENCODE annotation, we found that
most of the lead probes (13 out of 15) showing differential meth-
ylation with smoking status are located in putative regulatory
regions in blood related cell types. Most of the putative regulatory
elements appear to be distal to the TSS as they were marked by
H3K27Ac (7 out of 11), which is associated with active enhancers.
For the known loci, we saw the same trend for effect sizes in our
study compared to other published reports™?® with AHRR and
ALPPL2-CHRND being the strongest, followed by IER3 and
GPRI5 but absolute values fluctuated significantly between all
studies compared. The new loci (6) had small effect sizes, with the
EPITWIN sizes (replication) being consistenty lower than in
CARDIOGENICS and although this may in part be attributable
to the winner’s curse, over-adjusting for family ID in EPITWIN
is also very likely to contribute to this effect.

Eight of the 17 CpG sites associated with exposure to ciga-
rette smoking, PSEN2, PRSS23, RARA, F2RL3, GPRI5,
CPOX, AHRR, and RPS6KA2, are linked to genes showing
expression in whole blood (RNA-Seq data from 322 individu-
als). For the remaining sites which are linked to genes showing
no detectable levels of expression in blood, we know that they
are overall hyper-methylated suggesting that the reduction in
methylation levels we observed in the current smokers may
have an effect on gene expression but at levels not detectable
in our data set. However, although we found that exposure to
cigarette smoking is associated with differential gene expres-
sion in GPRI5 and possibly CPOX and AHRR, we did not
observe an association with DNA methylation after correcting
for cigarette smoke exposure. We cannot exclude that methyla-
tion at other untested CpG sites in these loci is associated with
differential gene expression.
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In 10 of the loci associated with differential methylation upon
exposure to cigarette smoke we found heritable probes (15
probes; #° > 0.3). Several of the heritable probes had metQTLs
(7 out of 15). In total, 8 of the 15 distinct loci (53.3%) had a
metSNP, confirming the previously reported abundance of
genetic regulation of DNA methylation levels. Environmental
variables such as smoking may interact with genetic factors.
Despite the small size of our sample (n = 820), we found a sig-
nificant interaction (Bonferroni correction) between rs2697768
and smoking status altering methylation levels of ¢g03329539 in
the 2q37.1 locus. A second SNP (rs55781386) was also signifi-
cant for the same probe but the signal was not independent upon
conditional analysis. SNP rs2697768 has not been previously
associated with smoking or any other related phenotypes. To the
best of our knowledge this is the first report of a SNP x smoking
interaction on DNA methylation levels. It has previously been
suggested that in gene environment interaction studies, proximal
variants rather than those with a main-effect (GWAS) are more
likely to show a significant association because the interaction
tends to weaken the statistical significance of the main effect.”” Tt
is therefore possible that it is the lead metSNP, rs62192178 or a
proxy, which interacts with smoking to affect methylation levels
at cg03329539. We found that the lead metSNP, rs62192178,
was in LD with the lead eSNP of a weak eQTL (5% FDR) we
detected for the CHRND gene in LCLs. CHRND which encodes
the delta subunit of the acetylcholine receptor of muscle, is
located circa 95 Kb downstream the methylation probe
cg03329539. The very low expression of CHRND in whole
blood did not allow eQTL analysis. Nonetheless, our RNA-seq
data showed a trend of higher median expression among current
smokers when compared to never smokers. We found no evi-
dence of rs2697768 regulating expression of its adjacent gene
alkaline phosphatase, placental-like 2 (ALPPL2), which is known
to be transcriptionally stimulated by heme oxygenase-1
(HMOX1).?® We note that the signal (cg02657160) in CPOX,
although it did not meet our definition of an independent locus
as it is located 70 Kb away from GPRI5, implicates another gene
of the heme biosynthetic pathway. Heme biosynthesis was the
top canonical pathway mapping to the main network A, we
obtained using the Ingenuity database.

