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Abstract

In this paper, we use Spherical Topic Models to discover the latent structure of lung disease. This 

method can be widely employed when a measurement for each subject is provided as a normalized 

histogram of relevant features. In this paper, the resulting descriptors are used as phenotypes to 

identify genetic markers associated with the Chronic Obstructive Pulmonary Disease (COPD). 

Features extracted from images capture the heterogeneity of the disease and therefore promise to 

improve detection of relevant genetic variants in Genome Wide Association Studies (GWAS). Our 

generative model is based on normalized histograms of image intensity of each subject and it can 

be readily extended to other forms of features as long as they are provided as normalized 

histograms. The resulting algorithm represents the intensity distribution as a combination of 

meaningful latent factors and mixing co-efficients that can be used for genetic association 

analysis. This approach is motivated by a clinical hypothesis that COPD symptoms are caused by 

multiple coexisting disease processes. Our experiments show that the new features enhance the 

previously detected signal on chromosome 15 with respect to standard respiratory and imaging 

measurements.

1 Introduction

In this paper, we employ the Spherical Topic Model[1] (which is one of the variants of the 

latent topic models) to extract imaging features for genetic association studies. It is common 

in classical Genome-Wide Association Studies (GWAS) to perform statistical association 

between genetic measurements and a few quantities such as diagnosis. Imaging features 

provide rich information about the disease phenotype and promise to enhance the sensitivity 

of the genetic studies. Using individual voxels as a phenotype is not informative and due to 

the noisy nature of imaging measurements induces high false positive rate. Therefore, 

summarizing imaging features into meaningful quantities (i.e., dimensionality reduction) 

improves the association and facilitate interpretation of the results. In this work, we build on 

a variant of topic models to perform this step of dimensionality reduction.

COPD is characterized by chronic and progressive difficulty in breathing, and is one of the 

leading causes of death in the United States [2]. The disorder is believed to be a mixture of 

multiple disease processes including the destruction of the air sacs (emphysema) and 
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inflammation of the airways (airway disease). Each process consists of multiple subtypes 

[3]. In this paper, we focus on emphysema which manifests itself as changes in intensity of 

the lung in Computed Tomography (CT) images [3]. Therefore, we use image intensity of 

the lung as a unit of measurements for each subject. The goal is to summarize this 

information into meaningful features. Similar to the idea of bag of words in natural language 

processing, later also adopted in computer vision [4], we view a histograms as a document 

and subtypes of the disease as different topics. This approach assumes that every patient 

(document) contains multiple portions of the disease subtypes (topics) and those disease 

subtypes, i.e., topics, are shared across subjects. The goal of this paper is not to diagnose 

COPD since a test of lung function via forced exhalation has been the gold standard of 

COPD diagnosis for decades [5]. Our aim is to use imaging features to characterize the 

phenotype and the underlying genetic causes of the disease.

The search for genetic variants that increase the risk of a disorder is one of the central 

challenges in medical research, and has been traditionally performed via GWAS. Standard 

GWAS identifies correlations between genetic variants and a single phenotype (e.g., mostly 

disease vs. control). Although such analysis identified several variants relevant to COPD 

(e.g., IREB2 on chromosome 15 [6]), such studies are likely incomplete. First, COPD is a 

mixture of diseases and therefore is unlikely to be explained by a single factor. Second, the 

effect of the genetic variants may be scattered across the lung volume but their cumulative 

effect is manifested in the respiratory signal [7]. Imaging can help to address both 

challenges. Image features that capture the amount of emphysema have been previously 

demonstrated to reflect disease pathology and predict outcomes in COPD [7]. We seek to 

extract features from images that capture heterogeneous manifestations of the disease and 

enrich detection of genetic markers associated with COPD.

The standard approach to quantify emphysema is to apply an intensity threshold within the 

volume of the lung to compute a surrogate measure for the volume of emphysema [7]. 

