

NIH Public Access

Author Manuscript

J Environ Immunol Toxicol. Author manuscript; available in PMC 2015 January 28.

Published in final edited form as:

J Environ Immunol Toxicol. ; 1(3): 108–117.

Inflammasome Activity in Non-Microbial Lung Inflammation

Jennifer L. Ather¹, Rebecca A. Martin¹, Karina Ckless², and Matthew E. Poynter¹

¹Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, USA

²Chemistry Department, State University of New York at Plattsburgh, Plattsburgh, USA

Abstract

The understanding of interleukin-1 (IL-1) family cytokines in inflammatory disease has rapidly developed, due in part to the discovery and characterization of inflammasomes, which are multi-subunit intracellular protein scaffolds principally enabling recognition of a myriad of cellular stimuli, leading to the activation of caspase-1 and the processing of IL-1 β and IL-18. Studies continue to elucidate the role of inflammasomes in immune responses induced by both microbes and environmental factors. This review focuses on the current understanding of inflammasome activity in the lung, with particular focus on the non-microbial instigators of inflammasome activation, including inhaled antigens, oxidants, cigarette smoke, diesel exhaust particles, mineral fibers, and engineered nanomaterials, as well as exposure to trauma and pre-existing inflammatory conditions such as metabolic syndrome. Inflammasome activity in these sterile inflammatory states contribute to diseases including asthma, chronic obstructive disease, acute lung injury, ventilator-induced lung injury, pulmonary fibrosis, and lung cancer.

Keywords

IL-1; IL-18; inflammasome; lung; inflammation

Inflammasome nomenclature and activation

The intracellular class of receptors named Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs) was first identified a decade ago.¹ They possess a common structure, including a C terminal leucine-rich repeat domain, an internal NACHT (or “NAIP”, neuronal apoptosis inhibitory protein), and an N terminal effector domain that can be either a Caspase Activation and Recruitment Domain (CARD), a Pyrin domain (PYD), or a Baculovirus Inhibitor of apoptosis protein Repeat domain (BIR).² Based on their homology to the disease resistance plant R proteins, it was initially hypothesized that NLRs participated in the process of apoptosis (which they do), but studies soon revealed that they were in fact pattern recognition receptors (PRRs) that modulated inflammatory responses to a variety of stimuli. Homophilic intramolecular interaction between the CARD or PYD components of the NLRs, in some cases through the adaptor molecule ASC that contains

Correspondence to: Matthew E. Poynter, Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, USA; matthew.poynter@med.uvm.edu.

both a PYD and a CARD, facilitates the assembly of macromolecular complexes of these proteins.^{3,4}

Many of the NLRs were determined to act as scaffolds for the assembly of a complex of caspase-1 activating proteins termed 'the inflammasome', which ultimately functioned to activate members of the pro-inflammatory IL-1 family of cytokines, IL-1 β and IL-18.³ Whereas IL-1 β is required for the host response to infection,⁵ a pathogenic role for IL-1 β has also been implicated in a variety of inflammatory diseases,^{6,7} including Muckle-Wells syndrome,^{8,9} multiple sclerosis,^{10,11} atherosclerosis,¹² rheumatoid arthritis,¹³ gout,¹⁴ diabetes,¹⁵ Alzheimer's disease,^{16,17} and others. More recently, the emerging role for IL-1 β as a T_H17-polarizing cytokine¹⁸ has become of great interest in the field of allergy and asthma. We^{19,20} and others²¹ have demonstrated IL-1 signaling to be critical in a number of T_H17-asthma models in mice. Although less is understood about IL-18 besides its involvement in NK cell activation and the promotion of T_H1 responses,^{22,23} IL-18 has also been recognized as a potent pro-inflammatory cytokine participating in host defense and, in the absence of IL-12, can also enhance T_H2 responses in allergic airway disease models.²⁴ Unlike many other inflammatory cytokines, IL-1 β and IL-18 require enzymatic cleavage from a pro-form to a truncated form in order to be secreted from the cell and function extracellularly.²²

As of the time of this writing, 23 NLRs have been identified in humans, whereas 34 have been identified in mice.²⁵ At least two classes of inflammasomes have been described: those that contain an NLR (nucleotide-binding-and-oligomerization domain (NOD) and leucine-rich-repeat-containing) family member domain, and those that contain a PYHIN (pyrin domain (PYD) and HIN-domain containing) family member domain.²⁵ Leucine-rich repeat (LRR) domains in the NLR molecules have been proposed to facilitate interaction with ligands, as these domains may do in Toll-Like Receptors (TLRs), although the experimental evidence for direct interactions remains to be presented (see ref²⁶).

In the lung, NLRP1, NLRP3, NLRP12, NLRC4, and AIM2 have been studied (Fig. 1). NLRP1 was the first to be identified and was found to be the crucial recognition molecule for anthrax lethal toxin.²⁷ Close on the heels of this discovery came reports implicating NLRP3 activation as the mechanism for which the adjuvant Aluminum hydroxide (Alum) functions to induce inflammation and initiate adaptive immune responses,^{28–30} although NLRP3 activation was described as dispensable for immunoglobulin production.³¹ More recent studies, however, have questioned this mechanism and ultimately NLRP3 was found to be dispensable³² for allergic asthma pathogenesis using Alum as an adjuvant along with the soluble protein antigen ovalbumin (OVA).

Studies of lung infection have also revealed the important role of NLRs. Geddes *et al.* first described NLRC4 (IPAF, CARD12), which unlike NLRP3 contains its own CARD domain and therefore does not require ASC to bind to Caspase-1.³³ NLRC4 acts as the intracellular sensor for flagellin and is a key modulator of Gram-negative bacterial infection in the lung.³⁴ The PYHIN domain-containing inflammasomes, AIM2 and IFI16, are unique in that they bind directly to double stranded DNA from cytosolic viruses and bacteria via the HIN200 (hematopoietic expression, interferon-inducibility, nuclear localization, and a

characteristic 200 amino acid sequence) domain. Most recently, the role of NLRP12 was characterized in the Alum/OVA and house dust mite (HDM) mouse models of allergic sensitization, in which it was determined not to play a critical role in the development of T_H2 lung disease.³⁵

Ultimately, studies of inflammasome activation in response to adjuvants and microbial products led to a better understanding of the intracellular conditions and endogenous damage-associated molecular patterns (DAMPs) that were directly responsible for inflammasome assembly and activation. Currently, these known mechanisms include induction of reactive oxygen species (ROS), changes in ion influx/efflux from the cell (K⁺, Ca⁺⁺), and leakage of lysosomal contents, especially the cathepsin family of proteases (reviewed in ref³⁶). These particular events are not unique to microbial or viral infections, but can also be triggered by inhaled nanomaterials and environmental pollutants, as well as endogenous insults, thereby contributing to lung disease.³⁷ As the microbial and viral components that stimulate inflammasome activation have been reviewed elsewhere,³⁸ this review will focus on the participation of inflammasomes in the pulmonary response to non-microbial molecules of both environmental and endogenous origin.

The lung is part of the interface between our bodies and the world around us, and as such comprises the first line of defense against inhaled material. Studies have identified expression of NLRP3 and caspase-1 in human airway epithelial bronchus and primary cells,³⁹ and IL-1 β secretion from these cells has been reported in asthma,³⁷ acute lung injury,⁴⁰ chronic obstructive pulmonary disease (COPD),³⁷ and certain lung cancers.⁴¹ In addition, recent work has identified both IL-1 β and its constitutively expressed homolog IL-1 α as being involved in collagen deposition and fibrosis.⁴²

Asthma and models of allergic airway disease

Whereas studies investigating NLRP3 and caspase-1 in human asthma are limited,³⁷ gain of function single nucleotide polymorphisms in human NLRP3 have been linked to aspirin-induced asthma.^{43,44} Furthermore, gene analysis studies have identified NOD1 as an asthma susceptibility gene in humans and mice.⁴³ Clinical data also support a role for IL-1R signaling in asthma. For example, IL-1 β is elevated in lavage fluid from patients with status asthmaticus and in sputum from patients with neutrophilic asthma.⁴⁵⁻⁴⁷ Likewise, production of IL-1 β by submucosal macrophages is increased in the bronchial biopsies of asthmatics in comparison to healthy control subjects.^{48,49}

IL-1 β can directly and indirectly impact the pathogenesis of asthma. In mouse models, IL-1 β can contribute to airway methacholine hyperresponsiveness⁵⁰ and airway neutrophilia,⁵¹ and can thus contribute directly to the pathogenesis of asthma. In addition, evidence from *in vitro* and *in vivo* studies implicates a requirement for IL-1R signaling in the development and function of T_H17 responses.⁵²⁻⁵⁵ In a model of pulmonary fibrosis, the instillation of IL-1 β into the airway is sufficient to induce IL-17 production upon restimulation of cells from lymph nodes draining the lungs, and IL-17 is required for airway inflammation and the development of lung pathology.^{56,57} Furthermore, NLRP3 knock-in mice carrying a point mutation commonly found in patients with Muckle Wells Syndrome exhibit a gain of

function phenotype with increased IL-1 β production and a predominantly T_H17 inflammation.⁵⁸

