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Abstract

We present a novel airway labeling algorithm based on a Hidden Markov Tree Model (HMTM). 

We obtain a collection of discrete points along the segmented airway tree using particles sampling 

[1] and establish topology using Kruskal’s minimum spanning tree algorithm. Following this, our 

HMTM algorithm probabilistically assigns labels to each point. While alternative methods label 

airway branches out to the segmental level, we describe a general method and demonstrate its 

performance out to the subsubsegmental level (two generations further than previously published 

approaches). We present results on a collection of 25 computed tomography (CT) datasets taken 

from a Chronic Obstructive Pulmonary Disease (COPD) study.

1. INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is defined as incompletely reversible 

expiratory airflow obstruction due to emphysematous destruction of the lung parenchyma 

and remodeling of the small airways [2]; it is now the third leading cause of death in the US 

[3]. Therefore, it represents a major health concern, and there are ongoing efforts to better 

understand this complicated disease.

Recent studies have challenged traditional definitions of the disease and suggest connections 

between the two basic components of COPD: chronic bronchitis (airway disease) and 

emphysema (lung tissue destruction). For example, the National Heart, Lung, and Blood 

Institute defines emphysema as “a condition of the lung characterized by abnormal, 

permanent enlargement of airspaces distal to the terminal bronchiole, accompanied by the 

destruction of their walls, and without obvious fibrosis” [4]. However, [5] present results 

suggesting that the narrowing and destruction of terminal bronchioles may precede the loss 

of acini, thus implicating destruction of small airways as possibly causative of emphysema 

onset.
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The authors in [6] reported an association between emphysematous destruction and reduced 

total airway count as measured by the sum of sixth to eighth generation airways manually 

determined on volumetric computed tomorgraphy (CT), further illuminating the link 

between emphysema and airway disease. This study indicates that CT can be a valuable tool 

for investigating the relationship between distal airway disease and emphysema progression 

and motivates the development of algorithms to automatically quantify the number of 

airway generations visible on CT.

Anatomically, the first several generations of the human airway tree exhibit a relatively 

similar topology across subjects, but the topology is known to vary significantly from person 

to person for more distal branches. To date there have been a number of approaches to 

assign anatomical names to airway tree branches [7–10]. These approaches limit labeling up 

to the segmental level (we refer the reader to [11] for the airway labeling scheme adopted 

here).

Motivated by the need to better explore more distal regions of the airway tree and the 

usefulness of identifying more distal branches by generation (as opposed to their anatomical 

labels per se), we propose a novel airway labeling algorithm which assigns specific 

anatomical names to proximal branches, and labels distal branches according to their 

branching level: segmental, subsegmental, and subsubsegmental. Our approach is based on 

Hidden Markov Tree Model (HMTM) analysis applied to discrete samples along the airway 

tree. We begin by appling particles sampling [1] to acquire the samples. After applying 

Kruskal’s minimum spanning tree algorithm [12] to establish topology on the particles, we 

invoke the HMTM algorithm described in this paper. In Section II we describe the details of 

our approach. These include the HMTM representation, and constituent emission 

probabilities, transition probabilities, and extensions to the Viterbi algorithm for our 

particular generation labeling task. In Section III we demonstrate the performance of our 

algorithm, and we draw conclusions in Section IV.

2. METHODS

For this effort we assume as given a set of samples along the airway tree in the form of 

scale-space particles [1]. Scale-space particles provide a powerful method for sampling low-

level image features of interest, in our case dark tubes (airways) and enable the implicit 

sampling of airway tree centerlines. Each particle is characterized by its spatial location, 

orientation, and the scale at which the Hessian response is strongest. Our goal is to assign 

labels to each of these particles.

The airway tree can be modeled as a directed, acyclic graph; hence, the notion of sequential 

data naturally arises. We represent the particles data with a graph structure in which nodes 

represent particles and edges indicate connections between neighboring particles. The 

resulting graph is undirected and will in general be disconnected. We apply Kruskal’s 

minimum spanning tree algorithm to the particles point set to build a connected tree [12]. 

For each subgraph in the spanning tree, each leaf node is considered in turn and tested as a 

root node candidate. This induces directionality through the graph (from leaves to root) and 
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permits the HMTM labeling described below. The most probable set of airway label 

assignments is then chosen.