In all loci (29 out of 30 probes) associated with smoking
status we observed a partially reversible pattern of DNA meth-
ylation upon smoking cessation. Loci in which methylation
patterns are partially reversible may be associated with milder
effects of smoking such as inflammation, high blood pressure
and vasoconstriction. Under this scenario, multiple genes may
interact to form a complex biological web of the symptoms
and diseases associated with smoking. On the other hand,
such loci may be related to pathways associated with the sys-
temic effect of smoking leading to more severe phenotypes
such as COPD and cancer, 2 major consequences of smoking.
Studies comparing methylation levels between long term heavy
smokers and non-smokers have reported genes associated with
cancer such as the p16 promoter'” and RARbeta2.”” The 2
networks, A and B, we constructed and which harbor 12 of
the 17 genes associated with differential methylation in
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response to cigarette smoking in our study, were enriched for
genes linked to cancer and cardiovascular disease for which
smoking is a known risk factor. It should be noted, however,
that one important caveat is that the 450 K array design is
biased toward cancer loci. In terms of molecular functions, the
2 networks were enriched in cell cycle regulation, cell death
and survival, as well as cellular development and inflamma-
tion. It is evident, therefore, that gene interactions may be
influenced by changes in DNA methylation in response to
smoking. Further analysis to correlate methylation and expres-
sion levels in disease relevant tissues, e.g., lung biopsies and
samples such as sputum, is required to aid in unraveling the
level of significance and specificity of interactions between
those loci.

In contrast to studies showing the long-term effects of smok-
ing and the timely process of reversing the effect of smoking after
quitting, our data suggests that in specific loci methylation
changes toward non-smoking status can be detected within 12
weeks of smoking cessation. Larger samples with more precise
information on the timing since cessation are needed to corrobo-
rate and fully dissect these initial observations. Furthermore, a
new study should include comprehensive information on smok-
ing behavior, which will allow assessing important aspects, such
as duration of smoking, smoking burden, and age of smoking ini-
tiation. Using a single blood cell type, for example monocytes
from peripheral blood, can overcome some of the limitations
paused by EWAS studies in blood samples. Nonetheless, expand-
ing the list of biomarkers for cigarette exposure in blood is scal-
able due to sample accessibility and can lead to comprehensive
monitoring of long-term and short-term epigenetic changes in
response to smoking.

Materials and Methods

Ethics statement

Both EPITWIN and CARDIOGENICS cohorts recruited
under ethically-approved protocols. The protocol was approved
by the local Ethical Board at each of the recruitment sites and all
subjects provided written informed consent.

Subjects/cohorts

The discovery cohort consisted of subjects participating in the
CARDIOGENICS Consortium, a study that recruited coronary
artery disease (CAD) and healthy individuals between the ages of
38-67 (Average age: 55.39 % 6.6). Samples were collected in 3
centers (Paris, Leicester, and Cambridge) and subjects were asked
to complete a questionnaire recording their smoking history, all
were of self-reported Caucasian ancestry. At the discovery phase
464 subjects were analyzed, of which 238 were CAD cases. The
replication cohort consisted of 356 subjects recruited in the EPI-
TWIN study,” which comprises female twins between the ages
of 34-84 (average age: 60.14 £ 8.8). All subjects completed a
questionnaire documenting their smoking history and habits
(cigarettes smoked per day) and had whole blood drawn for
DNA analysis (Supplementary Table 1).

www.landesbioscience.com
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DNA extraction and methylation profiling