The T_H17 adaptive immune response has been linked with neutrophilic, glucocorticoid-resistant asthma in humans and is correlated with disease severity.^{59–61} *In vitro* and *in vivo* data have supported a causal role for the T_H17 response in glucocorticoid resistance.^{62–64} Additional studies suggest that IL-1R signaling can synergize with IL-17 in the modulation of chemokine release from human bronchial epithelial cells and can impact glucocorticoid responsiveness.^{65,66} Given IL-1R's critical role in T_H17 development⁵² and IL-1 β 's wide-ranging involvement in acute inflammatory processes, it seems that inflammasome activity is likely to be involved in at least some subset(s) of asthma. While the contribution of an inflammasome to T_H17 development has not been extensively studied in the lung, the NLRP3-IL-1R-T_H17 axis has been explicitly hypothesized to contribute to allergic airway disease pathogenesis.⁶⁷

In models of allergic asthma using OVA as a soluble protein antigen, the role of IL-1R signaling and NLRP3 activation has been debated. In an Alum/OVA model of allergic airway disease, the IL-1R was not required for eosinophilic airway inflammation, antibody responses to OVA antigen, or the proliferation of CD4 $^{+}$ T-cells in the mediastinal lymph node (MLN) following antigen challenge.⁶⁸ In contrast, IL-1R signaling was required in an Alum-independent sensitizing scheme that involved multiple intraperitoneal (i.p.) injections of OVA at sensitization.⁶⁸ Similarly, genetic deficiency in both IL-1 α and IL-1 β resulted in diminished antibody responses to antigen, decreased proliferation of cells in the draining lymph node, and decreased production of the T_H2 cytokines IL-4 and IL-5 upon restimulation in the presence of antigen.⁶⁹ Similar to other Alum-independent sensitizing schemes, sensitization via subcutaneous (s.q.) injection of OVA required IL-1 α , IL-1 β , and the IL-1R for airway inflammation and MLN production of T_H2 cytokines upon *in vitro* restimulation with OVA.⁷⁰ In general, IL-1R signaling is required in the absence of Alum.

The requirement for IL-1R signaling and IL-1 β in these models suggests a potential role for an inflammasome. A recent study tested the requirement for NLRP3 for sensitization in Alum/OVA and i.p. injection of OVA in the absence of Alum and determined that the NLRP3 inflammasome was not required.³² These results further substantiate that IL-1R is unnecessary in the Alum/OVA model of allergic airway disease. However, whereas IL-1R signaling was required in the i.p. OVA method of allergic sensitization, pulmonary inflammation was independent of NLRP3 in this model.³² This result contrasts with the s.q. model of OVA injection (see Table I), wherein NLRP3 was required for T_H2 cytokine, chemokine, and IL-1 β production at antigen challenge.⁷⁰ Additional studies will determine whether the role for NLRP3 depends simply upon route of sensitization or, as is more likely, other factors. Furthermore, the absence of a role for NLRP3 in pulmonary inflammation does not rule out a potential contribution of caspase-1 and other non-NLRP3 inflammasomes in activating IL-1 β . Another potential mediator of IL-1R-independent sensitization in the lung is uric acid (UA). Allergic sensitization with Alum requires UA as a downstream mediator of inflammation, and *in vivo* sensitizing effects of UA in the generation of allergic airway disease do not require IL-1R, NLRP3, or caspase-1.^{71,72}

House dust mite-induced allergic airway disease

There is an emerging body of literature exploring the mechanisms through which the common allergens present in HDM extracts participate in allergic sensitization and the pathogenesis of asthma.^{73–76} The extracts (containing whole mite and their own commensal microbiota) from two predominant species of house dust mite, *Dermatophagoides pteronyssinus* and *Dermatophagoides farinae*, have been extensively studied *in vitro* and *in vivo*.⁷⁷ Extracts from both *D. pteronyssinus* and *D. farinae* can induce caspase-1 activation and IL-1 β release from primary human keratinocytes, activities which require NLRP3.⁷⁸ Further, this report also suggests that NLRP3 activation by HDM requires the proteolytic activities of the mite proteins, rather than ROS generation.⁷⁸

In additional studies with HDM, the IL-1R was required for cytokine production by MLN cells restimulated in the presence of antigen following antigen challenge, including IL-17A and the T_H2 cytokines IL-5, IL-10, and IL-13.⁷² Whereas NLRP3, caspase-1, and IL-1 β are not required, HDM-promoted allergic airway disease requires IL-1 α and IL-33 signaling at the time of allergic sensitization, and not at challenge, for eosinophil recruitment into the airway.^{71,72} IL-1 α release from HDM-stimulated airway epithelium initiates an autocrine pathway to induce T_H2 polarization and allergic airway disease.⁷² These findings validate earlier reports that neither the NLRP3 nor the NLRP12 inflammasome contribute to HDM-promoted allergic airway inflammation.^{32,35,71} These data also suggest a role for IL-1 α in inflammasome-independent IL-1R signaling in other models of allergic airway disease, such as those utilizing OVA injection in the absence of Alum (refer to Table 1).³² In addition, HDM requires UA as a downstream mediator of allergic sensitization in the airway, and UA's sensitizing effects are independent of an inflammasome.⁷¹

Reactive oxygen and nitrogen species

Numerous studies of inflammasome regulation indicate that changes in the redox environment, including increases in the production of reactive oxygen and nitrogen species (ROS and RNS) of a cell, can modulate assembly and activation of the NLRP3 inflammasome.^{79–82} Much of these studies have been performed in macrophages, in which basal expression of NLRP3 is very low under homeostatic conditions, but upregulated strongly in response to stimulation with, for example, TLR agonists.⁸³ Many stimuli that activate the NLRP3 inflammasome also induce the cellular production of ROS. For instance, treatment of macrophages with ATP, an agonist of the P2X7 receptor, results in production of ROS and activation of cell signaling pathways that promote both adaptation to subsequent exposure to oxidants or inflammation, and processing and secretion of proinflammatory cytokines.⁸⁴ More recently, it was demonstrated⁸⁵ that NLRP3 can be directly regulated by thioredoxin inhibitory protein (TXNIP), which itself modulates activity of the intracellular antioxidant protein thioredoxin (TRX). In resting cells, TXNIP interacts with TRX and is therefore unable to activate NLRP3. Upon oxidative stress, TXNIP is released from oxidized TRX and in turn directly binds the leucine-rich region of NLRP3 leading to inflammasome assembly and activation.

Furthermore, stimulation of P2X7, a potent activator of NLRP3, is accompanied by ROS generation from NADPH oxidases.^{84,86} Studies using antioxidants support a model in which ROS production induced by NLRP3 agonists induce the assembly of the inflammasome complex.⁸⁷ Nonetheless, studies performed with mononuclear phagocytes from patients with chronic granulomatous disease, in which a mutation of the p47^{phox} subunit of NADPH oxidase renders the enzyme complex inactive, reported robust IL-1 β secretion despite an inability of these cells to generate NADPH oxidase-dependent ROS.^{88,89} Since NADPH oxidase is not the sole source of cellular ROS, the importance of mitochondrial-derived ROS has been recently explored. Mitochondria are the primary source of ROS under physiological conditions, and cellular stress, such as increases in metabolic rate, hypoxia, or cellular disruption, induce the mitochondria to generate increased amounts of ROS.⁹⁰ Inhibition of critical respiratory chain enzymes promotes mitochondrial ROS generation and induces NLRP3 inflammasome activation.⁹¹ We have recently reported that uncoupling mitochondrial oxidative phosphorylation enhances NLRP3 activation by preventing disassembly of the NLRP3 complex.⁸²

Mice exposed to ozone require NLRP3, ASC, and caspase-1 to develop airways hyperresponsiveness (AHR), and also partially require these components for inflammation.⁹² In addition, NLRP3 can be suppressed or activated, depending on the redox environment. The role of ROS in inflammasome modulation depends on the stimuli, the cell type, dose of ROS inhibitor utilized, basal redox status, and timing of the changes in redox status.^{80,93,94} Several studies have implicated interferon-induced nitric oxide⁸³ as a key player that, via S-nitrosylation, can inhibit assembly of the NLRP3 inflammasome.^{83,95}

Additionally, ROS have the ability to directly affect gene regulation, for instance in the case of the transcription factor nuclear erythroid 2 p45-related factor 2 (Nrf2), which regulates expression of important antioxidant enzymes.⁹⁶ Recent studies have demonstrated that Nrf2 exacerbates mouse models of atherosclerosis, and is required for the NLRP3-dependent induction of IL-1 in response to cholesterol crystals.⁹⁷ Much has also been written regarding the redox control of the transcription factor NF- κ B,^{79,98} which can control the gene induction of pro-IL-1 β ⁹⁹ and can be regulated by interactions with ASC.¹⁰⁰ The multitude of targets of ROS/RNS ensure that there will be overlap of inflammation control by the inflammasome and transcription factors involved in the inflammatory/antioxidant response. Overall, the mechanisms of ROS involvement in NLRP3 inflammasome activation remain the subject of intense scrutiny.

