
Obesity and allergic asthma are complex processes in which
many complementary and synergistic pathways contribute to
clinical manifestations of disease. The current article suggests
that a common factor can lead to the pathogenesis of both, as
well as suggesting the appealing idea that intervention in the
Sirt1–Chi3l1 pathway may simultaneously intervene in obesity and
allergic asthma. Although pharmacologic approaches are attractive,
the effect of dietary manipulation is of great interest. There is
precedent to suggest a high-fat diet can affect airway inflammation:
Wood and colleagues have reported that a high-fat meal can
increase airway neutrophilic inflammation and decrease
bronchodilator responsiveness in asthma (16). It will be of great
interest to know whether dietary manipulation or other means
of weight control could affect allergic asthma outcomes in obese
people, analogous to the effects in mice from pharmacologic
and genetic approaches targeting the Sirt1–Chi3l1 pathway. n
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The Dutch Hypothesis Meets Genomics

In 1960, the Dutch pulmonologist N. G. M. Orie organized
a conference to discuss the origins of chronic bronchitis
(1). Adult pulmonologists recognized that smoking was the
major cause of the disease, yet only 15–20% of smokers went
on to get chronic bronchitis, as chronic obstructive pulmonary
disease (COPD) was called at the time, and the disease
was quite heterogeneous, with infection being a prominent
component. Orie emphasized the interplay of host (genetics,
allergy, and airway hyperresponsiveness) and environmental
(smoking, air pollution, infection) factors, as well as the
importance of carefully phenotyping patients to discern the
actual critical features of disease in individual patients. This
subsequently became known as the Dutch Hypothesis. Many

investigators have misinterpreted Orie’s idea to be that asthma
and COPD are the same disease, and his hypothesis was reduced
to those who favored splitting asthma and COPD into separate
diseases versus the lumpers, who favored calling them the same
or a single disease. Ironically, Orie and his Dutch colleagues were
considered lumpers, despite his call for careful subphenotyping
and subsetting of patients with COPD.

In the 1980s, it became clear that susceptibility to cigarette
smoking, and hence COPD risk, was indeed conferred by
preexisting airway hyperresponsiveness and eosinophilia,
partially vindicating Orie, at least on the importance of these
host characteristics in conferring increased risk for COPD,
independent of cigarette smoking (2–6). This work also
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contributed to today’s more sophisticated thinking that COPD
is still a very heterogeneous condition in which a significant
subset of patients, if well phenotypically characterized, have
features of both asthma and COPD and constitute an overlap
of the two conditions (7).

This very brief history supplies the context to interpret the
article in this issue of the Journal by Christenson and colleagues
(pp. 758–766), which highlights the identification of a genomic
signature for type 2 or Th2 inflammation in COPD (8). An
all-star group of asthma/COPD genomicists looked at airway-
derived gene expression in an asthma cohort and two COPD
cohorts. They had a Th2 gene signature (T2S score) in the
asthma cohort, which was informed by prior work in asthma
genomics, and they applied that T2S score to the COPD
cohorts, finding significant gene expression overlap between
asthma and COPD for genes specific for Th2 inflammation. A
higher T2S score was associated with decreased lung function,
increased airway wall eosinophil counts, blood eosinophil
percentage, and both responsiveness to short-acting
bronchodilator and inhaled corticosteroids. Most important,
the identified genomic signature was not predicted by any
clinical feature of asthma or COPD.

The authors note a number of methodological issues
with which they had to deal to successfully complete this work. The
gene expression samples, although all from airway tissue, were not
collected in the same way across their studies. Nor were the gene
expression platforms the same, necessitating significant work to
standardize the data across the studies. Then they had to deal with
multiple comparisons, replication, and residual confounding by
population differences across the studies. Despite these challenges,
they were successful in identifying a replicating gene signature.

The implications of this work are twofold: first, as the
authors state, genomics may lead to novel biomarkers that will
allow us to subset patients with COPD into clearly defined
clinical groups, and second, these same, or other, biomarkers
will lead us to novel therapeutics to improve the care of patients
with COPD. I do not think either of these two goals will be
fully met without the integration of additional genomics data
to this, and other, data sets.

What might be the additional genomic data and the next steps
in this genomic journey? I suggest that integrating microRNA data
with the gene expression data would be one fruitful way to go.
MicroRNAs are epigenetic controllers of gene function that are
transcriptional repressors (9). Importantly, they are secreted by
cells in exosomes and attached to serum proteins (10). In this way,
they control cell–cell and organ-to-organ signaling. The most
common way to obtain microRNA data has been via RNAseq in
the relevant tissue (11). Recently, and most important, it has
been shown that microRNAs are stable in serum and plasma and,
when measured there, can be integrated with gene expression data
to determine the directionality of gene expression signals and
the network connection of the genes (12–14). Measuring
microRNA in the serum or plasma of these three populations and
integrating that data with the gene expression data to create gene
networks with directionality of the gene expression signal would be
a logical next step for this work.

It took 40 years from the first bronchitis conference to
the sequencing of the human genome, and 15 years from the
completion of the human genome to the subsetting of patients

with asthma/COPD with genomic signatures in this exciting
article. Although we still have a ways to go, it is clear that the
pace of progress is accelerating and that integrating these gene
expression data with microRNA data would be a very useful step
to advance this work to the next level. n
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