For both cohorts, DNA from whole blood was extracted using
the DNeasy kit (Qiagen, Inc.). Bisulfite modification of 750 ng
of DNA was performed using the 96 well EZ DNA Methylation
kit (Zymo Research) according to manufacturer’s instructions.
DNA methylation levels were assessed using the Infinium
HumanMethylation450 K BeadChip (Illumina), which assays
485,577 cytosine positions in the human genome (mainly CpG
sites, but also non-CpG sites and 65 random SNPs). The intensi-
ties of the images were extracted using the GenomeStudio
(2010.3) Methylation module (1.8.5) software. We excluded
samples with more than 5% missing probes at detection
P < 0.01 (GenomeStudio P-values of detection of signal above
background) before normalization. The signal intensities for the
methylated and unmethylated state were then quantile normal-
ized for each probe type separately. Beta values which are the
ratio of the normalized intensity of the methylated bead type to
the combined normalized locus intensity and range from 0
(hypomethylated) to 1 (hypermethylated), were calculated using
R 2.12 (Team 2010). Principal component analysis (PCA) of the
B values was then performed to assess the impact of known tech-
nical factors to the variation in 3 values as well as to detect any
potential outliers. Figure S1 summarizes QC steps and exclusion
of extreme outliers by PCA. This procedure was performed itera-
tively, re-normalizing the data matrix after removing technical
outliers at each step. Recruitment site, Beadchip, and BS-treated
DNA input were shown to contribute significantly to the varia-
tion in B levels and thus together with age and gender were
included as covariates in subsequent analyses. Probes included in
the analysis were restricted to 459,433 (out of 485,577) whose
sequences were uniquely mapped to the GRCh37 genome with
up to 2 mismatches using MAQ. Probes overlapping a SNP
(MAF > 1%) or CNV reported in the CEU population in the
1000 Genome Project (version 3) were further excluded, result-
ing in a total of 357,700 probes. Of those, 355,628 were kept for

further analysis after removing probes with missing values.

Epigenome-wide association analysis

Multivariate linear regression was used to model the relation-
ship between DNA methylation levels and smoking status.
Smoking status was grouped into 3 categories of cigarette expo-
sure (never-, former-, and current-smokers) for both cohorts and
coded as a factor (0, 1, and 2) in our model. To regress out
known confounders we included in the model age, gender, dis-
ease status (coronary artery disease cases and controls), recruit-
ment site, chip batch effect, and BS-treated DNA input. The
above model was also run with the inclusion of monocyte, neu-
trophil, and lymphocyte counts to assess confounding effects (see
also below). A mixed-effects model was used to account for relat-
edness in the EPITWIN analyses, by including random effects
for family ID and zygosity in addition to the fixed-effect factors
(age, chip, and BS-treated DNA input) applying to this study (all
female, non-diseased subjects, and single recruitment site).
Monozygotic and dizygotic twins were treated in the same man-
ner in the model.
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To assess the statistical significance of the association between
methylation levels and smoking status we fitted 2 linear models
(a full model with the predictor and a null model without) and
compared the 2 by Analysis of Variance (ANOVA). We used
Bonferroni adjusted P values to test for replication in the EPI-
TWIN study. Meta-analysis of the discovery and replication
results was performed using Fisher’s combined P-values method
to cover for differences in effect sizes. The data from this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo/). The accession num-
ber is GSE50660.

Blood phenotype association

We performed EWAS for lymphocyte, monocyte and neutro-
phil cell counts with the models described above in 419 CAR-
DIOGENICS and 351 EPITWIN samples for which blood

counts information was available.

RNA-Seq analysis

RNA-Seq analysis was performed in 322 female Twins with
available smoking history of which 129 (77 never, 39 former
and 13 current smokers) overlapped with the EPITWIN repli-
cation cohort. Samples were prepared for sequencing with the
TruSeq sample preparation kit (Illumina) as indicated by the
manufacturer’s instructions. Libraries were sequenced in sets
of 12 samples per lane using Hi-Seq. The 49 bp sequenced
paired-end reads were mapped to the reference genome
GRCh37 with BWA v0.5.95. Using SAMtools, reads mapping
uniquely to the genome were kept, with MAPQ > = 10 and
properly paired. In order to quantify exons in a non-redun-
dant way, we created a set of merged exons from the GEN-
CODE v10 annotation. In more detail, all transcripts were
merged with any overlapping exons into new exon units. The
number of reads mapping to each exon unit were counted.
Technical outliers having less than 5 M exonic reads were
removed from the study. The raw exon counts were normal-
ized by scaling all libraries to 10 million reads.