Nitrogen dioxide-promoted allergic airway disease

Another model that permits study of the impact that changes in the redox environment exert in the lung is the direct exposure of mice to nitrogen dioxide (NO₂) for a short period of time, which results in substantial generation of ROS and other RNS, along with epithelial injury.^{79,101,102} Exposure to NO₂ has been positively correlated with asthma severity, disease exacerbation, and risk of death.^{103,104} NO₂ has also been implicated in asthma development in previously healthy children.¹⁰⁵ In addition to being an environmental pollutant and a toxic byproduct of combustion,¹⁰⁶ NO₂ can also be generated endogenously,

such as during respiratory viral infections, severe cases of which are also positively correlated with the development of asthma in children.¹⁰⁷

Exposure to high concentrations of NO₂ can cause acute lung injury, whereas a brief 1-hour exposure at a low concentration (in the presence of OVA antigen) is capable of sensitizing mice to the innocuous inhaled antigen OVA.^{108,109} Following antigen challenge, this sensitizing scheme induces methacholine hyperresponsiveness, elevates antigen-specific IgG1 and IgE levels, recruits inflammatory cells to the airway, and promotes T_H2 and T_H17 cytokine production upon *in vitro* restimulation of CD4⁺ splenic T-cells in the presence of OVA-presenting APCs from antigen-naïve mice.^{108,110} Importantly, acute exposure to NO₂ promotes the production of IL-1 β , as well as other pro-inflammatory cytokines, from CD11c⁺ cells *ex vivo*, implicating a role for inflammasome activation at the time of sensitization.¹¹⁰ Our group has recently reported the importance of caspase-1 and IL-1R, but not NLRP3, for T_H17 development in NO₂-promoted allergic airway disease.²⁰

As in other models of RNS- and ROS-induced epithelial injury, exposure to NO₂ results in rapid activation of NF- κ B in airway epithelium,¹⁰⁸ which along with OVA inhalation is sufficient to allergically sensitize mice to antigen¹¹¹. These findings identify NF- κ B activation as a downstream component of NO₂-promoted sensitization. Furthermore, constitutively active NF- κ B induces a mixed T_H2/T_H17 adaptive immune response at the time of antigen challenge, similar to that observed in NO₂-promoted allergic airway disease.^{111,112} Constitutively active NF- κ B, NO₂ exposure, and LPS inhalation (which also promotes a mixed T_H2/T_H17 immune response), upregulate the acute phase response protein Serum Amyloid A3 (SAA3) in the lung.^{19,107} Importantly, like IL-17, SAA is also an asthma biomarker in humans.^{59–61,113} Inhalational administration of recombinant apoSAA to mice also induces the upregulation of *Saa3* in the lung, sensitizes mice to OVA antigen, and generates a mixed T_H2/T_H17 immune response following antigen challenge.¹⁹ Thus, SAA3 is a candidate downstream mediator of allergic sensitization in multiple T_H17-inducing sensitization schemes, including NO₂-promoted allergic airway disease.¹⁹

Using recombinant apoSAA, we have reported that IL-1R signaling is required for the T_H17 response elicited during apoSAA-promoted allergen sensitization.¹⁹ NLRP3 and caspase-1 were required for *in vitro* IL-1 β production upon exposure to apoSAA, as well as *in vivo* pulmonary inflammation and IL-1 β production resulting from acute apoSAA exposure.¹⁹ Similar to other endogenous DAMPs,^{114,115} we believe that endogenous SAA may provide a danger signal that culminates in the formation of the NLRP3/caspase-1 inflammasome and activation of IL-1 β . Additional studies using *Saa3*-genetically modified mice will elucidate the contribution of endogenous SAA3 to the pathogenesis of allergic airway disease.

Cigarette smoke

Cigarette smoking greatly increases the risk for lung diseases, including asthma, emphysema, COPD,¹¹⁶ and cancer,¹¹⁷ and also increases the lung's susceptibility to bacterial and viral infections.¹¹⁸ Models of cigarette smoke (CS) exposure have implicated IL-1 as a critical inflammatory cytokine in the pathological response. The airway neutrophilia that accompanies cigarette smoke inhalation is temporarily accompanied by

increases in cleaved caspase-1, as well as IL-1 β and IL-18 secretion.¹¹⁹ Further studies have suggested that, though the immune response to CS is dependent upon IL-1 receptor (IL-1R) signaling,¹²⁰ as well as the P2X7 receptor and caspase-1¹¹⁹, it may not require NLRP3/caspase-1 cleavage of IL-1 β .¹²¹ It is also of note that mouse models of COPD due to chronic cigarette smoke exposure have recently demonstrated increases in T_H17 cells and IL-17A/F levels,^{122,123} indicating another causal role for the IL-1-T_H17 axis in lung disease.

Another component of cigarette smoke exposure, the α,β -unsaturated aldehyde acrolein, is elevated in the lungs of COPD patients.¹¹⁶ The effects of acrolein in the lung are mediated through its ability to recruit neutrophils and promote their survival,¹²⁴ inhibit macrophage phagocytosis, and suppress NF- κ B activation, leading to downstream decreases in IL-1 β and impaired bacterial and viral clearance.¹²⁵ In addition, a microarray study of mouse lungs treated with acrolein demonstrated strong upregulation of the IL-18 receptor gene, *Il18r1*.¹²⁶ IL-18 signaling has previously been demonstrated to be critical in the response of pulmonary macrophages to cigarette smoke.¹²⁷ A recent study suggests some functional overlap between IL-1 β and IL-18, including the induction of IL-17 production by CD4 $^{+}$ and $\gamma\delta$ T-cells *in vitro*.¹²⁸ IL-18 may also provide a critical signal in IL-1R-dependent signaling by promoting the expression of IL-1 β .¹²⁸ Taken together, these data suggest a possible role for individual chemical components of cigarette smoking to act as triggers for the inflammasome, though as of yet no studies have implicated any of the inflammasomes specifically.

Long-term exposure to tobacco smoke accounts for 80–90% of lung cancers, so it is not surprising that inflammasomes, which may be activated in response to cigarette smoke, may also be implicated in the pathogenesis of lung cancer. However, inflammasomes are also likely to participate in lung carcinogenesis from other causes. Chow *et al.* examined the role of NLRP3 in natural killer (NK) cell-mediated control of tumor initiation, growth, and metastasis, using a model of methylcholanthrene (MCA)-induced sarcoma and B16F10 experimental metastases.¹²⁹ They found that NLRP3 is required for NK-mediated control of MCA-induced cancer and experimental primary tumor growth. Specifically, loss of NLRP3 caused intratumoral accumulation of CD11b $^{+}$ Gr-1 $^{\text{int}}$ myeloid cells that promoted NK-cell anti-metastatic function by secreting the NK cell chemokines CCL5 and CXCL9. Tumor incidence was reduced in NLRP3 $^{−/−}$ mice; however, NLRP3 may not be the only inflammasome complex involved, as caspase-1 $^{−/−}$ and IL-1R1 $^{−/−}$ mice were also resistant to tumors. NK cells do not express NLRP3 themselves, indicating that loss of NLRP3 in a secondary cell type would be the primary influence upon NK cells. Additionally, NK cells are defective in IL-18 $^{−/−}$ mice, as IL-18 is required for NK priming and proper NK production of IFN- γ .¹³⁰ Interestingly, it was recently reported that chemotherapy used to treat tumors can induce NLRP3-dependent IL-1 β production in myeloid-derived suppressor cells, promoting IL-17 production from CD4 $^{+}$ T cells, and diminishing the anti-cancer efficiency of the therapeutics.¹³¹

Diesel exhaust particles (DEP)

Diesel exhaust is comprised of gaseous and particulate components that vary depending on engine type, duty cycle, and fuel source. Loss of glutathione S-transferase M1 (GSTM1), an

important cellular antioxidant enzyme (reviewed in ref¹³²), exacerbates DEP-induced airway inflammation and increases the levels of IL-1 β .¹³³ In addition, the previously mentioned redox-sensitive transcription factor, Nrf2, has been shown to play a key role in modulating the anti-oxidant response to DEP, with Nrf2 $^{−/−}$ mice demonstrating an increased susceptibility to low-dose DEP exposure. Subsequently, these mice develop exacerbated allergic airway disease in an Alum/OVA model.¹³⁴ These data implicate a role for oxidative stress as a mediator of DEP-induced pulmonary inflammation, but do not address whether an inflammasome participates in IL-1 β activation. Following exposure to DEP, mice genetically deficient in either NLRP3 or caspase-1 had similar levels of BAL IL-1 β in comparison to wildtype mice, whereas another inflammasome-dependent cytokine, IL-18, was decreased.¹³⁵ Attempts to explain this dichotomy have focused on neutrophil proteases. Neutrophils recruited into the airways in response to DEP show increases in neutrophil elastase, proteinase-3, and cathepsin G,¹³⁵ molecules that are also able to cleave IL-1 family members into biologically active forms. Similar to a mouse model of IL-1 β -dependent arthritis, in which inhibition of elastase resulted in less IL-1 β and lower disease scores,¹³⁶ neutrophil-derived enzymes, not inflammasome-dependent caspase-1 activity, are thought to be the critical proteases for IL-1 β cleavage in DEP-induced inflammation.¹³⁵

Silicosis and asbestosis

Inhalation of silica and asbestos particles induce pulmonary inflammation, fibrosis, and, in their most pathogenic forms, cancer in the form of mesothelioma. The role of NLRP3 in pulmonary fibrosis has been recently reviewed.⁴² Both NLRP1 and NLRP3 have been implicated as intracellular sensors of asbestos exposure; NLRP1 as a regulator of survival/apoptosis following exposure, and NLRP3 as the inducer of inflammation and IL-1 β secretion.¹³⁷ Interestingly, whereas NLRP3 signaling has been reported to regulate inflammation in response to asbestos, several studies have now indicated that it does not control asbestos-induced cancers. NLRP3 $^{−/−}$ mice have defects in IL-1 β secretion and immune cell recruitment following asbestos exposure, however, they have a similar incidence of malignant mesothelioma (MM) as wild type mice.¹³⁸ Furthermore, studies of patients suffering from asbestos-induced MM indicate that there may be a higher incidence of single nucleotide polymorphisms (SNPs) in NLRP1, but not NLRP3.¹³⁷

