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Abstract

We present a novel airway labeling algorithm based on a Hidden Markov Tree Model (HMTM).
We obtain a collection of discrete points along the segmented airway tree using particles sampling
[1] and establish topology using Kruskal’s minimum spanning tree algorithm. Following this, our
HMTM algorithm probabilistically assigns labels to each point. While alternative methods label
airway branches out to the segmental level, we describe a general method and demonstrate its
performance out to the subsubsegmental level (two generations further than previously published
approaches). We present results on a collection of 25 computed tomography (CT) datasets taken
from a Chronic Obstructive Pulmonary Disease (COPD) study.

1. INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is defined as incompletely reversible
expiratory airflow obstruction due to emphysematous destruction of the lung parenchyma
and remodeling of the small airways [2]; it is now the third leading cause of death in the US
[3]. Therefore, it represents a major health concern, and there are ongoing efforts to better
understand this complicated disease.

Recent studies have challenged traditional definitions of the disease and suggest connections
between the two basic components of COPD: chronic bronchitis (airway disease) and
emphysema (lung tissue destruction). For example, the National Heart, Lung, and Blood
Institute defines emphysema as “a condition of the lung characterized by abnormal,
permanent enlargement of airspaces distal to the terminal bronchiole, accompanied by the
destruction of their walls, and without obvious fibrosis” [4]. However, [5] present results
suggesting that the narrowing and destruction of terminal bronchioles may precede the loss
of acini, thus implicating destruction of small airways as possibly causative of emphysema
onset.
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The authors in [6] reported an association between emphysematous destruction and reduced
total airway count as measured by the sum of sixth to eighth generation airways manually
determined on volumetric computed tomorgraphy (CT), further illuminating the link
between emphysema and airway disease. This study indicates that CT can be a valuable tool
for investigating the relationship between distal airway disease and emphysema progression
and motivates the development of algorithms to automatically quantify the number of
airway generations visible on CT.

Anatomically, the first several generations of the human airway tree exhibit a relatively
similar topology across subjects, but the topology is known to vary significantly from person
to person for more distal branches. To date there have been a number of approaches to
assign anatomical names to airway tree branches [7-10]. These approaches limit labeling up
to the segmental level (we refer the reader to [11] for the airway labeling scheme adopted
here).

Motivated by the need to better explore more distal regions of the airway tree and the
usefulness of identifying more distal branches by generation (as opposed to their anatomical
labels per se), we propose a novel airway labeling algorithm which assigns specific
anatomical names to proximal branches, and labels distal branches according to their
branching level: segmental, subsegmental, and subsubsegmental. Our approach is based on
Hidden Markov Tree Model (HMTM) analysis applied to discrete samples along the airway
tree. We begin by appling particles sampling [1] to acquire the samples. After applying
Kruskal’s minimum spanning tree algorithm [12] to establish topology on the particles, we
invoke the HMTM algorithm described in this paper. In Section Il we describe the details of
our approach. These include the HMTM representation, and constituent emission
probabilities, transition probabilities, and extensions to the Viterbi algorithm for our
particular generation labeling task. In Section 111 we demonstrate the performance of our
algorithm, and we draw conclusions in Section IV.

2. METHODS

For this effort we assume as given a set of samples along the airway tree in the form of
scale-space particles [1]. Scale-space particles provide a powerful method for sampling low-
level image features of interest, in our case dark tubes (airways) and enable the implicit
sampling of airway tree centerlines. Each particle is characterized by its spatial location,
orientation, and the scale at which the Hessian response is strongest. Our goal is to assign
labels to each of these particles.

The airway tree can be modeled as a directed, acyclic graph; hence, the notion of sequential
data naturally arises. We represent the particles data with a graph structure in which nodes
represent particles and edges indicate connections between neighboring particles. The
resulting graph is undirected and will in general be disconnected. We apply Kruskal’s
minimum spanning tree algorithm to the particles point set to build a connected tree [12].
For each subgraph in the spanning tree, each leaf node is considered in turn and tested as a
root node candidate. This induces directionality through the graph (from leaves to root) and
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permits the HMTM labeling described below. The most probable set of airway label
assignments is then chosen.

