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Abstract

In this paper, we use Spherical Topic Models to discover the latent structure of lung disease. This
method can be widely employed when a measurement for each subject is provided as a normalized
histogram of relevant features. In this paper, the resulting descriptors are used as phenotypes to
identify genetic markers associated with the Chronic Obstructive Pulmonary Disease (COPD).
Features extracted from images capture the heterogeneity of the disease and therefore promise to
improve detection of relevant genetic variants in Genome Wide Association Studies (GWAS). Our
generative model is based on normalized histograms of image intensity of each subject and it can
be readily extended to other forms of features as long as they are provided as normalized
histograms. The resulting algorithm represents the intensity distribution as a combination of
meaningful latent factors and mixing co-efficients that can be used for genetic association
analysis. This approach is motivated by a clinical hypothesis that COPD symptoms are caused by
multiple coexisting disease processes. Our experiments show that the new features enhance the
previously detected signal on chromosome 15 with respect to standard respiratory and imaging
measurements.

1 Introduction

In this paper, we employ the Spherical Topic Model[1] (which is one of the variants of the

latent topic models) to extract imaging features for genetic association studies. It is common

in classical Genome-Wide Association Studies (GWAS) to perform statistical association
between genetic measurements and a few quantities such as diagnosis. Imaging features

provide rich information about the disease phenotype and promise to enhance the sensitivity

of the genetic studies. Using individual voxels as a phenotype is not informative and due to
the noisy nature of imaging measurements induces high false positive rate. Therefore,
summarizing imaging features into meaningful quantities (i.e., dimensionality reduction)

improves the association and facilitate interpretation of the results. In this work, we build on

a variant of topic models to perform this step of dimensionality reduction.

COPD is characterized by chronic and progressive difficulty in breathing, and is one of the
leading causes of death in the United States [2]. The disorder is believed to be a mixture of
multiple disease processes including the destruction of the air sacs (emphysema) and
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inflammation of the airways (airway disease). Each process consists of multiple subtypes
[3]. In this paper, we focus on emphysema which manifests itself as changes in intensity of
the lung in Computed Tomography (CT) images [3]. Therefore, we use image intensity of
the lung as a unit of measurements for each subject. The goal is to summarize this
information into meaningful features. Similar to the idea of bag of words in natural language
processing, later also adopted in computer vision [4], we view a histograms as a document
and subtypes of the disease as different topics. This approach assumes that every patient
(document) contains multiple portions of the disease subtypes (topics) and those disease
subtypes, i.e., topics, are shared across subjects. The goal of this paper is not to diagnose
COPD since a test of lung function via forced exhalation has been the gold standard of
COPD diagnosis for decades [5]. Our aim is to use imaging features to characterize the
phenotype and the underlying genetic causes of the disease.

The search for genetic variants that increase the risk of a disorder is one of the central
challenges in medical research, and has been traditionally performed via GWAS. Standard
GWAS identifies correlations between genetic variants and a single phenotype (e.g., mostly
disease vs. control). Although such analysis identified several variants relevant to COPD
(e.g., IREB2 on chromosome 15 [6]), such studies are likely incomplete. First, COPD is a
mixture of diseases and therefore is unlikely to be explained by a single factor. Second, the
effect of the genetic variants may be scattered across the lung volume but their cumulative
effect is manifested in the respiratory signal [7]. Imaging can help to address both
challenges. Image features that capture the amount of emphysema have been previously
demonstrated to reflect disease pathology and predict outcomes in COPD [7]. We seek to
extract features from images that capture heterogeneous manifestations of the disease and
enrich detection of genetic markers associated with COPD.

The standard approach to quantify emphysema is to apply an intensity threshold within the
volume of the lung to compute a surrogate measure for the volume of emphysema [7].
Clinical studies suggest that lungs of COPD patients present symptoms of different subtypes
of emphysema [7, 5]. Recent work exploits spatial patterns of intensity to classify
emphysema into subtypes. Examples include the use of Kernel density estimation [8],
combination of Local Binary Pattern (LBP) and intensity histogram [9], and Multi-
coordinate Histogram of Oriented Gradient (MHOG) descriptors [10] for subtype
classification of image patches in CT. Importantly, none of the method above characterizes
how the underlying biological processes overlap with radiologic categorization.