The inflammatory and fibrotic responses seen in silica challenge both require NLRP3,^{139,140} however reports conflict on the mechanism of inflammasome activation. Dostert *et al.* reported that for both inflammation and fibrotic changes, the (redox) environment is critical. In macrophages, frustrated phagocytosis of asbestos fibers leads to NADPH oxidase-dependent ROS generation that is critical for NLRP3 activation, as was determined by treating THP-1 cells with shRNA for p22phox.⁸⁶ Conversely, studies performed by Hornung *et al.* using bone marrow-derived macrophages from gp91phox knockout mice, which lack proper NADPH-oxidase activity and superoxide production, demonstrated normal responses to silica crystal exposure.¹⁴¹ One possible explanation may lie in the differential redox status of transformed cell lines versus primary mouse cells as was discussed in a recent review of the literature.⁸⁰ In addition, timing of ROS production may determine the outcome, as ROS overproduction has multiple effects beyond inflammasome activation.⁹³

Engineered nanomaterials

Engineered nanomaterials (commonly referred to as nanoparticles) are widely used in the manufacture of numerous commercial products, including cosmetics, paint, paper, food, and in biomedical applications. While originally thought to be too small to cause a cellular response, the inflammation-inducing properties of nanoparticles have made them effective adjuvants that can be used to stimulate adaptive immune responses.¹⁴² Treatment of several lung cell lines with Nano-TiO₂ and Nano-SiO₂ caused cell toxicity and the production of ROS,^{143–145} and both of these nanoparticles were shown to activate NLRP3 and induce IL-1 β release.^{146,147} Inhalation of Nano-TiO₂ is linked to lung inflammation that is strongly suppressed in IL-1R $-/-$ mice.¹⁴⁶ Carbon black nanoparticles have also been reported to cause an inflammasome-dependent form of cell death, termed pyroptosis, which is accompanied by caspase-1 cleavage and IL-1 β release.¹⁴⁸

Recent studies have also revealed the inflammatory potential of multi-walled carbon nanotubes (MWCNT), which are gaining popularity in industrial and biomedical manufacturing. These particles have proven to promote pro-inflammatory mediator production by multiple cell lines^{149,150} and promote allergic sensitization and exacerbation of airway hyperresponsiveness in mice.¹⁵¹ Examination of the mechanisms through which MWCNT induce inflammation and subsequent lung pathologies has revealed a role for the NLRP3 inflammasome. Hamilton *et al.*, used mouse primary alveolar macrophages, as well as *in vivo* studies, to demonstrate that MWCNT challenge resulted in NLRP3 activation via lysosomal disruption, and this was largely due to nickel contamination of the MWCNT preparations.¹⁵² Inhalation of larger nickel compounds has long been known to cause lung pathologies,¹⁵³ but it has only recently emerged that nickel nanoparticles also have inflammatory capabilities that include the induction of IL-1 β ,¹⁵⁴ which have been compared to the effects of inhaled silica crystals.¹⁵⁵

Metabolic syndrome

In addition to the inhaled materials that can cause lung disease, it is important to consider the chronic conditions that are affecting increasing numbers of people. Metabolic syndrome is the term for a group of risk factors, namely obesity and insulin resistance, that occur together and enhance the risk for coronary artery disease, stroke, and type 2 diabetes, and that also have an impact on lung diseases such as asthma and COPD.^{156,157} Obesity can induce a state of chronic, sterile, low-grade inflammation that includes induction of acute phase cytokines such as IL-1 β .¹⁵⁸ The role of IL-1 signaling in multiple other instances of sterile inflammation [the induction or perpetuation of an inflammatory state in the absence of a microbial insult, typically the consequence of cell death accompanied by the release of intracellular molecules (DAMPs) that are normally hidden from recognition by innate immune cells¹⁵⁹], including gout, atherosclerosis, type 2 diabetes and arthritis, has been thoroughly reviewed by Lukens *et al.*¹⁶⁰ IL-1 β is associated with insulin resistance in diabetes and inflammation in obesity.^{161–163} Obesity is of concern in the asthma field as well.¹⁶⁴ Studies have implicated saturated fatty acids as ligands for TLRs, which results in upregulation of IL-1 β mRNA, and primes the NLRP3 inflammasome.¹⁶⁵ The saturated fatty acid, palmitic acid, has been reported to activate the NLRP3 inflammasome to cause IL-1 β

and IL-18 secretion through a mechanism involving mitochondrial ROS, AMP-activated protein kinase, and unc-51-like kinase-1, thereby impairing insulin sensitivity.¹⁶⁶ Another lipid intermediate, ceramide, is upregulated in obesity and has been demonstrated to be an NLRP3 activator.^{161,162} High levels of glucose can also trigger inflammasome activity, via direct activation of NLRP3 by TXNIP. These high glucose levels can provide both a priming signal to increase expression of IL-1 β mRNA, as well as a secondary signal for NLRP3 activation by triggering ROS generation. Mice deficient in caspase-1 are resistant to high fat diet (HFD)-induced insulin resistance,¹⁶¹ and the same was proven to be true for NLRP3 $^{-/-}$ and ASC $^{-/-}$ mice.¹⁶⁷

Markers of autophagy, a catabolic mechanism for the degradation of cellular proteins, are also increased in obesity, and inhibition of autophagy further exacerbates inflammation and increases IL-1 β , IL-6, and IL-8, indicating that autophagy may function to limit the inflammatory response in obesity.¹⁶⁸ Recent studies have directly implicated autophagy as a process necessary for the removal of NLRP3 inflammasome complexes¹⁶⁹ and pro-IL-1 β ¹⁷⁰ in the cell. Furthermore, blockade of autophagy in dendritic cells increases IL-1 β and IL-23, and supernatants from these cells primed $\gamma\delta$ T cells to secrete IL-17, IFN- γ , and IL-22.¹⁷⁰ More in depth information on the emerging roles of autophagy in pulmonary disease can be found in a recent review by Mizumura et al.¹⁷¹

An increasing number of studies have linked obesity to the development of asthma;^{164,172-174} likewise, obese asthmatic patients demonstrate improvements in their asthmatic symptoms concurrent with weight loss.¹⁷⁵ A recent study suggests that dietary intake may play a role in asthma exacerbations, as worsened asthma symptoms were found in patients whose diets were high in fat and low in fiber.¹⁷⁶ Animal models uphold this dynamic; obese mice have an increased basal airway hyperresponsiveness and exaggerated pulmonary responses to inhaled agonists such as ozone,¹⁷⁷ as well as increased hyperresponsiveness and serum IgE levels in an Alum/OVA model of allergic sensitization.¹⁷⁸ Whether this is a result of increased basal inflammasome activation in the lung due to obesity remains to be examined.

Trauma and stress

Cellular DAMPs can be released in response to stress or physical lung injury. A recent study examined the role of the NLRP3 inflammasome in response to hemorrhagic shock in a model of acute lung injury.⁴⁰ Of note was their observation that lung endothelial cells were the primary producers of IL-1 β in response to high mobility group box-1 (HMGB1) and the induction of ROS following hemorrhagic shock. A link has also been demonstrated between ventilator induced lung injury (VILI) and inflammasome activation. Dolinay et al. reported a critical role for caspase-1 and IL-18 in VILI,¹⁷⁹ while Kuipers et al. found NLRP3 $^{-/-}$ mice to be protected from VILI.¹⁸⁰ Though an exact mechanism has yet to be determined, it is believed that the cell trauma induced during VILI may expose endogenous intracellular DAMPs, including HMGB1, heat shock proteins, S-100 proteins, and mitochondrial alarmins that are capable of activating the inflammasome.¹⁸¹

More recently, Wu *et al.* determined that sterile inflammation in response to patient ventilation was NLRP3-dependent.¹⁸² Using an *in vitro* flexible membrane model, they demonstrated that alveolar macrophages subjected to cyclic stretch released uric acid, activated the NLRP3 inflammasome, and induced the release of IL-1 β and IL-18. Utilizing a range of inhibitors, they also determined that mitochondrial ROS generation (but not NAPDH oxidase activity) was required for this inflammasome activation.¹⁸²

Summary

In addition to microbial and viral insult, the lung is under a constant barrage of environmental agonists that can induce inflammation and inflammasome activation and participate in the pathogenesis of pulmonary disease (Fig. 2). New studies are highlighting the important endogenous DAMPs that can act to stimulate NLRP3 signaling, and investigating the mechanisms by which inhaled particulates and gasses, physical trauma, and altered physical states such as obesity can lead to inflammasome-dependent lung pathology. Of key importance to many of these mechanisms is the redox balance of the cell; generation of ROS from multiple sources and multiple cell types can lead to modulation of inflammasome complexes and can determine the outcome of lung inflammation. Therapeutic interventions targeted at inflammasome activation, inflammatory cytokines such as IL-1 β and IL-18, as well as their receptors, may provide benefit to a myriad of pulmonary diseases.

Acknowledgments

This work was supported by grants R01 HL107291 and T32 HL076122 from the National Institutes of Health as well as a Clinical Innovator award from the Flight Attendant Medical Research Institute (FAMRI).