Clinical studies suggest that lungs of COPD patients present symptoms of different subtypes 

of emphysema [7, 5]. Recent work exploits spatial patterns of intensity to classify 

emphysema into subtypes. Examples include the use of Kernel density estimation [8], 

combination of Local Binary Pattern (LBP) and intensity histogram [9], and Multi-

coordinate Histogram of Oriented Gradient (MHOG) descriptors [10] for subtype 

classification of image patches in CT. Importantly, none of the method above characterizes 

how the underlying biological processes overlap with radiologic categorization.

Imaging genetics associates image phenotype with genetic markers relevant for the disease 

of interest. The objective is to characterize clinical heterogeneity of the disease and to detect 

novel genetic markers associated with COPD [11]. Most methodological innovations in 

imaging genetics to date have been demonstrated in the context of neuro-degenerative 

diseases [12, 13, 14], where image features are typically computed in a common coordinate 

system and are assumed to be spatially consistent across subjects. Unfortunately, such 

coordinate system does not exist for the lung, presenting an additional challenge for creating 

image-based descriptors that can be compared across subjects.
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In this paper, we build a generative model that encodes the clinical assumption that COPD 

symptoms are caused by multiple coexisting biological processes. We assume that every 

subject is a mixture of latent disease factors, that are shared across the population. This 

approach is referred to as topic modeling in machine learning (e.g., LDA [15]). The 

contribution of each latent factor for a particular subject becomes a new feature that can be 

used as an intermediate phenotype for detecting genetic associations. To integrate the 

resulting features into genetic analysis, we employ a method that views the genotype as the 

dependent variable and uses all the latent features simultaneously to find the genetic 

association. We demonstrate that the new features enhance the signal on chromosome 15 by 

improving the sensitivity of detection.

2 Topic Modeling for Feature Extraction

Previous studies have shown the intensity of lung to be highly informative for 

characterization of COPD [8, 9]. Therefore, we use global histogram of image intensity of 

the lung as a unit of measurement for each subject. The goal is to reduce a set of histograms 

to a set of meaningful features that enhance subsequent statistical analysis. Histogram data 

can in general encode richer features such as sophisticated localized descriptors (e.g., 

Histogram of Oriented Gradients (HOG)), but to focus on the model, we limit ourselves to 

image histograms which have been shown to be informative for COPD [8, 9]. Here, we 

adopt the Spherical Admixture Model [1] that views each histogram as a point on a 

hypersphere. The advantage of this model is that it can handle unit-less (normalized) 

representations of the histograms. This property allows us to normalize the features by the 

volume of the lung.

We assume an image of subject n in a study is represented by a distribution 

. With a change of the variables , we map the intensity 

distribution to a unit hypersphere, zn ∈ . Motivated by the clinical hypothesis that COPD 

is a mixture of diseases, we assume that each data point (subject) is a normalized sum of K 

disease factors Φ = [ϕ1 · · · ϕK] ∈ ℝD×K. The factors are shared across the population and 

each factor is also a distribution, ϕk ∈  (1 ≤ k ≤ K). The generative model can be 

summarized as follows[1]:

(1)

where vMF(·) and Dirichlet(·) denote the von Mises-Fisher (vMF) [16] and Dirichlet 

distributions respectively. vMF distribution is a natural distribution, akin to a multivariate 

Normal distribution, for directions on a sphere. μ is a latent variable that controls the mean 

of the disease factors (topics), m and κ0 are hyper-parameters that define the mean and 

concentration of μ respectively. xn is a normalized latent distribution that defines a portion 

of each disease factor (topic) represented in subject n. Since xn is normalized (sums to one), 
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Dirichlet distribution is a reasonable prior choice; α is the multivariate shape parameter of 

the Dirichlet distribution.  maps the weighted sum of the topics back to the sphere 

and serves as a noiseless representation of the observation zn. To accommodate possible 

noise, the observation is modeled as a von Mises-Fisher perturbation of the noiseless 

representation, parameter κ controls the concentration of the noise. For notational 

convenience, we define Ω = {μ, Φ, X} to be the set of the latent variables and γ = {α, ξ, κ, 

κ0} to represent the set of hyper-parameters. The generative model is illustrated in Fig. 1a.