Imaging genetics associates image phenotype with genetic markers relevant for the disease
of interest. The objective is to characterize clinical heterogeneity of the disease and to detect
novel genetic markers associated with COPD [11]. Most methodological innovations in
imaging genetics to date have been demonstrated in the context of neuro-degenerative
diseases [12, 13, 14], where image features are typically computed in a common coordinate
system and are assumed to be spatially consistent across subjects. Unfortunately, such
coordinate system does not exist for the lung, presenting an additional challenge for creating
image-based descriptors that can be compared across subjects.
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In this paper, we build a generative model that encodes the clinical assumption that COPD
symptoms are caused by multiple coexisting biological processes. We assume that every
subject is a mixture of latent disease factors, that are shared across the population. This
approach is referred to as topic modeling in machine learning (e.g., LDA [15]). The
contribution of each latent factor for a particular subject becomes a new feature that can be
used as an intermediate phenotype for detecting genetic associations. To integrate the
resulting features into genetic analysis, we employ a method that views the genotype as the
dependent variable and uses all the latent features simultaneously to find the genetic
association. We demonstrate that the new features enhance the signal on chromosome 15 by
improving the sensitivity of detection.

2 Topic Modeling for Feature Extraction

Previous studies have shown the intensity of lung to be highly informative for
characterization of COPD [8, 9]. Therefore, we use global histogram of image intensity of
the lung as a unit of measurement for each subject. The goal is to reduce a set of histograms
to a set of meaningful features that enhance subsequent statistical analysis. Histogram data
can in general encode richer features such as sophisticated localized descriptors (e.g.,
Histogram of Oriented Gradients (HOG)), but to focus on the model, we limit ourselves to
image histograms which have been shown to be informative for COPD [8, 9]. Here, we
adopt the Spherical Admixture Model [1] that views each histogram as a point on a
hypersphere. The advantage of this model is that it can handle unit-less (normalized)
representations of the histograms. This property allows us to normalize the features by the
volume of the lung.

We assume an image of subject n in a study is represented by a distribution

D D . . . .
yn €R (Zd:1y7zd:1). With a change of the variables y,, ;:=22 ,, we map the intensity
distribution to a unit hypersphere, z, € s”-'. Motivated by the clinical hypothesis that COPD
is a mixture of diseases, we assume that each data point (subject) is a normalized sum of K
disease factors @=[¢; - - - o] € RP*K, The factors are shared across the population and
each factor is also a distribution, ¢ € s”' (1 <k < K). The generative model can be
summarized as follows[1]:

p~vMF (m, k),
¢kNVMF(“> g)’

n~Dirichlet(cv),

x irichlet(cx) O

Z,~VvMF &,/{
)

where VMF(-) and Dirichlet(:) denote the von Mises-Fisher (vMF) [16] and Dirichlet
distributions respectively. vMF distribution is a natural distribution, akin to a multivariate
Normal distribution, for directions on a sphere. [ is a latent variable that controls the mean
of the disease factors (topics), m and x are hyper-parameters that define the mean and
concentration of p respectively. x,, is a normalized latent distribution that defines a portion
of each disease factor (topic) represented in subject n. Since x,, is normalized (sums to one),
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Dirichlet distribution is a reasonable prior choice; a is the multivariate shape parameter of

Pxn

the Dirichlet distribution. ||2x»|| maps the weighted sum of the topics back to the sphere
and serves as a noiseless represe?ltation of the observation z,. To accommodate possible
noise, the observation is modeled as a von Mises-Fisher perturbation of the noiseless
representation, parameter x controls the concentration of the noise. For notational
convenience, we define 2= {y, &, X} to be the set of the latent variables and y= {a, & &,

Ko} to represent the set of hyper-parameters. The generative model is illustrated in Fig. 1a.

