

Muscle Dysfunction in Patients with Lung Diseases A Growing Epidemic

Esther Barreiro^{1,2}, Jacob I. Sznajder³, Gustavo A. Nader^{4,5}, and G. R. Scott Budinger³

¹Respiratory Medicine Department–Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park, Barcelona, Spain; ²Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; ³Pulmonary and Critical Care Medicine Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; ⁴Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden; and ⁵Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania

The lung is tasked with the provision of oxygen to fuel oxidative phosphorylation and with the removal of its byproduct carbon dioxide and is therefore a key player in organismal metabolism. When viewed from this perspective, it is unsurprising that lung dysfunction is associated with suboptimal function of other metabolic organs, most notably of skeletal muscle. A prevalent example is observed in patients with chronic obstructive pulmonary disease (COPD), which is a leading cause of death worldwide and one of the few major diseases for which mortality continues to climb (1). Skeletal muscle dysfunction, defined as the loss of either muscle strength or endurance, is a prominent comorbidity in patients with COPD that impairs their exercise capacity, quality of life, and disease prognosis (2–8). For example, quadriceps muscle dysfunction, which is primarily characterized by reduced muscle force generation, is observed in one-third of all patients with COPD even at very early stages of their disease, where it is associated with decreased exercise tolerance, a reduced quality of life, and increased mortality (2–8). In patients with COPD, other comorbidities, including muscle wasting, malnutrition, chronic heart failure, exacerbations, and reduced physical activity, can further impair muscle function (4, 7). Sarcopenia, the age-associated loss of skeletal muscle mass and function, is present in as many as 10% of older hospitalized adults (9, 10). Although limb

muscle dysfunction is often the most clinically evident problem in patients with COPD, respiratory muscle dysfunction is also present and may contribute to the development and persistence of hypoventilatory respiratory failure in these patients (11, 12). Combined, the presence of respiratory and peripheral muscle dysfunction and underlying sarcopenia results in prolonged hospitalizations and reduced rates of physical activity, creating a vicious circle of progressive muscle dysfunction and morbidity.

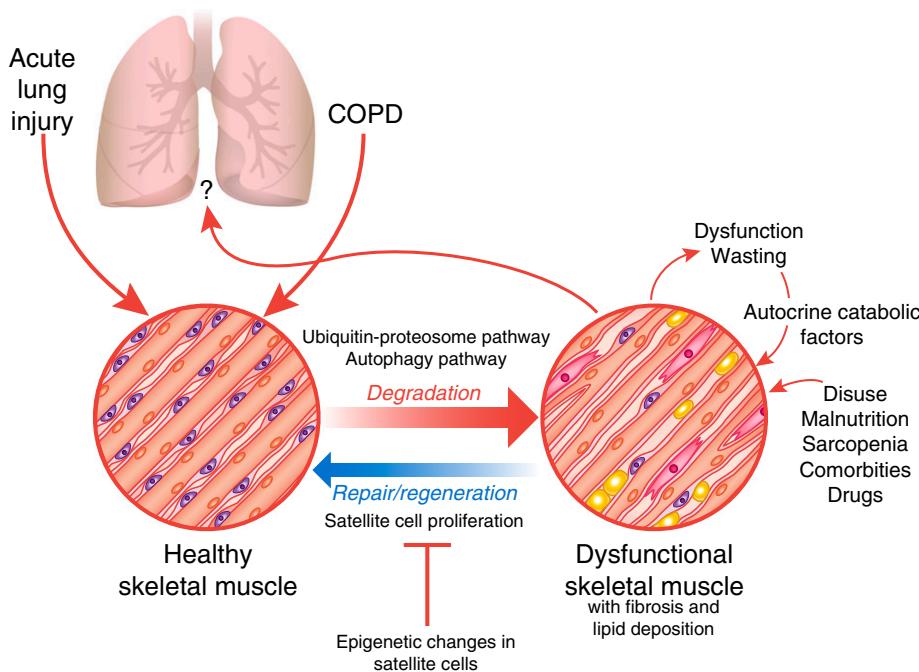
Skeletal muscle dysfunction also plays a role in the pathophysiology of the acute respiratory distress syndrome (ARDS). In these patients, skeletal muscle dysfunction develops rapidly and may contribute to weaning failure, prolonged mechanical ventilation, and the risk of readmission after intensive care unit (ICU) discharge and mortality (13–16). In addition, limb muscle dysfunction is observed in the majority of survivors of ARDS and may persist for as long as 5 years after discharge, where it is a major driver of morbidity (17). In patients who require mechanical ventilation for respiratory failure, the acute reduction in the work of breathing allows for precise estimates of the duration of disuse, offering a novel window into muscle dysfunction during critical illness. Recent data suggest that in many patients with critical illness, diaphragmatic dysfunction can be present when mechanical ventilation is initiated, rapidly worsens, and is associated with poor