It is important to note that simply relying on branch points in the tree structure as cues for
generation changes does not work in general: some branches may be missed, noise branches
may be detected, and subgraphs disconnected from the main airway tree don’t have a natural
root node. We therefore prefer the probabilistic approach described in this paper. In the
following sections we describe the key elements of our main contribution: namely, the
HMTM framework for airway labeling. These include HMTM representation, emission and
transition probability modeling, and our extensions to the Viterbi algorithm for optimal label
assignment.

Hidden Markov Tree Model Representation

We use a first order HMTM to infer labels (the hidden variables) for our particles data.
Typical application of hidden Markov models (HMMs) involves a single sequence of
observations and associated latent variables [13]. The graphical representation of an
example sequence is illustrated in the left of Fig. 1, and the joint distribution over a general
sequence of particles (observations) and labels (latent variables) is given by

N
[1r(e™1e™) @

n=2

N
p(pD, . oM gM g ™)=p(g™) {Hp<g<">|g<"—”>

n=2

where N indicates the number of particles, p(" represents the particle data at sequence point
n, and g represents the corresponding latent variable indicating the airway label.

While the standard HMM assumes that the hidden states follow a linear chain, the hidden
latent structure in our case is a tree. The graphical representation of a tree structure is given
in the right of Fig. 1, and the general expression for the joint distribution is given by

[l
%)= I pE)Ie(c™e™) I p&™pae™) (

g eGeus n=1 g™ €Y \G cor

where we have used the | « | operator to indicate set cardinality and pa(g) to represent the
parents of g. §; is the set of particles derived from the test image, and %; is the set of
associated latent variables. The set %5 comprises all latent variables corresponding to leaf
particles (not including the root). We describe the emission probabilities p(p(™|g(™) and
transition probabilities p(g™|pa(g™) below.

Emission Probabilities

The emission probabilities give the probability of observing a particle p(" given latent
variable g(". The observations in our HMTM framework consist of a particle’s spatial

location (pg‘)), scale (p(), and orientation (,(*)). These quantities can be appreciated from
Fig. 2.
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We propose to use kernel density estimation (KDE) [14] to represent the conditional
probability of observing p(™ given g(™), where g(™ represents the it component of g
(g™ € {0, 1}, where g™ = 1 indicates the nt" particle belongs to label i). KDE is a form
of nonparametric density estimation and is a suitable choice in our case given that there is
not a clear parametric model for the distribution of the airway labels. To apply KDE we
deformably register a collection of labeled particles datasets to the test dataset. The complete
set of labeled and registered particles is designated as §;, and the subset of particles having
latent variable state g@) is given by £4(@). Making the assumption that the scale, orientation,
and spatial location terms are independent, we can express the emission probabilities as

. 1
P(]g" )= 3 (0,02 X Expon(ly)—palg) xExpon(£(o pe)lA) g
9% pep i)

where Ng(i) is the number of particles labeled as g), 4" (+|, 0?) represents a normal
distribution with mean p and variance o2, and Expon(e[\) represents the exponential
distribution with rate parameter A. The parameters 2, Ap, and A, are learned from training
data.

Transition Probabilities

Transition probabilities indicate the probability of transitioning from one latent state to
another and are captured in a transition matrix. The transition matrix in our model, A, is a
function of both the change in scale and the change in direction between a parent particle
and its child:

Ay (PP, p (o) — ) 26, pM)]i — §) x pli — ) @

where p(P) is a parent of p(", and i — j indicates the transition from state i to state j. The
likelihood and prior terms given in Eq. 4 are learned from the labeled training data set.

With the elements of A defined, we can now express the conditional probability of g(
given its parents as

Z(Pa(g(n)))g(p>€pa(g(n)) Ij:lk:l ! J

where Ng is the number of states, and Z(pa(g(M)) is a normalization constant given by

Ng Ng )
Z(pa(g™))=Y" { II HA?;?’”} ®)
g
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Extending the Viterbi Algorithm

The Viterbi algorithm is typically used to find the most probable sequence of latent variable
states for a given observation sequence [15]. In order to extend the algorithm to the tree
structures that characterize our data, it is helpful to consider a factor graph representation of
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our directed graphical model. Factor graphs rely on the fact that directed (and undirected)
graphs allow the corresponding joint distribution to be defined as a product of factors, f, over
subsets of variables [16]. Factor graphs can be generated from directed graphs by inserting
additional nodes between variable nodes for each of the factors. Referring again to the
graphical model shown in the right of Fig. 1, the corresponding factor graph representation
is shown in Fig. 3, and the general expression for the factors for n > 1 is given by

Fu(pa(g™), g™)=p(p™ (g™ )p(g"™ pa(g™)) @)
andforn=1
F1gM)=peM)p(pM1gV) ©)

Note that we have adopted a simplified factor graph representation in which the observation
variables, p, are not explicitly represented, and the emission probabilities have been
combined with the transition probabilities in our expression for the factors (Eq. 7).