The join probability p(Z, £2; y) can be written as follows:

N K
p(Z, 2;7)=[ (20| B, %n; T)p(xn; 1) [ [ (1|1 )P(18; 7)) (2)
n=1 k=1

Reisinger et al. [1] proposed to use variational mean-field method to approximate the
posterior distribution of the latent variables in this model with a fully factorized function as
follows:

a(p, P, X\, D, 100; 7)=q( P2, €)q(X|@)q (|, ro), (3)

where X'= {u,~<_b,~m} are the parameters of the approximate posterior distribution g(-). Note
that X’and (2are not identical since the former is the set containing parameters of the
approximate posterior distribution while the latter is the set of latent variables in the original
model. The variational method minimizes the KL-divergence between the approximating
distribution and the join probability distribution to find the optimal setting of the parameters:

> r)=arg %%T}Eq [logp(Z, 2, 1) —logg({5; 7). (4

Computing the derivatives with respect to X'and yand setting them to zero, the mean field
method reduces to a set of fixed-point update equations (see [1] for detail).

We seek to estimate the posterior means of the latent features x, := & [xp], which serve as a
low-dimensional representation of subject n, and are used to infer associated genetic markers
of the disease as described in Section 3. Estimates x,, can be viewed as a K-dimensional
histogram defined over K latent factors. Indeed, we reduce the original D-dimensional
histograms of image intensities to the K-dimensional histograms of the latent factors. Other
quantities of interest are the latent factors, ¢4<,~which are D-dimensional histograms that
describe each latent factor in the intensity space. The hyper-parameters, y, and the
parameters of the approximate posterior distribution, X, are estimated during learning (i.e.,
Eq. 4). The main parameter of the method is number of topics K.

Unlike traditional Factor Analysis methods such as PCA, this approach yields normalized
factors and coefficients (i.e., both can be interpreted as histograms). This is advantageous for
interpretation of the results because the ® can be viewed the same way as the input
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histograms and mixing weights X, can be viewed as the proportions of each factor in subject
n.

3 From Image Features to Genetic Markers

In addition to the image features x;,, each subject is characterized by a vector of S genetic
markers (gns € {0, 1, 2}, 1 <5 <S). gps represents the allele count in the locus s of the
genetic measurement for subject n. Standard GWAS builds a regression model xny = bs  +
Wqins + &nsk for each Single Nucleotide Polymorphism (SNP) g5 and the phenotype X,k
separately. The detection procedure aims to reject the null hypothesis of no association (wgy
= 0) by performing t-test. Contrary to the standard GWAS that models phenotype as a
dependent variable, we use a previously proposed method that considers the genotype as the
dependent variable and uses all phenotypes features simultaneously [17]. The algorithm
employs proportional odds (ordinal) logistic regression to model the allele count. Unlike
multi-class logistic regression, ordinal logistic regression assumes the classes (i.e., gns = 0,
1, 2) are ordered, the hyperplanes separating the classes are parallel, and the difference
between classes is captured by the intercepts as illustrated in Fig. 2b,2a. Ordinal logistic
regression is more restrictive than a more general multi-class logistic regression and exhibits
fewer degrees of freedom. The ordinal method is more appropriate when a natural ordering
can be imposed on class labels. This is certainly the case here since gns counts the number of
minor alleles and we assume an additive effect. The cumulative probability is modeled as
the logistic function:

1
o 1+exp(Wlk,—bs ;)

P(gns < j):w(wzﬁn_bs,j) (5)

where j € {0, 1, 2}. For the allele j in locus s, we estimate one weight wg and two intercepts
bs 1 and bs ». Fitting the model reduces to maximizing the log-likelihood of data to find the
best parameters (ws, b 1, bs o) for each SNP gps:

N
g(wsv bs 1, bs)Z;X):ZlOg (w(WsT)A(n_bs,(gnJrl))_w(wzf{n_bsyn))v (6)
n=1

where bs g = —ocoand bg 3 = +oo.

We compute the likelihood ratio of the model with combination of covariates and x{ #1)
versus only the covariates ( #). 42 distribution with degrees of freedom equal to the
difference in dimensionality is used to compute the p-value [17]. Covariates are defined in
the next section.