clinical outcomes in critically ill patients with respiratory failure (18, 19).

Despite the clinical importance of muscle dysfunction in patients with lung disease, our understanding of the molecular mechanisms by which lung injury or inflammation results in the development of muscle dysfunction is incomplete (Figure 1). The skeletal muscle is a fascinating organ that exhibits remarkable plasticity, allowing it to undergo dramatic changes in size and function (i.e., atrophy or hypertrophy) in response to local environmental changes. In patients with acute lung injury, the rapid development of muscle dysfunction suggests the presence of endocrine signaling pathways that induce changes in the local environment in the skeletal muscle that promote muscle degradation. For example, in patients with sepsis, a major risk factor for the development of acute lung injury, circulating proinflammatory cytokines released from the injured or inflamed lung induce degradation of cultured muscle cells (20). Although circulating inflammatory cytokines may contribute to the skeletal muscle wasting seen in patients with COPD, their contribution may be less important when compared with other factors associated with muscle loss, including disuse atrophy and malnutrition (4, 21, 22). Although the factors that initiate skeletal muscle dysfunction may differ, both acute lung injury and COPD have been suggested to activate a common molecular program that results in skeletal

(Received in original form December 8, 2014; accepted in final form December 30, 2014)

Supported by National Institutes of Health grants HL092963, ES015024, ES013995 (G.R.S.B.), HL071643 (G.R.S.B. and J.I.S.), and HL85534 (J.I.S.), and the Veterans Health Administration.


Correspondence and requests for reprints should be addressed to G. R. Scott Budinger, M.D., Pulmonary and Critical Care Medicine Division, Feinberg School of Medicine, Northwestern University, 240 East Huron, McGaw Pavilion M-300, Chicago, IL 60611. E-mail: s-budinger@northwestern.edu

Am J Respir Crit Care Med Vol 191, Iss 6, pp 616–619, Mar 15, 2015

Copyright © 2015 by the American Thoracic Society

DOI: 10.1164/rccm.201412-2189OE

Internet address: www.atsjournals.org

Figure 1. Schematic representation of skeletal muscle dysfunction associated with acute and chronic respiratory conditions. In both patients with chronic obstructive pulmonary disease (COPD) and patients with acute lung injury, the diseased lung induces dysfunction in the skeletal muscle via pathways that are incompletely understood. At the level of the individual myofibers, both acute lung injury and COPD are associated with activation of the ubiquitin–proteasome and autophagy pathways, which induce the degradation of critical skeletal muscle proteins and contribute to the development of muscle dysfunction. In addition, signals originating from the diseased lung or conditions that develop as a consequence of lung dysfunction may impair the regenerative potential of satellite cells at the periphery of the myofiber, perhaps through epigenetic reprogramming, thereby limiting the recovery of muscle function. Skeletal muscle dysfunction is worsened by disuse, malnutrition, preexisting sarcopenia, comorbid illnesses including diabetes and chronic heart failure, and drugs, particularly systemic corticosteroids and statins, culminating in the development of muscle fibrosis and lipid deposition. It is possible that the damaged skeletal muscle releases factors that feedback on the lung to worsen the underlying disease.