References

1. Inohara N, Nunez G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens. *Oncogene*. 2001; 20(44):6473–81. [PubMed: 11607846]
2. Carneiro LA, Travassos LH, Girardin SE. Nod-like receptors in innate immunity and inflammatory diseases. *Ann Med*. 2007; 39(8):581–93. [PubMed: 18038361]
3. Martinon F, Burns K, Tschoopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL- β . *Mol Cell*. 2002; 10(2):417–26. [PubMed: 12191486]
4. Masumoto J, Taniguchi S, Ayukawa K, et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. *J Biol Chem*. 1999; 274(48):33835–8. [PubMed: 10567338]
5. Glaccum MB, Stocking KL, Charrier K, et al. Phenotypic and functional characterization of mice that lack the type I receptor for IL-1. *J Immunol*. 1997; 159(7):3364–71. [PubMed: 9317135]
6. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. *Nat Rev Drug Discov*. 2012; 11(8):633–52. [PubMed: 22850787]
7. Dinarello CA. A clinical perspective of IL-1 β as the gatekeeper of inflammation. *Eur J Immunol*. 2011; 41(5):1203–17. [PubMed: 21523780]
8. Agostini L, Martinon F, Burns K, et al. NALP3 forms an IL-1 β -processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. *Immunity*. 2004; 20(3):319–25. [PubMed: 15030775]
9. Hawkins PN, Lachmann HJ, Aganna E, et al. Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. *Arthritis Rheum*. 2004; 50(2):607–12. [PubMed: 14872505]

10. Jha S, Srivastava SY, Brickey WJ, et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. *J Neurosci*. 2010; 30(47): 15811–20. [PubMed: 21106820]
11. Gris D, Ye Z, Iocca HA, et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. *J Immunol*. 2010; 185(2): 974–81. [PubMed: 20574004]
12. Qamar A, Rader DJ. Effect of interleukin 1beta inhibition in cardiovascular disease. *Curr Opin Lipidol*. 2012; 23(6):548–53. [PubMed: 23069985]
13. Rooney M, Symons JA, Duff GW. Interleukin 1 beta in synovial fluid is related to local disease activity in rheumatoid arthritis. *Rheumatol Int*. 1990; 10(5):217–9. [PubMed: 2075374]
14. Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. *Nature*. 2006; 440(7081):237–41. [PubMed: 16407889]
15. Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. *Nat Immunol*. 2010; 11(10):897–904. [PubMed: 20835230]
16. Griffin WS, Liu L, Li Y, et al. Interleukin-1 mediates Alzheimer and Lewy body pathologies. *J Neuroinflammation*. 2006; 3:5. [PubMed: 16542445]
17. Griffin WS, Barger SW. Neuroinflammatory cytokines—the common thread in Alzheimer's pathogenesis. *US Neurol*. 2010; 6(2):19–27. [PubMed: 22408651]
18. Mills KH, Dungan LS, Jones SA, et al. The role of inflammasome-derived IL-1 in driving IL-17 responses. *J Leukoc Biol*. 2012 [Epub ahead of print].
19. Ather JL, Ckless K, Martin R, et al. Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. *J Immunol*. 2011; 187(1):64–73. [PubMed: 21622869]
20. Martin RA, Ather JL, Lundblad LK, et al. Interleukin-1 receptor and Caspase-1 are required for the Th17 response in NO₂-promoted allergic airway disease. *Am J Respir Cell Mol Biol*. 2013 [Epub ahead of print].
21. Shainheit MG, Lasocki KW, Finger E, et al. The pathogenic Th17 cell response to major schistosome egg antigen is sequentially dependent on IL-23 and IL-1beta. *J Immunol*. 2011; 187(10):5328–35. [PubMed: 22003203]
22. Smith DE. The biological paths of IL-1 family members IL-18 and IL-33. *J Leukoc Biol*. 2011; 89(3):383–92. [PubMed: 20952658]
23. Dinarello CA. Biologic basis for interleukin-1 in disease. *Blood*. 1996; 87(6):2095–147. [PubMed: 8630372]
24. Kang MJ, Choi JM, Kim BH, et al. IL-18 induces emphysema and airway and vascular remodeling via IFN-gamma, IL-17A, and IL-13. *Am J Respir Crit Care Med*. 2012; 185(11):1205–17. [PubMed: 22383501]
25. Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. *Nat Immunol*. 2012; 13(4):333–2. [PubMed: 22430786]
26. Proell M, Riedl SJ, Fritz JH, et al. The Nod-like receptor (NLR) family: a tale of similarities and differences. *PLoS One*. 2008; 3(4):e2119. [PubMed: 18446235]
27. Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. *Nat Genet*. 2006; 38(2):240–4. [PubMed: 16429160]
28. Kool M, Petrilli V, De Smedt T, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. *J Immunol*. 2008; 181(6):3755–9. [PubMed: 18768827]
29. Kool M, Soullie T, van Nimwegen M, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. *J Exp Med*. 2008; 205(4):869–82. [PubMed: 18362170]
30. Eisenbarth SC, Colegio OR, O'Connor W, et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. *Nature*. 2008; 453(7198):1122–6. [PubMed: 18496530]
31. Franchi L, Nunez G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. *Eur J Immunol*. 2008; 38(8):2085–9. [PubMed: 18624356]

32. Allen IC, Jania CM, Wilson JE, et al. Analysis of NLRP3 in the development of allergic airway disease in mice. *J Immunol.* 2012; 188(6):2884–93. [PubMed: 22323538]
33. Geddes BJ, Wang L, Huang WJ, et al. Human CARD12 is a novel CED4/Apaf-1 family member that induces apoptosis. *Biochem Biophys Res Commun.* 2001; 284(1):77–82. [PubMed: 11374873]
34. Cai S, Batra S, Wakamatsu N, et al. NLRC4 inflammasome-mediated production of IL-1beta modulates mucosal immunity in the lung against gram-negative bacterial infection. *J Immunol.* 2012; 188(11):5623–35. [PubMed: 22547706]
35. Allen IC, Lich JD, Arthur JC, et al. Characterization of NLRP12 during the development of allergic airway disease in mice. *PLoS One.* 2012; 7(1):e30612. [PubMed: 22291998]
36. Latz E. The inflammasomes: mechanisms of activation and function. *Curr Opin Immunol.* 2010; 22(1):28–33. [PubMed: 20060699]
37. Birrell MA, Eltom S. The role of the NLRP3 inflammasome in the pathogenesis of airway disease. *Pharmacol Ther.* 2011; 130(3):364–70. [PubMed: 21421008]
38. Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. *Nat Immunol.* 2012; 13(4):325–32. [PubMed: 22430785]
39. Hirota JA, Hirota SA, Warner SM, et al. The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter. *J Allergy Clin Immunol.* 2012; 129(4):1116–25. e1116. [PubMed: 22227418]
40. Xiang M, Shi X, Li Y, et al. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. *J Immunol.* 2011; 187(9):4809–17. [PubMed: 21940680]
41. Zitvogel L, Kepp O, Galluzzi L, et al. Inflammasomes in carcinogenesis and anticancer immune responses. *Nat Immunol.* 2012; 13(4):343–51. [PubMed: 22430787]
42. Artlett CM. The Role of the NLRP3 Inflammasome in Fibrosis. *Open Rheumatol J.* 2012; 6:80–6. [PubMed: 22802905]
43. Melen E, Kho AT, Sharma S, et al. Expression analysis of asthma candidate genes during human and murine lung development. *Respir Res.* 2011; 12:86. [PubMed: 21699702]
44. Hitomi Y, Ebisawa M, Tomikawa M, et al. Associations of functional NLRP3 polymorphisms with susceptibility to food-induced anaphylaxis and aspirin-induced asthma. *J Allergy Clin Immunol.* 2009; 124(4):779–85. e776. [PubMed: 19767079]
45. Broide DH, Lotz M, Cuomo AJ, et al. Cytokines in symptomatic asthma airways. *J Allergy Clin Immunol.* 1992; 89(5):958–67. [PubMed: 1374772]
46. Hastie AT, Moore WC, Meyers DA, et al. Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. *J Allergy Clin Immunol.* 2010; 125(5):1028–36. e1013. [PubMed: 20398920]
47. Tillie-Leblond I, Pugin J, Marquette CH, et al. Balance between proinflammatory cytokines and their inhibitors in bronchial lavage from patients with status asthmaticus. *Am J Respir Crit Care Med.* 1999; 159(2):487–94. [PubMed: 9927362]
48. Sousa AR, Lane SJ, Nakhosteen JA, et al. Expression of interleukin-1 beta (IL-1beta) and interleukin-1 receptor antagonist (IL-1ra) on asthmatic bronchial epithelium. *Am J Respir Crit Care Med.* 1996; 154(4 Pt 1):1061–6. [PubMed: 8887608]
49. Brutsche MH, Joos L, Carlen Brutsche IE, et al. Array-based diagnostic gene-expression score for atopy and asthma. *J Allergy Clin Immunol.* 2002; 109(2):271–3. [PubMed: 11842296]
50. Horiba M, Qutna N, Gendapodi P, et al. Effect of IL-1beta and TNF-alpha vs IL-13 on bronchial hyperresponsiveness, beta2-adrenergic responses and cellularity of bronchial alveolar lavage fluid. *Auton Autacoid Pharmacol.* 2011; 31(3–4):37–49. [PubMed: 21951583]
51. Saperstein S, Huyck H, Kimball E, et al. The effects of interleukin-1beta in tumor necrosis factor-alpha-induced acute pulmonary inflammation in mice. *Mediators Inflamm.* 2009; 2009:958658. [PubMed: 19901996]
52. Chung Y, Chang SH, Martinez GJ, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. *Immunity.* 2009; 30(4):576–87. [PubMed: 19362022]
53. Lee WW, Kang SW, Choi J, et al. Regulating human Th17 cells via differential expression of IL-1 receptor. *Blood.* 2010; 115(3):530–40. [PubMed: 19965648]