The Viterbi algorithm can be seen as a specific application of the max sum algorithm
applied to HMMs [14]. The max sum algorithm can be realized with a message passing
framework using the factor graph representation. The algorithm proceeds with a forward
recursion stage involving factor-to-variable and variable-to-factor messages followed by a
backtracking stage that specifically identifies latent variable values that maximize the joint
distribution. In our case the factor-to-variable message is given by

Hppir g (€)= max  CInf(pa(g™ ), g™ )+ 37 e, @) @
pa(gn ) g(®) epa(g(n+D)

and the variable-to-factor message is
Hgm—fn11 (gm)):'“fn—g(") ™) a0

Now letting m(g™) = bt g() (9™) we have the following recursion expression

w(g™)=Inp(p™|g™)+ max ) {lnp(g(")lpa(g(”)»wL > w(g(”))} (11)

(») epalg™
g'repa(g™)) g® cpa(eg®)

The algorithm proceeds by performing the forward recursion, updating the w(g(™) terms
along the way. During the forward recursion we also maintain a mapping, v, from latent
variable states to parent latent variable states that maximize contributions to the summation
Eq. 11. This mapping enables us to perform backtracking after we have completed the
forward recursion, thus specifically defining latent variable states (i.e. airway labels) that are
jointly most probable given our observation (particle) data.
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3. EXPERIMENTS AND RESULTS

25 particles datasets were manually labeled by two pulmonologists. We performed a series
of leave-one-out tests: 24 datasets were used as the atlas set, and the remaining dataset was
used as the test set. For each test the parameters described above for the emission and
transition probabilities were learned from the training set.

Tables 1 and 2 show quantitative results of our experiments in the form of normalized
confusion matrices: each entry indicates the fraction that the algorithm-assigned labels either
agree with the reference standard label or are confused with another label; perfect agreement
is indicated by a value of 1.0 in each of the shaded entries. The values are computed across
all 25 leave-one-out experiments. Results in Table 1 show agreement using KDE
classification using emission probabilities only and indicate performance if each particle is
labeled irrespective of the overall tree structure to which it belongs. Conversely, the results
in Table 2 correspond to the final algorithm output after HMTM inference has been
performed over the tree structure as a whole.

There is a noticeable performance increase for the most distal airway branches (segmental,
sub-segmental, and subsub-segmental) when using the HMTM model. There is a slight dip
in performance for the superior division bronchus (SDB) and lingular bronchus (LB), but it
is worthwhile to note that both of these branches are quite short. When considering
classification performance overall, the KDE approach has an accuracy of 61.2%, while the
complete HMTM maodel has an improved accuracy of 71.3%.

Another desirable feature of the complete HMTM model over simple KDE classification is
that it takes the tree structure into account and prevents impossible state transitions. This can
be clearly seen in Fig. 4. The KDE classifier can, e.g., label consecutive particles as sub-
segmental, subsub-segmental, and then sub-segmental again, which is an impossible
progression. The HMTM model prevents such scenarios and enforces only allowable state
transitions.

4. CONCLUSION

We have introduced a novel, probabilistic method — Hidden Markov Tree Model — for
assigning labels to samples of the airway tree represented by particle points. Previous
approaches have focused on labeling out to the segmental level; we show results out to the
subsub-segmental level. Our framework is general and can in theory be applied to even more
distal branches provided a labeled atlas is given. The framework we present can also be
applied to airway trees that are not fully connected and to trees with noise branches and
missing branches. Space limitations prevent a full presentation of these results for this paper.

Acknowledgments

Support provided by NIH grants 1R01HL116931-01, 2R01HL089897-06A1, 2R01HL089856-06A1, K25
HL104085-04, K23HL089353-05, 1P50HL 107192, RO1HL116473, 1K01 HL118714-01, and RO1HL107246.