muscle degradation (23, 24). This program includes activation of the ubiquitin–proteasome system, lysosomal autophagy pathway, and the activation of muscle-specific calpains among others, which result in the degradation of muscle contractile proteins together with underused and damaged organelles, in the process releasing amino acids and other biosynthetic intermediates as well as metabolic substrates into the circulation (13, 15, 25–29). Consistent with this hypothesis, several groups of investigators have found evidence for activation of both the ubiquitin–proteasome and autophagy pathways in muscle biopsies from patients with stable COPD and in patients hospitalized with acute exacerbations of COPD (22, 29–32). In these same studies, indirect evidence of reduced muscle metabolism comes from careful

morphologic examination of muscle biopsy specimens for evidence of oxidative injury and alterations of fiber composition and mitochondrial density. In skeletal muscle biopsy specimens from patients with critical illness, many of whom had acute lung injury, and in diaphragmatic biopsies from mechanically ventilated humans undergoing thoracic surgical procedures, investigators observed rapid muscle wasting and up-regulation of the ubiquitin–proteasome pathway (13, 16).

Although the activation of degradative pathways might explain the acute muscle wasting that occurs with acute lung injury and exacerbations of COPD, these results do not explain the persistence of skeletal muscle dysfunction after the acute illness has resolved, as the normal skeletal muscle is intrinsically able to repair itself after damaging insults (33–35). For example,

after high-intensity exercise there can be myofiber damage, necrosis, and inflammation (14). Factors released locally by the damaged fiber and possibly the associated nerve induce the proliferation of myocyte progenitor or satellite cells, a partially differentiated stem cell population, which repair the damaged muscle fiber (35). Although direct evidence is lacking, it is tempting to speculate that these repair processes may be impaired in patients with acute lung injury or COPD. An interesting hypothesis emerges from studies of aged mice, which demonstrate impaired muscle regeneration after injury. Careful experiments suggest these changes may be mediated by epigenetic reprogramming of aging satellite cells (36). A growing body of literature suggests that factors present in the circulation can reverse this epigenetic program to rejuvenate the satellite cell pool (36–38).

In this perspective, we have focused on COPD and acute lung injury largely because of recent studies to examine muscle dysfunction in these populations; however, skeletal muscle dysfunction is likely to play an important role in the pathogenesis of other lung diseases. Several additional key questions remain unanswered. Perhaps most importantly, we need to understand more about the molecular mechanisms by which lung inflammation, inactivity, the systemic administration of corticosteroids and statins, cigarette smoke, respiratory infections, advanced age, hypercapnia, hypoxia, and malnutrition contribute to muscle wasting and muscle dysfunction in patients with acute lung injury and COPD (39–41). This question has obvious implications for the development and implementation of interventions to prevent or reverse skeletal muscle dysfunction: might there be specific populations more likely to benefit from exercise training-based approaches or populations in which augmentation with molecular-based approaches would be beneficial (42)? Second, does the acute muscle degradation associated with critical illness provide fuel and biosynthetic intermediates that support the innate immune response to infection? This question is important for determining the optimal timing of physical or pharmacologic interventions to slow or reverse muscle dysfunction. Third, what are the molecular

mechanisms that underlie the differential susceptibility of individuals with similar impairments in lung function or similar severity of critical illness to the development of skeletal muscle dysfunction? Fourth, do strategies that target muscle function, including exercise, change the course of the underlying lung disease? Although direct evidence is lacking, strategies aimed at minimizing skeletal muscle loss or promoting muscle regeneration might minimize lung injury or accelerate repair. Finally, why do many patients with severe acute or chronic lung diseases fail to recover muscle function after injury? Are muscle progenitor cell populations lost,

or is the metabolic or proteostatic reserve reduced in some patient populations (36, 43, 44)?