The join probability p(Z, Ω; γ) can be written as follows:

(2)

Reisinger et al. [1] proposed to use variational mean-field method to approximate the 

posterior distribution of the latent variables in this model with a fully factorized function as 

follows:

(3)

where Σ = {μ̃, Φ̃, m̃} are the parameters of the approximate posterior distribution q(·). Note 

that Σ and Ω are not identical since the former is the set containing parameters of the 

approximate posterior distribution while the latter is the set of latent variables in the original 

model. The variational method minimizes the KL-divergence between the approximating 

distribution and the join probability distribution to find the optimal setting of the parameters:

(4)

Computing the derivatives with respect to Σ and γ and setting them to zero, the mean field 

method reduces to a set of fixed-point update equations (see [1] for detail).

We seek to estimate the posterior means of the latent features x̂n :=  [xn], which serve as a 

low-dimensional representation of subject n, and are used to infer associated genetic markers 

of the disease as described in Section 3. Estimates x̂n can be viewed as a K-dimensional 

histogram defined over K latent factors. Indeed, we reduce the original D-dimensional 

histograms of image intensities to the K-dimensional histograms of the latent factors. Other 

quantities of interest are the latent factors, ϕ̃k, which are D-dimensional histograms that 

describe each latent factor in the intensity space. The hyper-parameters, γ, and the 

parameters of the approximate posterior distribution, Σ, are estimated during learning (i.e., 

Eq. 4). The main parameter of the method is number of topics K.

Unlike traditional Factor Analysis methods such as PCA, this approach yields normalized 

factors and coefficients (i.e., both can be interpreted as histograms). This is advantageous for 

interpretation of the results because the Φ can be viewed the same way as the input 
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histograms and mixing weights xn can be viewed as the proportions of each factor in subject 

n.

3 From Image Features to Genetic Markers

In addition to the image features x̂n, each subject is characterized by a vector of S genetic 

markers (gns ∈ {0, 1, 2}, 1 ≤ s ≤ S). gns represents the allele count in the locus s of the 

genetic measurement for subject n. Standard GWAS builds a regression model x̂nk = bs,k + 

wskgns + εnsk for each Single Nucleotide Polymorphism (SNP) gns and the phenotype x̂nk 

separately. The detection procedure aims to reject the null hypothesis of no association (wsk 

= 0) by performing t-test. Contrary to the standard GWAS that models phenotype as a 

dependent variable, we use a previously proposed method that considers the genotype as the 

dependent variable and uses all phenotypes features simultaneously [17]. The algorithm 

employs proportional odds (ordinal) logistic regression to model the allele count. Unlike 

multi-class logistic regression, ordinal logistic regression assumes the classes (i.e., gns = 0, 

1, 2) are ordered, the hyperplanes separating the classes are parallel, and the difference 

between classes is captured by the intercepts as illustrated in Fig. 2b,2a. Ordinal logistic 

regression is more restrictive than a more general multi-class logistic regression and exhibits 

fewer degrees of freedom. The ordinal method is more appropriate when a natural ordering 

can be imposed on class labels. This is certainly the case here since gns counts the number of 

minor alleles and we assume an additive effect. The cumulative probability is modeled as 

the logistic function:

(5)

where j ∈ {0, 1, 2}. For the allele j in locus s, we estimate one weight ws and two intercepts 

bs,1 and bs,2. Fitting the model reduces to maximizing the log-likelihood of data to find the 

best parameters (ws, bs,1, bs,2) for each SNP gns:

(6)

where bs,0 = −∞ and bs,3 = +∞.

We compute the likelihood ratio of the model with combination of covariates and x̂ ( ) 

versus only the covariates ( ). χ2 distribution with degrees of freedom equal to the 

difference in dimensionality is used to compute the p-value [17]. Covariates are defined in 

the next section.