54. Shaw MH, Kamada N, Kim YG, et al. Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. *J Exp Med.* 2012; 209(2):251–8. [PubMed: 22291094]
55. Sutton C, Brereton C, Keogh B, et al. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. *J Exp Med.* 2006; 203(7): 1685–91. [PubMed: 16818675]
56. Wilson MS, Madala SK, Ramalingam TR, et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. *J Exp Med.* 2010; 207(3):535–52. [PubMed: 20176803]
57. Gasse P, Riteau N, Vacher R, et al. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. *PLoS One.* 2011; 6(8):e23185. [PubMed: 21858022]
58. Meng G, Zhang F, Fuss I, et al. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. *Immunity.* 2009; 30(6):860–74. [PubMed: 19501001]
59. Al-Ramli W, Prefontaine D, Chouiali F, et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. *J Allergy Clin Immunol.* 2009; 123(5):1185–7. [PubMed: 19361847]
60. Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. *J Allergy Clin Immunol.* 2001; 108(3):430–8. [PubMed: 11544464]
61. Zhao Y, Yang J, Gao YD, et al. Th17 immunity in patients with allergic asthma. *Int Arch Allergy Immunol.* 2010; 151(4):297–307. [PubMed: 19844129]
62. He R, Kim HY, Yoon J, et al. Exaggerated IL-17 response to epicutaneous sensitization mediates airway inflammation in the absence of IL-4 and IL-13. *J Allergy Clin Immunol.* 2009; 124(4):761–70. e761. [PubMed: 19815118]
63. Kudo M, Melton AC, Chen C, et al. IL-17A produced by alphabeta T cells drives airway hyperresponsiveness in mice and enhances mouse and human airway smooth muscle contraction. *Nat Med.* 2012; 18(4):547–54. [PubMed: 22388091]
64. McKinley L, Alcorn JF, Peterson A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. *J Immunol.* 2008; 181(6):4089–97. [PubMed: 18768865]
65. Dragon S, Rahman MS, Yang J, et al. IL-17 enhances IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells. *Am J Physiol Lung Cell Mol Physiol.* 2007; 292(4):L1023–9. [PubMed: 17189320]
66. Verheggen MM, van Hal PT, Adriaansen-Soeting PW, et al. Modulation of glucocorticoid receptor expression in human bronchial epithelial cell lines by IL-1 beta, TNF-alpha and LPS. *Eur Respir J.* 1996; 9(10):2036–43. [PubMed: 8902464]
67. Besnard AG, Togbe D, Couillin I, et al. Inflammasome-IL-1-Th17 response in allergic lung inflammation. *J Mol Cell Biol.* 2012; 4(1):3–10. [PubMed: 22147847]
68. Schmitz N, Kurrer M, Kopf M. The IL-1 receptor 1 is critical for Th2 cell type airway immune responses in a mild but not in a more severe asthma model. *Eur J Immunol.* 2003; 33(4):991–1000. [PubMed: 12672065]
69. Nakae S, Komiyama Y, Yokoyama H, et al. IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. *Int Immunol.* 2003; 15(4): 483–90. [PubMed: 12663678]
70. Besnard AG, Guillou N, Tschopp J, et al. NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. *Allergy.* 2011; 66(8):1047–57. [PubMed: 21443539]
71. Kool M, Willart MA, van Nimwegen M, et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. *Immunity.* 2011; 34(4):527–40. [PubMed: 21474346]
72. Willart MA, Deswarte K, Pouliot P, et al. Interleukin-1alpha controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. *J Exp Med.* 2012; 209(8): 1505–17. [PubMed: 22802353]
73. Bessot JC, Pauli G. Mite allergens: an overview. *Eur Ann Allergy Clin Immunol.* 2011; 43(5):141–56. [PubMed: 22145250]

74. Thomas WR, Hales BJ, Smith WA. House dust mite allergens in asthma and allergy. *Trends Mol Med*. 2010; 16(7):321–8. [PubMed: 20605742]
75. Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. *Trends Immunol*. 2011; 32(9):402–11. [PubMed: 21783420]
76. Gregory LG, Jones CP, Walker SA, et al. IL-25 drives remodelling in allergic airways disease induced by house dust mite. *Thorax*. 2013; 68(1):82–90. [PubMed: 23093652]
77. Fuiano N, Incorvaia C. Dissecting the causes of atopic dermatitis in children: less foods, more mites. *Allergol Int*. 2012; 61(2):231–43. [PubMed: 22361514]
78. Dai X, Sayama K, Tohyama M, et al. Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. *J Allergy Clin Immunol*. 2011; 127(3):806–14. e801–4. [PubMed: 21272927]
79. Ckless K, Hodgkins SR, Ather JL, et al. Epithelial, dendritic, and CD4(+) T cell regulation of and by reactive oxygen and nitrogen species in allergic sensitization. *Biochim Biophys Acta*. 2011; 1810(11):1025–34. [PubMed: 21397661]
80. Rubartelli A. Redox control of NLRP3 inflammasome activation in health and disease. *J Leukoc Biol*. 2012; 92(5):951–8. [PubMed: 22859832]
81. Martinon F. Signaling by ROS drives inflammasome activation. *Eur J Immunol*. 2010; 40(3):616–9. [PubMed: 20201014]
82. Jabaut J, Ather JL, Taracanova A, et al. Mitochondria-targeted drugs enhance Nlrp3 inflammasome-dependent IL-1beta secretion in association with alterations on cellular redox and energy status. *Free Radic Biol Med*. 2013 [Epub ahead of print].
83. Hernandez-Cuellar E, Tsuchiya K, Hara H, et al. Cutting Edge: Nitric oxide inhibits the NLRP3 inflammasome. *J Immunol*. 2012; 189(11):5113–7. [PubMed: 23100513]
84. Cruz CM, Rinna A, Forman HJ, et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. *J Biol Chem*. 2007; 282(5):2871–9. [PubMed: 17132626]
85. Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. *Nat Immunol*. 2010; 11(2):136–40. [PubMed: 20023662]
86. Dostert C, Petrilli V, Van Bruggen R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. *Science*. 2008; 320(5876):674–7. [PubMed: 18403674]
87. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? *Nat Rev Immunol*. 2010; 10(3):210–5. [PubMed: 20168318]
88. van de Veerdonk FL, Smeekens SP, Joosten LA, et al. Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. *Proc Natl Acad Sci U S A*. 2011; 107(7):3030–3. [PubMed: 20133696]
89. Meissner F, Seger RA, Moshous D, et al. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. *Blood*. 2011; 116(9):1570–3. [PubMed: 20495074]
90. Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. *Am J Physiol Cell Physiol*. 2004; 287(4):C817–33. [PubMed: 15355853]
91. Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. *Nature*. 2011; 469(7329):221–5. [PubMed: 21124315]
92. Feng F, Li Z, Potts-Kant EN, et al. Hyaluronan activation of the Nlrp3 inflammasome contributes to the development of airway hyperresponsiveness. *Environ Health Perspect*. 2012; 120(12):1692–8. [PubMed: 23010656]
93. Bauernfeind F, Bartok E, Rieger A, et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. *J Immunol*. 2011; 187(2):613–7. [PubMed: 21677136]
94. Segovia J, Sabbah A, Mgbemena V, et al. TLR2/MyD88/NF-kappaB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. *PLoS One*. 2012; 7(1):e29695. [PubMed: 22295065]