4 Experiments

Experiments in this section are organized as follows. We first qualitatively evaluate the new
features x;, and the estimated latent factors <pk~(Fig. 3). Next, we select a few important SNPs
to study the sensitivity of the algorithm with respect to the model size K (Fig. 4). Finally, we
study how much the new features enrich our genetic findings versus the traditional
measurements such as airflow (Fig. 5 and Fig. 6).
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We demonstrate the method on a large COPD study of 6,670 subjects. The respiratory
measurements include: percent predicted, forced expiratory volume in one second (F EV)
that is used as an indicator of COPD severity, and the ratio of F EV4 over forced vital
capacity (F EV{/F V C), used as a measure of airflow obstruction for COPD diagnosis. We
will refer to the respiratory measures as Resp. We also evaluate summary measurements
computed from lung CT. These include percent emphysema, defined as the percentage of
lung tissue below —950 Hounsfield units; percent gas trapping, defined as the percentage of
lung tissue below -910 Hounsfield units after exhalation, and the wall thickness of an
airway with an internal perimeter of 10mm (Piyg). We will refer to these measures as
sumlmg. The subjects were genotyped by Illumina on the HumanOmniExpress array. We
employ standard quality control for genetic data, including missing-ness, excess
heterozygous, gender mismatch, cryptic relatedness, population outliers, marker
concordance, and Hardy-Weinberg equilibrium. We computed 6 principal components from
the genotype to correct for population heterogeneity, and included them in the covariate set
along with age, Body Mass Index (BMI) and number of aggregate packs smoked per year.

Qualitative Evaluation

Fig. 3 shows examples of the derived latent disease factors ((/45 and the corresponding latent
features (x)'in the patient cohort. As shown in Fig. 3a and Fig. 3b, every factor is a proper
distribution. In effect, the classical method is based on a single threshold that divides a
histogram into two bins: lower or higher bins. There is a debate in the COPD community on
what the optimal threshold should be. In contrast to the traditional approach, one can view
the proposed method as an adaptive way of histogram binning with no need to specify the
threshold explicitly. Nevertheless, it is interesting to see that the latent factors are located at
the values that are close to —950 Hounsfield units (=950 is commonly used to define
percentage of emphysema in the COPD community).

Fig. 3c presents a scatter plot of pairs of new features (x)'in the cohort. The color in the
scatter plot indicates the value of F EV1/F V C. Higher values correspond to subjects without
COPD. The scatter plot suggests that the new features successfully characterize the severity
of the disease. Notice the smooth variation across the population. We also performed linear
regression between new features (K = 6) and respiratory measurement FEV; (R2 = 0.67),
FEV1/FVC (R? = 0.74), and the percent of emphysema (R2 = 0.96).

Sensitivity Analysis

We chose around 500 SNIPs with the lowest p-values identified in previous studies. Many of
these SNPs are from regions that have been frequently reported in the genetic and
respiratory literature in connection to lung cancer genes or nicotine receptors areas. We first
examine the behavior of the algorithm on the smaller set of 2,441 subjects. In order to study
the sensitivity of the method with respect to the main parameter (the number of the latent
factors K), we choose three SNPs associated with COPD (rs578776 [18]), nicotine
dependence (rs17483721 [19]), and lung cancer (rs2568494 [6]), and evaluate the
significance of the model fit for different values of K.

Bayesian Graph Models Biomed Imaging. Author manuscript; available in PMC 2015 February 23.
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The cross-validation accuracy of the model saturates very fast (Fig. 4a) implying that few
topics summarize the dataset successfully. As K grows, so does the number of degrees of
freedom in the 42 distribution that is used to evaluate the significance of the fit in Fig. 4b.
Unless the fit improves substantially, we expect the significance (- log(p)) to increase at
first and then to decline. The plots in Fig. 4b spike down at K = 20, 24, 34 because the
features become so collinear that the optimization of the cost function of the ordinal logistic
in Eq. (5) does not converge (Hessian in Eq. (6) become ill-conditioned). An alternative way
to choose K is to use the variational lower bound which is not explored in this paper.