It is important to note that simply relying on branch points in the tree structure as cues for 

generation changes does not work in general: some branches may be missed, noise branches 

may be detected, and subgraphs disconnected from the main airway tree don’t have a natural 

root node. We therefore prefer the probabilistic approach described in this paper. In the 

following sections we describe the key elements of our main contribution: namely, the 

HMTM framework for airway labeling. These include HMTM representation, emission and 

transition probability modeling, and our extensions to the Viterbi algorithm for optimal label 

assignment.

Hidden Markov Tree Model Representation

We use a first order HMTM to infer labels (the hidden variables) for our particles data. 

Typical application of hidden Markov models (HMMs) involves a single sequence of 

observations and associated latent variables [13]. The graphical representation of an 

example sequence is illustrated in the left of Fig. 1, and the joint distribution over a general 

sequence of particles (observations) and labels (latent variables) is given by

(1)

where N indicates the number of particles, ρ(n) represents the particle data at sequence point 

n, and g(n) represents the corresponding latent variable indicating the airway label.

While the standard HMM assumes that the hidden states follow a linear chain, the hidden 

latent structure in our case is a tree. The graphical representation of a tree structure is given 

in the right of Fig. 1, and the general expression for the joint distribution is given by

(2)

where we have used the | • | operator to indicate set cardinality and pa(g) to represent the 

parents of g. ℘i is the set of particles derived from the test image, and i is the set of 

associated latent variables. The set leaf comprises all latent variables corresponding to leaf 

particles (not including the root). We describe the emission probabilities p(ρ(n)|g(n)) and 

transition probabilities p(g(m)|pa(g(m)) below.

Emission Probabilities

The emission probabilities give the probability of observing a particle ρ(n) given latent 

variable g(n). The observations in our HMTM framework consist of a particle’s spatial 

location ( ), scale ( ), and orientation ( ). These quantities can be appreciated from 

Fig. 2.
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We propose to use kernel density estimation (KDE) [14] to represent the conditional 

probability of observing ρ(n) given g(n,i), where g(n,i) represents the ith component of g(n) 

(g(n,i) ∈ {0, 1}, where g(n,i) = 1 indicates the nth particle belongs to label i). KDE is a form 

of nonparametric density estimation and is a suitable choice in our case given that there is 

not a clear parametric model for the distribution of the airway labels. To apply KDE we 

deformably register a collection of labeled particles datasets to the test dataset. The complete 

set of labeled and registered particles is designated as ℘t, and the subset of particles having 

latent variable state g(i) is given by ℘g(i). Making the assumption that the scale, orientation, 

and spatial location terms are independent, we can express the emission probabilities as

(3)

where Ng(i) is the number of particles labeled as g(i),  (•|μ, σ2) represents a normal 

distribution with mean μ and variance σ2, and Expon(•|λ) represents the exponential 

distribution with rate parameter λ. The parameters , λp, and λ∠ are learned from training 

data.

Transition Probabilities

Transition probabilities indicate the probability of transitioning from one latent state to 

another and are captured in a transition matrix. The transition matrix in our model, A, is a 

function of both the change in scale and the change in direction between a parent particle 

and its child:

(4)

where ρ(p) is a parent of ρ(n), and i → j indicates the transition from state i to state j. The 

likelihood and prior terms given in Eq. 4 are learned from the labeled training data set.

With the elements of A defined, we can now express the conditional probability of g(n) 

given its parents as

(5)

where Ng is the number of states, and Z(pa(g(n))) is a normalization constant given by

(6)

Extending the Viterbi Algorithm

The Viterbi algorithm is typically used to find the most probable sequence of latent variable 

states for a given observation sequence [15]. In order to extend the algorithm to the tree 

structures that characterize our data, it is helpful to consider a factor graph representation of 

Ross et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



our directed graphical model. Factor graphs rely on the fact that directed (and undirected) 

graphs allow the corresponding joint distribution to be defined as a product of factors, f, over 

subsets of variables [16]. Factor graphs can be generated from directed graphs by inserting 

additional nodes between variable nodes for each of the factors. Referring again to the 

graphical model shown in the right of Fig. 1, the corresponding factor graph representation 

is shown in Fig. 3, and the general expression for the factors for n > 1 is given by

(7)

and for n = 1

(8)

Note that we have adopted a simplified factor graph representation in which the observation 

variables, ρ, are not explicitly represented, and the emission probabilities have been 

combined with the transition probabilities in our expression for the factors (Eq. 7).