Methylation QTL and heritability analysis

Methylation QTL (metQTL) analysis was performed in the
CARDIOGENICS control (non-CAD) samples (n = 247),
which were recruited in a single site, using PLINK.*! Like in the
EWAS, we adjusted for age, gender and chip batch effect. The
latter was input to PLINK as residuals after regressing out on
chip batch effect (as a factor) given that PLINK cannot handle
categorical covariates by default.” Analysis was limited to SNPs
located within a 200 Kb window centered on the probe position,
resulting in an average of 402 SNPs per probe. We considered all
signals at P < 1072 and applied a Bonferroni correction (based
on the number of tests per probe window) to report significant
metQTLs.

Based on the classical twin design we assessed the similarity of
mono- (MZ) and di-zygotic (DZ) twins using the ACE model,
which partitions the variance into additive genetic (A), common
environment (variance due to environmental effects shared
within twin pairs; C) and unique environment (environmental
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effects not shared within twin pairs; E). Twins visited the clinic
in pairs and as MZ twins share 100% of their genes, any differen-
ces arising between them in these circumstances are unique (E). A
standard linear mixed model was used to estimate these variance
components, as previously described.*?

Correlation of DNA methylation with gene expression levels

To test the correlation between DNA methylation and
gene expression levels we used a linear regression model with
gene expression level as the outcome and residualized (for age
and chip batch ID) DNA methylation levels as the predictor.
To assess the effect of smoking and DNA methylation on
gene expression we analyzed the 77 never and 13 current
smokers with a linear regression model. In this case, smoking
was added as a categorical variable in the above linear regres-
sion model (gene expression ~ residualized DNA methylation
+ smoking).

Interaction analysis and combination of evidence

Linear regression models were applied study-wise to esti-
mate the magnitude of the SNP interactions (assuming an
additive model) with smoking on DNA methylation levels
(DNA methylation levels ~ SNP + SNP x Smoking +
Smoking + Covariates). For CARDIOGENICS, we added as
covariates in to the model age, sex and chip batch effect (input
to PLINK as residuals after regressing out on chip batch effect
as a factor), see also above. For EPITWIN, covariates were age
and the first 4 components (adjusting for zygosity, family ID,
and chip batch effect) of the Mult Dimensional Scaling
(MDS) function of PLINK. Interactions analyses were imple-
mented in PLINK.*! We used an inverse-variance weighted
approach to conduct fixed-effect meta-analysis on cohort sum-
mary statistics (GWAMA software) for SNPs and smoking
interaction effects. Conditional analysis was performed using

the GCTA software.*

eQTL analysis

eQTL association analyses from published studies®>> were
A SNP-centric
approach was taken to investigate SNP-gene associations within a
2-Mb window centered on the SNP followed by a gene-centric
approach to identify the lead eSNP of an associated expression
probe.

. . 4
assessed with the Genevar user interface.”’

Network analysis

Network analysis was performed using the Ingenuity Pathway
Analysis software tool (IPA, Ingenuity Systems; http://www.
ingenuity.com/science/platform). We considered molecules and/
or relationships available in The IPA Knowledge Base for human
or mouse and set the confidence filter to experimentally observed
or high (predicted). Networks were generated with a maximum
size of 35 genes, allowing up to 25 networks. Molecules in the
query set with recorded interactions were ’eligible’ for network
construction using the IPA algorithm (http://www.ingenuity.
com/wp-content/themes/ingenuitytheme/pdf/ipa/IPA-netgen-
algorithm-whitepaper.pdf). Networks were ranked according to
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their degree of relevance to the eligible molecules in the query
data set. The score takes into account the number of eligible mol-

ity Knowledge Base.

ecules in the network and its size, as well as the total number of

eligible molecules analyzed and the total number of molecules in

the Ingenuity Knowledge Base that could potentially be included
in the networks.*® The Network Score is based on the hypergeo-

metric distribution and is calculated with the right-tailed Fisher’s

Exact Test. The significance P- value associated with enrichment

of functional processes is calculated using the right-tailed Fisher’s

Exact Test by considering the number of query molecules that
participate in that function and the total number of molecules
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