4 Experiments

Experiments in this section are organized as follows. We first qualitatively evaluate the new 

features x̂n and the estimated latent factors ϕ̃k (Fig. 3). Next, we select a few important SNPs 

to study the sensitivity of the algorithm with respect to the model size K (Fig. 4). Finally, we 

study how much the new features enrich our genetic findings versus the traditional 

measurements such as airflow (Fig. 5 and Fig. 6).
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Data

We demonstrate the method on a large COPD study of 6,670 subjects. The respiratory 

measurements include: percent predicted, forced expiratory volume in one second (F EV1) 

that is used as an indicator of COPD severity, and the ratio of F EV1 over forced vital 

capacity (F EV1/F V C), used as a measure of airflow obstruction for COPD diagnosis. We 

will refer to the respiratory measures as Resp. We also evaluate summary measurements 

computed from lung CT. These include percent emphysema, defined as the percentage of 

lung tissue below −950 Hounsfield units; percent gas trapping, defined as the percentage of 

lung tissue below −910 Hounsfield units after exhalation, and the wall thickness of an 

airway with an internal perimeter of 10mm (Pi10). We will refer to these measures as 

sumImg. The subjects were genotyped by Illumina on the HumanOmniExpress array. We 

employ standard quality control for genetic data, including missing-ness, excess 

heterozygous, gender mismatch, cryptic relatedness, population outliers, marker 

concordance, and Hardy-Weinberg equilibrium. We computed 6 principal components from 

the genotype to correct for population heterogeneity, and included them in the covariate set 

along with age, Body Mass Index (BMI) and number of aggregate packs smoked per year.

Qualitative Evaluation

Fig. 3 shows examples of the derived latent disease factors (ϕ̃k) and the corresponding latent 

features (x̂) in the patient cohort. As shown in Fig. 3a and Fig. 3b, every factor is a proper 

distribution. In effect, the classical method is based on a single threshold that divides a 

histogram into two bins: lower or higher bins. There is a debate in the COPD community on 

what the optimal threshold should be. In contrast to the traditional approach, one can view 

the proposed method as an adaptive way of histogram binning with no need to specify the 

threshold explicitly. Nevertheless, it is interesting to see that the latent factors are located at 

the values that are close to −950 Hounsfield units (−950 is commonly used to define 

percentage of emphysema in the COPD community).

Fig. 3c presents a scatter plot of pairs of new features (x̂) in the cohort. The color in the 

scatter plot indicates the value of F EV1/F V C. Higher values correspond to subjects without 

COPD. The scatter plot suggests that the new features successfully characterize the severity 

of the disease. Notice the smooth variation across the population. We also performed linear 

regression between new features (K = 6) and respiratory measurement FEV1 (R2 = 0.67), 

FEV1/FVC (R2 = 0.74), and the percent of emphysema (R2 = 0.96).

Sensitivity Analysis

We chose around 500 SNPs with the lowest p-values identified in previous studies. Many of 

these SNPs are from regions that have been frequently reported in the genetic and 

respiratory literature in connection to lung cancer genes or nicotine receptors areas. We first 

examine the behavior of the algorithm on the smaller set of 2,441 subjects. In order to study 

the sensitivity of the method with respect to the main parameter (the number of the latent 

factors K), we choose three SNPs associated with COPD (rs578776 [18]), nicotine 

dependence (rs17483721 [19]), and lung cancer (rs2568494 [6]), and evaluate the 

significance of the model fit for different values of K.
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The cross-validation accuracy of the model saturates very fast (Fig. 4a) implying that few 

topics summarize the dataset successfully. As K grows, so does the number of degrees of 

freedom in the χ2 distribution that is used to evaluate the significance of the fit in Fig. 4b. 

Unless the fit improves substantially, we expect the significance (− log(p)) to increase at 

first and then to decline. The plots in Fig. 4b spike down at K = 20, 24, 34 because the 

features become so collinear that the optimization of the cost function of the ordinal logistic 

in Eq. (5) does not converge (Hessian in Eq. (6) become ill-conditioned). An alternative way 

to choose K is to use the variational lower bound which is not explored in this paper.