The Viterbi algorithm can be seen as a specific application of the max sum algorithm 

applied to HMMs [14]. The max sum algorithm can be realized with a message passing 

framework using the factor graph representation. The algorithm proceeds with a forward 

recursion stage involving factor-to-variable and variable-to-factor messages followed by a 

backtracking stage that specifically identifies latent variable values that maximize the joint 

distribution. In our case the factor-to-variable message is given by

(9)

and the variable-to-factor message is

(10)

Now letting ω(g(n)) = μfn→g(n) (g(n)) we have the following recursion expression

(11)

The algorithm proceeds by performing the forward recursion, updating the ω(g(n)) terms 

along the way. During the forward recursion we also maintain a mapping, ψ, from latent 

variable states to parent latent variable states that maximize contributions to the summation 

Eq. 11. This mapping enables us to perform backtracking after we have completed the 

forward recursion, thus specifically defining latent variable states (i.e. airway labels) that are 

jointly most probable given our observation (particle) data.
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3. EXPERIMENTS AND RESULTS

25 particles datasets were manually labeled by two pulmonologists. We performed a series 

of leave-one-out tests: 24 datasets were used as the atlas set, and the remaining dataset was 

used as the test set. For each test the parameters described above for the emission and 

transition probabilities were learned from the training set.

Tables 1 and 2 show quantitative results of our experiments in the form of normalized 

confusion matrices: each entry indicates the fraction that the algorithm-assigned labels either 

agree with the reference standard label or are confused with another label; perfect agreement 

is indicated by a value of 1.0 in each of the shaded entries. The values are computed across 

all 25 leave-one-out experiments. Results in Table 1 show agreement using KDE 

classification using emission probabilities only and indicate performance if each particle is 

labeled irrespective of the overall tree structure to which it belongs. Conversely, the results 

in Table 2 correspond to the final algorithm output after HMTM inference has been 

performed over the tree structure as a whole.

There is a noticeable performance increase for the most distal airway branches (segmental, 

sub-segmental, and subsub-segmental) when using the HMTM model. There is a slight dip 

in performance for the superior division bronchus (SDB) and lingular bronchus (LB), but it 

is worthwhile to note that both of these branches are quite short. When considering 

classification performance overall, the KDE approach has an accuracy of 61.2%, while the 

complete HMTM model has an improved accuracy of 71.3%.

Another desirable feature of the complete HMTM model over simple KDE classification is 

that it takes the tree structure into account and prevents impossible state transitions. This can 

be clearly seen in Fig. 4. The KDE classifier can, e.g., label consecutive particles as sub-

segmental, subsub-segmental, and then sub-segmental again, which is an impossible 

progression. The HMTM model prevents such scenarios and enforces only allowable state 

transitions.

4. CONCLUSION

We have introduced a novel, probabilistic method – Hidden Markov Tree Model – for 

assigning labels to samples of the airway tree represented by particle points. Previous 

approaches have focused on labeling out to the segmental level; we show results out to the 

subsub-segmental level. Our framework is general and can in theory be applied to even more 

distal branches provided a labeled atlas is given. The framework we present can also be 

applied to airway trees that are not fully connected and to trees with noise branches and 

missing branches. Space limitations prevent a full presentation of these results for this paper.
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Fig. 1. 
Left: graphical representation of the sequence of particles (ρ(1), ρ(2), ρ(3), ρ(4)) and their 

associated latent variables (g(1), g(2), g(3), g(4)). Right: graphical representation of a tree 

structure. An HMTM can be applied in this instance by considering two sequences: 1) the 

particles (ρ(1), ρ(2), ρ(3), ρ(4)) and associated latent variables (g(1), g(2), g(3), g(4)), and 2) the 

particles (ρ(1′), ρ(2′), ρ(3), ρ(4)) and associated latent variables (g(1′), g(2′), g(3), g(4)). Shaded 

circles represent observed variables; unshaded circles represent unobserved variables.
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Fig. 2. 
Close-up of particle glyphs overlayed on an axial CT slice. The glyphs clearly indicate the 

observed quantities in the HMTM, namely the spatial location, orientation, and scale of each 

particle (image from [1]).
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Fig. 3. 
Factor graph representation of the graphical model shown in the right of Fig. 1.

Ross et al. Page 10

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4. 
Top: Results using KDE classification. Bottom: results using HMTM. Branches are color-

coded as follows: gray = trachea, brown = main bronchi, orange = upper lobe bronchus, 

yellow = segmental bronchi, magenta = sub-segmental bronchi, green = subsub-segmental 

bronchi.
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