95. Mishra BB, Rathinam VA, Martens GW, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. *Nat Immunol.* 2013; 14(1):52–60. [PubMed: 23160153]
96. Li N, Nel AE. Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. *Antioxid Redox Signal.* 2006; 8(1–2):88–98. [PubMed: 16487041]
97. Freigang S, Ampenberger F, Spohn G, et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. *Eur J Immunol.* 2011; 41(7):2040–51. [PubMed: 21484785]
98. Janssen-Heininger YM, Poynter ME, Aesif SW, et al. Nuclear factor kappaB, airway epithelium, and asthma: avenues for redox control. *Proc Am Thorac Soc.* 2009; 6(3):249–55. [PubMed: 19387025]
99. Cogswell JP, Godlevski MM, Wisely GB, et al. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. *J Immunol.* 1994; 153(2):712–23. [PubMed: 8021507]
100. Hasegawa M, Imamura R, Kinoshita T, et al. ASC-mediated NF-kappaB activation leading to interleukin-8 production requires caspase-8 and is inhibited by CLARP. *J Biol Chem.* 2005; 280(15):15122–30. [PubMed: 15701651]
101. Janssen-Heininger YM, Persinger RL, Korn SH, et al. Reactive nitrogen species and cell signaling: implications for death or survival of lung epithelium. *Am J Respir Crit Care Med.* 2002; 166(12 Pt 2):S9–16. [PubMed: 12471083]
102. Persinger RL, Poynter ME, Ckless K, et al. Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung. *Mol Cell Biochem.* 2002; 234–235(1–2):71–80.
103. Delamater PL, Finley AO, Banerjee S. An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, California. *Sci Total Environ.* 2012; 425:110–8. [PubMed: 22475217]
104. Sunyer J, Basagana X, Belmonte J, et al. Effect of nitrogen dioxide and ozone on the risk of dying in patients with severe asthma. *Thorax.* 2002; 57(8):687–93. [PubMed: 12149528]
105. Takenoue Y, Kaneko T, Miyamae T, et al. The influence of outdoor NO(2) exposure on asthma in childhood: a meta-analysis. *Pediatr Int.* 2012; 54(6):762–9. [PubMed: 22640481]
106. Hesterberg TW, Bunn WB, McClellan RO, et al. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. *Crit Rev Toxicol.* 2009; 39(9):743–81. [PubMed: 19852560]
107. Poynter ME. Airway epithelial regulation of allergic sensitization in asthma. *Pulm Pharmacol Ther.* 2012; 25(6):438–46. [PubMed: 22579987]
108. Bevelander M, Mayette J, Whittaker LA, et al. Nitrogen dioxide promotes allergic sensitization to inhaled antigen. *J Immunol.* 2007; 179(6):3680–8. [PubMed: 17785804]
109. Poynter ME, Persinger RL, Irvin CG, et al. Nitrogen dioxide enhances allergic airway inflammation and hyperresponsiveness in the mouse. *Am J Physiol Lung Cell Mol Physiol.* 2006; 290(1):L144–52. [PubMed: 16085673]
110. Hodgkins SR, Ather JL, Pavaglio SA, et al. NO2 inhalation induces maturation of pulmonary CD11c+ cells that promote antigenspecific CD4+ T cell polarization. *Respir Res.* 2010; 11:102. [PubMed: 20659336]
111. Ather JL, Hodgkins SR, Janssen-Heininger YM, et al. Airway epithelial NF-kappaB activation promotes allergic sensitization to an innocuous inhaled antigen. *Am J Respir Cell Mol Biol.* 2011; 44(5):631–8. [PubMed: 20581095]
112. Wilson RH, Whitehead GS, Nakano H, et al. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. *Am J Respir Crit Care Med.* 2009; 180(8):720–30. [PubMed: 19661246]
113. Ozseker F, Buyukozturk S, Depboylu B, et al. Serum amyloid A (SAA) in induced sputum of asthmatics: a new look to an old marker. *Int Immunopharmacol.* 2006; 6(10):1569–76. [PubMed: 16919829]

114. Yamasaki K, Muto J, Taylor KR, et al. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. *J Biol Chem.* 2009; 284(19):12762–71. [PubMed: 19258328]
115. Iyer SS, Pulskens WP, Sadler JJ, et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. *Proc Natl Acad Sci U S A.* 2009; 106(48):20388–93. [PubMed: 19918053]
116. Moretto N, Volpi G, Pastore F, et al. Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. *Ann N Y Acad Sci.* 2012; 1259:39–46. [PubMed: 22758635]
117. de Groot P, Munden RF. Lung cancer epidemiology, risk factors, and prevention. *Radiol Clin North Am.* 2012; 50(5):863–76. [PubMed: 22974775]
118. Manzel LJ, Shi L, O'Shaughnessy PT, et al. Inhibition by cigarette smoke of nuclear factor-kappaB-dependent response to bacteria in the airway. *Am J Respir Cell Mol Biol.* 2011; 44(2):155–65. [PubMed: 20348206]
119. Eltom S, Stevenson CS, Rastrick J, et al. P2X7 receptor and caspase 1 activation are central to airway inflammation observed after exposure to tobacco smoke. *PLoS One.* 2011; 6(9):e24097. [PubMed: 21915284]
120. Doz E, Noulin N, Boichot E, et al. Cigarette smoke-induced pulmonary inflammation is TLR4/ MyD88 and IL-1R1/MyD88 signaling dependent. *J Immunol.* 2008; 180(2):1169–78. [PubMed: 18178857]
121. Pauwels NS, Bracke KR, Dupont LL, et al. Role of IL-1alpha and the Nlrp3/caspase-1/ IL-1beta axis in cigarette smoke-induced pulmonary inflammation and COPD. *Eur Respir J.* 2011; 38(5):1019–28. [PubMed: 21622588]
122. Wang H, Peng W, Weng Y, et al. Imbalance of Th17/Treg cells in mice with chronic cigarette smoke exposure. *Int Immunopharmacol.* 2012; 14(4):504–12. [PubMed: 23044435]
123. Podolin PL, Foley JP, Carpenter DC, et al. T cell depletion protects against alveolar destruction due to chronic cigarette smoke exposure in mice. *Am J Physiol Lung Cell Mol Physiol.* 2013; 304(5):L312–23. [PubMed: 23292810]
124. Finkelstein EI, Nardini M, van der Vliet A. Inhibition of neutrophil apoptosis by acrolein: a mechanism of tobacco-related lung disease? *Am J Physiol Lung Cell Mol Physiol.* 2001; 281(3):L732–9. [PubMed: 11504702]
125. Li L, Hamilton RF Jr, Taylor DE, et al. Acrolein-induced cell death in human alveolar macrophages. *Toxicol Appl Pharmacol.* 1997; 145(2):331–9. [PubMed: 9266806]
126. Borchers MT, Wesselkamper SC, Eppert BL, et al. Nonredundant functions of alphabeta and gammadelta T cells in acrolein-induced pulmonary pathology. *Toxicol Sci.* 2008; 105(1):188–99. [PubMed: 18515264]
127. Kang MJ, Homer RJ, Gallo A, et al. IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. *J Immunol.* 2007; 178(3):1948–59. [PubMed: 17237446]
128. Lalor SJ, Dungan LS, Sutton CE, et al. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. *J Immunol.* 2011; 186(10):5738–48. [PubMed: 21471445]
129. Chow MT, Sceneay J, Paget C, et al. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. *Cancer Res.* 2012; 72(22):5721–32. [PubMed: 22986739]
130. Chaix J, Tessmer MS, Hoebe K, et al. Cutting edge: Priming of NK cells by IL-18. *J Immunol.* 2008; 181(3):1627–31. [PubMed: 18641298]
131. Bruchard M, Mignot G, Derangere V, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. *Nat Med.* 2012; 19(1):57–64. [PubMed: 23202296]
132. Wu W, Peden D, Diaz-Sanchez D. Role of GSTM1 in resistance to lung inflammation. *Free Radic Biol Med.* 2012; 53(4):721–9. [PubMed: 22683820]
133. Wu W, Peden DB, McConnell R, et al. Glutathione-S-transferase M1 regulation of diesel exhaust particle-induced pro-inflammatory mediator expression in normal human bronchial epithelial cells. *Part Fibre Toxicol.* 2012; 9:31. [PubMed: 22867088]

134. Li YJ, Takizawa H, Azuma A, et al. Nrf2 is closely related to allergic airway inflammatory responses induced by low-dose diesel exhaust particles in mice. *Clin Immunol*. 2010; 137(2): 234–41. [PubMed: 20797910]

135. Provoost S, Maes T, Pauwels NS, et al. NLRP3/caspase-1-independent IL-1 β production mediates diesel exhaust particle-induced pulmonary inflammation. *J Immunol*. 2011; 187(6): 3331–7. [PubMed: 21844393]

136. Guma M, Ronacher L, Liu-Bryan R, et al. Caspase 1-independent activation of interleukin-1 β in neutrophil-predominant inflammation. *Arthritis Rheum*. 2009; 60(12):3642–50. [PubMed: 19950258]

137. Ghirardelli M, Maestri I, Rinaldi R, et al. NLRP1 polymorphisms in patients with asbestos-associated mesothelioma. *Infect Agent Cancer*. 2012; 7(1):25. [PubMed: 23031505]

138. Chow MT, Tschopp J, Moller A, et al. NLRP3 promotes inflammation-induced skin cancer but is dispensable for asbestos-induced mesothelioma. *Immunol Cell Biol*. 2012; 90(10):983–6. [PubMed: 23010873]

139. Leung CC, Yu IT, Chen W. Silicosis. *Lancet*. 2012; 379(9830):2008–18. [PubMed: 22534002]

140. Cassel SL, Eisenbarth SC, Iyer SS, et al. The Nalp3 inflammasome is essential for the development of silicosis. *Proc Natl Acad Sci U S A*. 2008; 105(26):9035–40. [PubMed: 18577586]

141. Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. *Nat Immunol*. 2008; 9(8):847–56. [PubMed: 18604214]

142. Demento SL, Eisenbarth SC, Foellmer HG, et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. *Vaccine*. 2009; 27(23):3013–21. [PubMed: 19428913]

143. Zarogiannis SG, Filippidis AS, Fernandez S, et al. Nano-TiO(2) particles impair adhesion of airway epithelial cells to fibronectin. *Respir Physiol Neurobiol*. 2013; 185(2):454–60. [PubMed: 22947217]

144. Dekali S, Divetain A, Kortulewski T, et al. Cell cooperation and role of the P2X(7) receptor in pulmonary inflammation induced by nanoparticles. *Nanotoxicology*. 2012 [Epub ahead of print].