Association Study

To test if the new features enrich the association, we examined different combinations of 

topic features, summary image features (sumImg) and the respirometry measurement (Resp) 

for the set of selected SNPs. Fig. 5 reports the pair-wise comparison of different feature sets. 

A > B indicates how many more SNPs are detected in one setting (A) versus the other (B) 

and how they were distributed across different chromosomes. Almost every combination 

with latFtr improves with respect to the second row (sumImg). We conclude that the 

extracted features are correlated with previously identified clinical image-based measures, 

but also offer complementary detections for genetic studies. Another important message 

from Fig. 5 is that adding the most important clinical measurement (Resp) improves the 

results.

We also extracted features for the whole set of 6,670 subjects and applied regression on the 

genome-wide scale. Fig. 6 shows the regional maps on the chromosomes 15. Blue, purple 

and green lines represent new features (latFtr), sumImg, and Resp features. On the 

chromosomes 15, the new features (latFtr) enhanced the detection with respect to the other 

two feature sets by about 4 orders of magnitude in the corresponding p-values. On the 

chromosome 4, there is signal that is only detected effectively by the respiratory features but 

not by sumImg or latFtr (see Fig. 7). This suggests there is some information in the 

respiratory signal that is not reflected in the images.

5 Conclusion

Traditional approaches to CT analysis in lung disease often rely on a single threshold or set 

of thresholds, and ignore the effects of genetic variants. We present a method to extract 

image features using topic modeling from lung CT images. Bins of the histogram are viewed 

as words in a dictionary or codebook. Our experiments show that new features correlate well 

with clinical measures of physiology (spirometry) and generalize commonly used measures 

for emphysema. The new features promise to improve the power of genetic associations for 

genetic causes of COPD. The proposed method is general and can be applied to any 

distribution. Including texture and lobe information to better characterize different subtypes 

of emphysema is a clear important and promising direction of future research.
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Fig. 1. 
(a) Schematic visualization of the generative model. Each data point (blue) is a noisy 

mixture of latent disease factors (red arrows). (b) Graphical model for the spherical topic 

model in [1]. The open gray and white circles are the observed and the latent random 

variables respectively. The full circles are the hyper-parameters.
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Fig. 2. 
(a) Ordinal vs. (b) Multi-class logistic regression. In the ordinal regression, the separating 

hyperplanes are parallel (same w) and classes differ by intercepts.
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Fig. 3. 
Estimated latent model estimated. (a),(b) Examples of latent factors for K = 6. (c). Scatter 

plot of latent features colored by FEV1/FVC (severity of COPD). Hotter colors represent 

higher values (healthier subjects). The scatter plots show that new features successfully 

delineate the severity of the disease.
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Fig. 4. 
Prediction accuracy (F1-measure) for 5-fold cross validation and quality-of-fit (− log (p)) as 

a function of the model size K for three important genetic markers. F1 is defined as 

2(precision × recall)/(precision + recall). We note the improvements in prediction accuracy 

in (a). As the model becomes more complex (higher K), the number of degrees of freedom 

in χ2 distribution increases, which explains the initial increases and decreases in the p-value 

in (b).
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Fig. 5. 
Comparison of different feature sets. For K = 4 and for different combination of features, A 

> B indicates how many more SNPs are detected in one setting (A) versus the other (B) and 

how they were distributed in the different chromosomes.
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Fig. 6. 
Fine-scale regional maps for the region of significance on chromosome 15. Blue, purple and 

green lines represent latFtr, sumImg, and Resp respectively.
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Fig. 7. 
Fine-scale regional maps for the region of significance on chromosome 4. Blue, purple and 

green lines represent latFtr, sumImg, and Resp respectively. There is signal that is only 

detected effectively by the respiratory features but not by sumImg or latFtr.
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