In summary, given the lungs' central position in organismal metabolism, acute and chronic lung diseases should be viewed as systemic disorders that contribute to dysfunction in other metabolic organs, including the skeletal muscle. Body composition and quadriceps muscle strength should be routinely explored in patients admitted to our ICUs and in patients with chronic lung disease, even at early stages of their disease. Research extending beyond the lung to elucidate the molecular signaling pathways linking lung injury with the loss

of muscle mass and function and the failure of normal skeletal muscle regenerative pathways may lead to novel therapies that can be combined with physical therapy interventions to improve morbidity. Meanwhile, we need to expand our use of exercise training, alone or in combination with nutritional support, to improve muscle mass and function in patients in ICUs and patients suffering from chronic lung disease. ■

Author disclosures are available with the text of this article at www.atsjournals.org.

Acknowledgment: The authors thank Jacqueline Schaffer for creating the figure art.

References

1. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. *Am J Respir Crit Care Med* 2013;187:347–365.
2. Seymour JM, Spruit MA, Hopkinson NS, Natanek SA, Man WD, Jackson A, Gosker HR, Schols AM, Moxham J, Polkey MI, et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. *Eur Respir J* 2010;36:81–88.
3. Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. *Am J Respir Crit Care Med* 1996;153:976–980.
4. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, Dekhuijzen PN, Franssen F, Gayan-Ramirez G, Gea J, et al.; ATS/ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2014;189:e15–e62.
5. Marquis K, Debigaré R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, Maltais F. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2002;166:809–813.
6. Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, Cetti EJ, Moore AJ, Moxham J, Polkey MI. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. *Thorax* 2007;62:115–120.
7. Shrikrishna D, Patel M, Tanner RJ, Seymour JM, Connolly BA, Puthucheary ZA, Walsh SL, Bloch SA, Sidhu PS, Hart N, et al. Quadriceps wasting and physical inactivity in patients with COPD. *Eur Respir J* 2012;40:1115–1122.
8. Miravitles M, Soler-Cataluña JJ, Calle M, Molina J, Almagro P, Quintano JA, Riesco JA, Trigueros JA, Piñera P, Simón A, et al. Spanish guideline for COPD (GesEPOC). Update 2014. *Arch Bronconeumol* 2014;50:1–16.
9. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. *J Am Med Dir Assoc* 2011;12:249–256.
10. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, Chen LK, Fielding RA, Martin FC, Michel JP, et al.; Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. *Age Ageing* 2014;43:748–759.
11. Tobin MJ, Laghi F, Brochard L. Role of the respiratory muscles in acute respiratory failure of COPD: lessons from weaning failure. *J Appl Physiol* (1985) 2009;107:962–970.
12. Vilaró J, Ramirez-Sarmiento A, Martínez-Llorens JM, Mendoza T, Alvarez M, Sánchez-Cayado N, Vega A, Gimeno E, Coronell C, Gea J, et al. Global muscle dysfunction as a risk factor of readmission to hospital due to COPD exacerbations. *Respir Med* 2010;104:1896–1902.
13. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, et al. Acute skeletal muscle wasting in critical illness. *JAMA* 2013;310:1591–1600.
14. Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, Casaer MP, Meersseman P, Debaveye Y, Van Cromphaut S, et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. *Am J Respir Crit Care Med* 2014;190:410–420.
15. Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, et al. Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. *Am J Respir Crit Care Med* 2012;186:1140–1149.
16. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, Bouyabrine H, Courouble P, Koechlin-Ramonatxo C, Sebbane M, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. *Am J Respir Crit Care Med* 2011;183:364–371.
17. Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, et al.; Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. *N Engl J Med* 2011;364:1293–1304.
18. Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C, Matecki S, Duguet A, Similowski T, Jaber S. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact—a prospective study. *Am J Respir Crit Care Med* 2013;188:213–219.
19. Adler D, Dupuis-Lozeron E, Richard J-C, Janssens J-P, Brochard L. Does inspiratory muscle dysfunction predict readmission after intensive care unit discharge? *Am J Respir Crit Care Med* 2014;190:347–350.
20. van Hees HW, Schellekens WJ, Linkels M, Leenders F, Zoll J, Donders R, Dekhuijzen PN, van der Hoeven JG, Heunks LM. Plasma from septic shock patients induces loss of muscle protein. *Crit Care* 2011;15:R233.
21. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. *Eur Respir J* 2009;33:1165–1185.
22. Puig-Vilanova E, Rodriguez DA, Lloreta J, Ausin P, Pascual-Guardia S, Broquetas J, Roca J, Gea J, Barreiro E. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male

patients with advanced COPD and lung cancer. *Free Radic Biol Med* 2014;79C:91–108.