Proc |EEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 26.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Ross et al.

Page 7

REFERENCES

1.

10

11.
12.

13.

Kindlmann GL, San José Estépar R, Smith SM, Westin CF. Sampling and visualizing creases with
scale-space particles. IEEE Transactions on Visualization and Computer Graphics. 2009; 15(6):
1415-1424. [PubMed: 19834216]

. Hogg J, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol.

2009; 4:435-459. [PubMed: 18954287]

. Minifio AM, Murphy SL, Xu J, Kochanek KD. Deaths: final data for 2008. National vital statistics

reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics,
National Vital Statistics System. 2011; 59(10):1.

.GL S, JK, WM T, ZH B. The definition of emphysema: report of a national heart, lung, and blood

institute workshop. Am Rev Respir Dis. 1985; 132:182-185. [PubMed: 4014865]

. McDonough J, Yuan R, Suzuki M, et al. Small-airway obstruction and emphysema in chronic

obstructive pulmonary disease. N Engl J Med. 2011; 365(17):1567-1575. [PubMed: 22029978]

. Diaz A, Valim C, Y T, et al. Airway count and emphysema assessed by chest ct imaging predicts

clinical outcome in smokers. Chest. 2010; 138(4):880-887. [PubMed: 20558554]

. Feragen A, Petersen J, Owen M, Lo P, Thomsen L, Wille M, Dirksen A, de Bruijne M. A

hierarchical scheme for geodesic anatomical labeling of airway trees. MICCAI. 2012; 7512:147—
155. [PubMed: 23286125]

. Lo P, van Rikxoort E, Goldin J, Abtin F, de Bruijne M, Brown M. A bottom-up approach for

labeling of human airway trees. MICCAL, vol. Fourth International Workshop on Pulmonary Image
Analysis. 2011:23-34.

. van Ginneken B, Baggerman W, van Rikxoort E. Robust segmentation and anatomical labeling of

the airway tree from thoracic ct scans. MICCAL. 2008; 5241:219-226. [PubMed: 18979751]

. Tschirren J, McLennan G, Palagyi K, Hoffman E, Sonka M. Matching and anatomical labeling of
human airway tree. IEEE Transactions on Medical Imaging. 2005; 24(12):1540-1547. [PubMed:
16353371]

Netter, FH. Atlas of human anatomy. Elsevier Health Sciences; 2010.

Kruskal J. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society. 1956; 7(1):48-50.

Rabiner LR. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE. 1989; 77(2):257-286.

14. Bishop, CM. Pattern Recognition and Machine Learning. Springer; 2007.

15.

16.

Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory. 1967; 13(2):260-269.

Koller, D.; Friedman, N. Probabilistic graphical models: principles and techniques. MIT press;
20009.

Proc |EEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 26.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

yduasnuel Joyny vd-HIN

Ross et al.

Page 8

p<1') p<2'>

(1) g(2 (3) g(4) >

pD)

(17) (2)
i‘i‘ g g(s) g(4
g(l) g f f
p(z p(3 p(4
p®) p)

p(l) (2)

Fig. 1.
Left: graphical representation of the sequence of particles (p, p@), p(®, p®)) and their

associated latent variables (g, g@, g®, g@). Right: graphical representation of a tree
structure. An HMTM can be applied in this instance by considering two sequences: 1) the
particles (p), p@), p(®), p™)) and associated latent variables (g'V), g®@, g, g®), and 2) the
particles (p(1), p@), p®, p(@)) and associated latent variables (g1, g@?, g®), g®). Shaded
circles represent observed variables; unshaded circles represent unobserved variables.
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Fig. 2.
Close-up of particle glyphs overlayed on an axial CT slice. The glyphs clearly indicate the

observed quantities in the HMTM, namely the spatial location, orientation, and scale of each
particle (image from [1]).

Proc |IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 26.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Ross et al.

e

W~
O
|

3 g®

Page 10

4 g

B—O |
fi ¢ fo

Fig. 3.

Factor graph representation of the graphical model shown in the right of Fig. 1.
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Fig. 4.
Top: Results using KDE classification. Bottom: results using HMTM. Branches are color-

coded as follows: gray = trachea, brown = main bronchi, orange = upper lobe bronchus,
yellow = segmental bronchi, magenta = sub-segmental bronchi, green = subsub-segmental
bronchi.
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