145. Srinivas A, Rao PJ, Selvam G, et al. Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. *Hum Exp Toxicol*. 2012; 31(11):1113–31. [PubMed: 22699116]

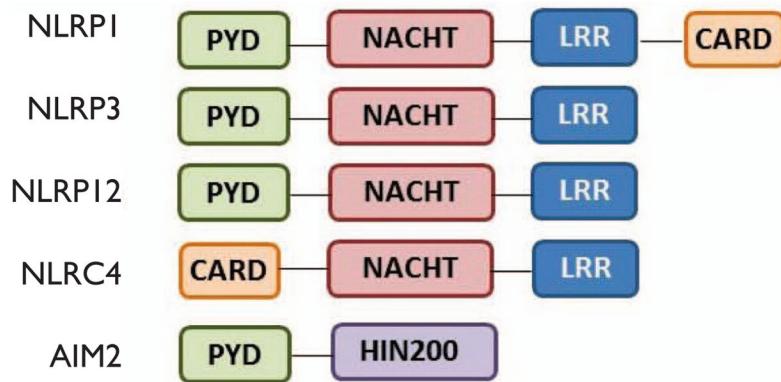
146. Yazdi AS, Guarda G, Riteau N, et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1 α and IL-1 β . *Proc Natl Acad Sci U S A*. 2010; 107(45):19449–54. [PubMed: 20974980]

147. Sun B, Wang X, Ji Z, et al. NLRP3 inflammasome activation induced by engineered nanomaterials. *Small*. 2012 [Epub ahead of print].

148. Reisetter AC, Stebounova LV, Baltrusaitis J, et al. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. *J Biol Chem*. 2011; 286(24):21844–52. [PubMed: 21525001]

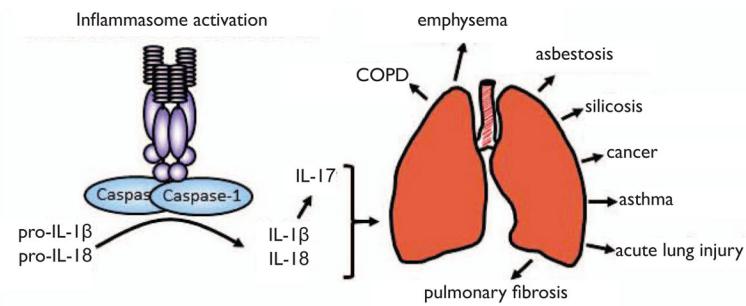
149. Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. *Nano Lett*. 2006; 6(6):1121–5. [PubMed: 16771565]

150. Patel H, Kwon S. Multi-walled carbon nanotube-induced inflammatory response and oxidative stress in a dynamic cell growth environment. *J Biol Eng*. 2012; 6(1):22. [PubMed: 23148460]


151. Mizutani N, Nabe T, Yoshino S. Exposure to multiwalled carbon nanotubes and allergen promotes early- and late-phase increases in airway resistance in mice. *Biol Pharm Bull*. 2012; 35(12):2133–40. [PubMed: 23207765]

152. Hamilton RF Jr, Buford M, Xiang C, et al. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. *Inhal Toxicol*. 2012; 24(14):995–1008. [PubMed: 23216160]

153. Pietruska JR, Liu X, Smith A, et al. Bioavailability, intracellular mobilization of nickel, and HIF-1 α activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. *Toxicol Sci*. 2011; 124(1):138–48. [PubMed: 21828359]


154. Morimoto Y, Ogami A, Todoroki M, et al. Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. *Nanotoxicology*. 2010; 4(2): 161–76. [PubMed: 20795893]
155. Ogami A, Morimoto Y, Myojo T, et al. Pathological features of different sizes of nickel oxide following intratracheal instillation in rats. *Inhal Toxicol*. 2009; 21(10):812–8. [PubMed: 19225964]
156. Lugogo NL, Bappanad D, Kraft M. Obesity, metabolic dysregulation and oxidative stress in asthma. *Biochim Biophys Acta*. 2011; 1810(11):1120–6. [PubMed: 21944975]
157. Martinez CH, Han MK. Contribution of the environment and comorbidities to chronic obstructive pulmonary disease phenotypes. *Med Clin North Am*. 2012; 96(4):713–27. [PubMed: 22793940]
158. Cheung KP, Taylor KR, Jameson JM. Immunomodulation at epithelial sites by obesity and metabolic disease. *Immunol Res*. 2012; 52(3):182–99. [PubMed: 22160809]
159. Rock KL, Lai JJ, Kono H. Innate and adaptive immune responses to cell death. *Immunol Rev*. 2011; 243(1):191–205. [PubMed: 21884177]
160. Lukens JR, Gross JM, Kanneganti TD. IL-1 family cytokines trigger sterile inflammatory disease. *Front Immunol*. 2012; 3:315. [PubMed: 23087690]
161. Tack CJ, Stienstra R, Joosten LA, et al. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. *Immunol Rev*. 2012; 249(1):239–52. [PubMed: 22889226]
162. Youm YH, Adijiang A, Vandamagsar B, et al. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. *Endocrinology*. 2011; 152(11): 4039–45. [PubMed: 21862613]
163. Stienstra R, Tack CJ, Kanneganti TD, et al. The inflammasome puts obesity in the danger zone. *Cell Metab*. 2012; 15(1):10–8. [PubMed: 22225872]
164. Dixon AE. Obesity: changing asthma in the 21st century. *Am J Respir Crit Care Med*. 2012; 186(5):395–6. [PubMed: 22942341]
165. Reynolds CM, McGillicuddy FC, Harford KA, et al. Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. *Mol Nutr Food Res*. 2012; 56(8):1212–22. [PubMed: 22700321]
166. Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. *Nat Immunol*. 2011; 12(5):408–15. [PubMed: 21478880]
167. Vandamagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. *Nat Med*. 2011; 17(2):179–88. [PubMed: 21217695]
168. Jansen HJ, van Essen P, Koenen T, et al. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. *Endocrinology*. 2012; 153(12):5866–74. [PubMed: 23117929]
169. Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1 β production by targeting ubiquitinated inflammasomes for destruction. *Nat Immunol*. 2012; 13(3):255–63. [PubMed: 22286270]
170. Peral de Castro C, Jones SA, Ni Cheallaigh C, et al. Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion. *J Immunol*. 2012; 189(8):4144–53. [PubMed: 22972933]
171. Mizumura K, Cloonan SM, Haspel JA, et al. The emerging importance of autophagy in pulmonary diseases. *Chest*. 2012; 142(5):1289–99. [PubMed: 23131937]
172. Ford ES. The epidemiology of obesity and asthma. *J Allergy Clin Immunol*. 2005; 115(5):897–909. quiz 910. [PubMed: 15867841]
173. Rzezak P, Wijga AH, Keil T, et al. Body mass index trajectory classes and incident asthma in childhood: Results from 8 European Birth Cohorts-a Global Allergy and Asthma European Network initiative. *J Allergy Clin Immunol*. 2013 [Epub ahead of print].
174. Camargo CA Jr, Weiss ST, Zhang S, et al. Prospective study of body mass index, weight change, and risk of adult-onset asthma in women. *Arch Intern Med*. 1999; 159(21):2582–8. [PubMed: 10573048]

175. Hakala K, Stenius-Aarniala B, Sovijarvi A. Effects of weight loss on peak flow variability, airways obstruction, and lung volumes in obese patients with asthma. *Chest*. 2000; 118(5):1315–21. [PubMed: 11083680]
176. Berthon BS, Macdonald-Wicks LK, Gibson PG, et al. An investigation of the association between dietary intake, disease severity and airway inflammation in asthma. *Respirology*. 2012 [Epub ahead of print].
177. Lu FL, Johnston RA, Flynt L, et al. Increased pulmonary responses to acute ozone exposure in obese db/db mice. *Am J Physiol Lung Cell Mol Physiol*. 2006; 290(5):L856–65. [PubMed: 16373670]
178. Johnston RA, Zhu M, Rivera-Sanchez YM, et al. Allergic airway responses in obese mice. *Am J Respir Crit Care Med*. 2007; 176(7):650–8. [PubMed: 17641156]
179. Dolinay T, Kim YS, Howrylak J, et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. *Am J Respir Crit Care Med*. 2012; 185(11):1225–34. [PubMed: 22461369]
180. Kuipers MT, Aslami H, Janczy JR, et al. Ventilator-induced lung injury is mediated by the NLRP3 inflammasome. *Anesthesiology*. 2012; 116(5):1104–15. [PubMed: 22531249]
181. Pugin J. How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. *Ann Intensive Care*. 2012; 2(1):27. [PubMed: 22788849]
182. Wu J, Yan Z, Schwartz DE, et al. Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch-induced lung inflammation and injury. *J Immunol*. 2013 [Epub ahead of print].

Figure 1.

Differing structures of the inflammasomes implicated in lung disease

Figure 2.

Pulmonary diseases in which inflammasome activation is involved, either through the production of caspase-1-regulated cytokines (IL-1 β or IL-18) and/ or IL-17. COPD, chronic obstructive pulmonary disease.

Importance of NLRP3 components and IL-1 signaling in non-microbial models of allergic airway disease.

Table I

	NLRP3	Caspase-1	IL-1Ra	IL-1 β	IL-1 α
i.p. Alum/OVA	–	?	–	–	–
i.p. OVA (no Alum)	–	?	+	+	+
s.q. OVA (no Alum)	+	?	+	+	+
UA/OVA	–	–	–	–	–
HDM	–	–	+	–	+
NO ₂ /OVA	–	+	+	+	–
SAA/OVA	+*	+*	+*	?	?

+=required, –=not required, ?=not specifically published, +*=required only for certain parameters. Alum, aluminum hydroxide; OVA, ovalbumin; i.p., intraperitoneal; s.q., subcutaneous; UA, uric acid; HDM, house dust mite extract; SAA, serum amyloid A.