23. Sacheck JM, Hyatt JPK, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. *FASEB J* 2007;21:140–155.
24. Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. *Cell Metab* 2011;13:627–638.
25. Files DC, D'Alessio FR, Johnston LF, Kesari P, Aggarwal NR, Garibaldi BT, Mock JR, Simmers JL, DeGorordo A, Murdoch J, et al. A critical role for muscle ring finger-1 in acute lung injury-associated skeletal muscle wasting. *Am J Respir Crit Care Med* 2012;185:825–834.
26. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. *Cell* 2004;117:399–412.
27. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is required to maintain muscle mass. *Cell Metab* 2009;10:507–515.
28. Ottenheijm CA, Heunks LM, Sieck GC, Zhan WZ, Jansen SM, Degens H, de Boo T, Dekhuijzen PN. Diaphragm dysfunction in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2005;172:200–205.
29. Guo Y, Gosker HR, Schols AM, Kapchinsky S, Bourbeau J, Sandri M, Jagoe RT, Debigaré R, Maltais F, Taivassalo T, et al. Autophagy in locomotor muscles of patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2013;188:1313–1320.
30. Fermoselle C, Rabinovich R, Ausín P, Puig-Vilanova E, Coronell C, Sanchez F, Roca J, Gea J, Barreiro E. Does oxidative stress modulate limb muscle atrophy in severe COPD patients? *Eur Respir J* 2012;40:851–862.
31. Doucet M, Russell AP, Léger B, Debigaré R, Joannis DR, Caron MA, LeBlanc P, Maltais F. Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2007;176:261–269.
32. Crul T, Testelmans D, Spruit MA, Troosters T, Gosselink R, Geeraerts I, Decramer M, Gayan-Ramirez G. Gene expression profiling in vastus lateralis muscle during an acute exacerbation of COPD. *Cell Physiol Biochem* 2010;25:491–500.
33. Lundberg IE, Nader GA. Molecular effects of exercise in patients with inflammatory rheumatic disease. *Nat Clin Pract Rheumatol* 2008;4:597–604.
34. Chargeé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. *Physiol Rev* 2004;84:209–238.
35. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. *Physiol Rev* 2013;93:23–67.
36. Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. *Cell* 2012;148:46–57.
37. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, Smith LK, Bieri G, Lin K, Berdnik D, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. *Nat Med* 2014;20:659–663.
38. Elabd C, Cousin W, Upadhyayula P, Chen RY, Chooljian MS, Li J, Kung S, Jiang KP, Conboy IM. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. *Nat Commun* 2014;5:4082.
39. Batt J, dos Santos CC, Cameron JL, Herridge MS. Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. *Am J Respir Crit Care Med* 2013;187:238–246.
40. Skeletal muscle dysfunction in chronic obstructive pulmonary disease: a statement of the American Thoracic Society and European Respiratory Society. *Am J Respir Crit Care Med* 1999;159:S1–S40.
41. Gea J, Agustí A, Roca J. Pathophysiology of muscle dysfunction in COPD. *J Appl Physiol* (1985) 2013;114:1222–1234.
42. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, Hill K, Holland AE, Lareau SC, Man WD, et al.; ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. *Am J Respir Crit Care Med* 2013;188:e13–e64.
43. Miller BF, Robinson MM, Bruss MD, Hellerstein M, Hamilton KL. A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. *Aging Cell* 2012;11:150–161.
44. Balch WE, Sznajder JI, Budinger S, Finley D, Laposky AD, Cuervo AM, Benjamin IJ, Barreiro E, Morimoto RI, Postow L, et al. Malfolded protein structure and proteostasis in lung diseases. *Am J Respir Crit Care Med* 2014;189:96–103.