Study

To test if the new features enrich the association, we examined different combinations of
topic features, summary image features (sumimg) and the respirometry measurement (Resp)
for the set of selected SNPs. Fig. 5 reports the pair-wise comparison of different feature sets.
A > B indicates how many more SNPs are detected in one setting (A) versus the other (B)
and how they were distributed across different chromosomes. Almost every combination
with latFtr improves with respect to the second row (sumlimg). We conclude that the
extracted features are correlated with previously identified clinical image-based measures,
but also offer complementary detections for genetic studies. Another important message
from Fig. 5 is that adding the most important clinical measurement (Resp) improves the
results.

We also extracted features for the whole set of 6,670 subjects and applied regression on the
genome-wide scale. Fig. 6 shows the regional maps on the chromosomes 15. Blue, purple
and green lines represent new features (latFtr), sumimg, and Resp features. On the
chromosomes 15, the new features (latFtr) enhanced the detection with respect to the other
two feature sets by about 4 orders of magnitude in the corresponding p-values. On the
chromosome 4, there is signal that is only detected effectively by the respiratory features but
not by sumimg or latFtr (see Fig. 7). This suggests there is some information in the
respiratory signal that is not reflected in the images.

5 Conclusion

Traditional approaches to CT analysis in lung disease often rely on a single threshold or set
of thresholds, and ignore the effects of genetic variants. We present a method to extract
image features using topic modeling from lung CT images. Bins of the histogram are viewed
as words in a dictionary or codebook. Our experiments show that new features correlate well
with clinical measures of physiology (spirometry) and generalize commonly used measures
for emphysema. The new features promise to improve the power of genetic associations for
genetic causes of COPD. The proposed method is general and can be applied to any
distribution. Including texture and lobe information to better characterize different subtypes
of emphysema is a clear important and promising direction of future research.
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Fig. 1.
(a) Schematic visualization of the generative model. Each data point (blue) is a noisy

mixture of latent disease factors (red arrows). (b) Graphical model for the spherical topic
model in [1]. The open gray and white circles are the observed and the latent random
variables respectively. The full circles are the hyper-parameters.
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Fig. 2.
(@) Ordinal vs. (b) Multi-class logistic regression. In the ordinal regression, the separating

hyperplanes are parallel (same w) and classes differ by intercepts.
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Estimated latent model estimated. (a),(b) Examples of latent factors for K = 6. (c). Scatter
plot of latent features colored by FEV1/FVC (severity of COPD). Hotter colors represent
higher values (healthier subjects). The scatter plots show that new features successfully

delineate the severity of the disease.
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Fig. 4.

Prediction accuracy (F1-measure) for 5-fold cross validation and quality-of-fit (- log (p)) as
a function of the model size K for three important genetic markers. Fq is defined as
2(precision x recall)/(precision + recall). We note the improvements in prediction accuracy
in (a). As the model becomes more complex (higher K), the number of degrees of freedom
in 22 distribution increases, which explains the initial increases and decreases in the p-value
in (b).
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Comparison of different feature sets. For K = 4 and for different combination of features, A
> B indicates how many more SNPs are detected in one setting (A) versus the other (B) and
how they were distributed in the different chromosomes.

Bayesian Graph Models Biomed Imaging. Author manuscript; available in PMC 2015 February 23.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

yduasnuel Joyny vd-HIN

Batmanghelich et al.

Page 14

15:78.31 M-79.31 M _(rs8034191 )

10

“log10(p)
4

1 Wk\&m .

P — —_— €
TBC1D2B B2 DNAJA4 IREB2 CHRNA5 ADAMTS7
> —> < — P
feature tracks: MIR1827 IDH3A WDR61 HYKK CHRNA3 MORF4L1
—> — > > DT
genes SH207 ACSBG1 CRABP1 PSMA4 CHRNB4 CTSH
LD ("2) — — B — —_—
784 786 788 79 79.2
Fig. 6.

Fine-scale regional maps for the region of significance on chromosome 15. Blue, purple and

green lines represent latFtr, sumimg, and Resp respectively.
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Fig. 7.
Fine-scale regional maps for the region of significance on chromosome 4. Blue, purple and

green lines represent latFtr, sumlmg, and Resp respectively. There is signal that is only
detected effectively by the respiratory features but not by sumimg or latFtr.
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