

Blood cells and endothelial barrier function

Stephen F Rodrigues¹ and D Neil Granger^{2,*}

¹Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of São Paulo; São Paulo, Brazil; ²Department of Molecular and Cellular Physiology; Louisiana State University Health Sciences Center; Shreveport, LA USA

Keywords: Endothelial barrier, erythrocytes, leukocytes, platelets, vascular permeability

Abbreviations: AJ, Adherens junctions; ANG-1, Angiopoietin 1; AQP, Aquaporins; BBB, blood brain barrier; cAMP, 3'-5'-cyclic adenosine monophosphate; CNS, Central nervous system; COPD, Chronic obstructive pulmonary disease; EAE, Experimental autoimmune encephalomyelitis; EPAC1, Exchange protein activated by cyclic AMP; ERK1/2, Extracellular signal-regulated kinases 1 and 2; FA, Focal adhesions; FAK, focal adhesion tyrosine kinase; FoxO1, Forkhead box O1; GAG, Glycosaminoglycans; GDNF, Glial cell-derived neurotrophic factor; GJ, Gap junctions; GPCR, G-protein coupled receptors; GTPase, Guanosine 5'-triphosphatase; HMGB-1, High mobility group box 1; HRAS, Harvey rat sarcoma viral oncogene homolog; ICAM-1, Intercellular adhesion molecule 1; IL-1 β , Interleukin 1 beta; IP3, Inositol 1,4,5-triphosphate; JAM, Junctional adhesion molecules; MEK, Mitogen-activated protein kinase kinase; MLC, Myosin light chain; MLCK, Myosin light-chain kinase; MMP, Matrix metalloproteinases; NO, Nitric oxide; OSM, Oncostatin M; PAF, Platelet activating factor; PDE, Phosphodiesterase; PKA, Protein kinase A; PNA, Platelet-neutrophil aggregates; pSrc, Phosphorylated Src; Rac1, Ras-related C3 botulinum toxin substrate 1; Rap1, Ras-related protein 1; RhoA, Ras homolog gene family, member A; ROS, Reactive oxygen species; S1P, Sphingosine-1-phosphate; SCID, Severe combined immunodeficient; Shp-2, Src homology 2 domain-containing phosphatase 2; SOCS-3, Suppressors of cytokine signaling 3; Src, Sarcoma family of protein kinases; TEER, Transendothelial electrical resistance; TJ, Tight junctions; TGF- β 1, Transforming growth factor- β 1; TNF-, Tumor necrosis factor alpha; VCAM-1, Vascular cell adhesion molecule 1; VE, Vascular endothelial; VEGF, Vascular endothelial growth factor; VE-PTP, Vascular endothelial receptor protein tyrosine phosphatase; VVO, Vesiculo-vacuolar organelle; ZO, Zonula occludens

The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction.

Endothelial Barrier Function

An intact layer of healthy endothelial cells is essential for normal blood vessel function. The close apposition and alignment of endothelial cells in the vessel wall accounts for their ability to form a barrier that restricts the movement of water, proteins and blood cells between the intravascular and interstitial compartments. This barrier is formed by a layer of endothelial cells that are joined laterally by cell-cell junctions, while the basolateral aspect of this layer is attached to a basement membrane composed of collagen, fibronectin, laminin, and glycosaminoglycans (GAG). Cell-surface expressed integrins, which form regions called focal adhesions (FA), bind the endothelial cells to the extracellular matrix. The resulting barrier is semi-permeable to water and non-lipophilic molecules, and is both size- and charge-selective for solutes passage.¹ Precise regulation of the restrictive properties of the endothelial barrier is essential for normal organ function. Indeed, diminished barrier function (and increased vascular permeability) is associated with organ dysfunction and can lead to serious pathological consequences, as evidenced in diseases such as sepsis, as well as inflammatory and neurodegenerative diseases. Restoration of endothelial barrier integrity in these conditions can significantly impede disease progression.^{1,2}

Several different pools of proteins are assembled on endothelial cells to form membrane domains that create the cohesive structure that accounts for the barrier properties of the vessel wall. Among the barrier-forming adhesive structures, the most important are the adherens junctions (AJ), gap junctions (GJ), and tight junctions (TJ). These domains collectively form the paracellular junctional structure that regulates the partitioning of water and solutes between

*Correspondence to: D Neil Granger; Email: dgrang@lsuhsc.edu
Submitted: 08/20/2014; Revised: 10/13/2014; Accepted: 10/15/2014
<http://dx.doi.org/10.4161/21688370.2014.978720>

blood and interstitium, and an alteration in these membrane components often underlie the increased vascular permeability that accompanies inflammation.³ In addition to their barrier function, signaling mediated through these adhesive membrane proteins contribute to a variety of endothelial cell processes, such as cell growth, cell polarity and their interactions with other cell types such as smooth muscle cells and pericytes.⁴ Consequently, an alteration in endothelial adhesive proteins affects not only vascular permeability but also the vascular responses to changes in the perivascular environment.

Adherens junctions mediate cell-cell contact among endothelial cells in all types of blood vessels, and is composed mainly of VE-cadherin, a member of a transmembrane Ca^{2+} -dependent adhesion molecule family that regulates vascular permeability.⁵ VE-cadherin on one cell strongly binds (homotypically) VE-cadherin on an adjacent cell, which leads to a reorganization of the cytoskeleton in both cells via an interaction with actin filaments after cadherin-catenin binding (β -catenin, p120 catenin and α -catenin).^{6,7} VE-cadherin recruits α -catenin, via β -catenin, to sites of adherens junction assembly. Other actin-binding, such as vinculin, α -actinin, and eplin are also recruited to the adherens junction by following conformational changes in α -catenin, which serve to reinforce the adherens junction.⁸ The main function of VE-cadherin is to seal the paracellular space, but it also modulates angiogenesis, inhibits growth (cell contact inhibition), and protects cells from apoptosis.⁹ VE-cadherin has also been implicated in the transcriptional regulation of claudin-5, another component of the endothelial tight junction, via a mechanism that involves the phosphorylation of Fox01.¹⁰ Phosphorylation and dephosphorylation of AJ residues, including the intracellular tail of VE-cadherin, regulates the function of VE-cadherin.¹¹ The enzymes responsible for the VE-cadherin phosphorylation include tyrosine kinase Src, protein kinase C, and focal adhesion tyrosine kinase (FAK),¹²⁻¹⁴ while the dephosphorylating enzymes include Shp-2 and vascular endothelial (VE) receptor protein tyrosine phosphatase (VE-PTP).^{15,16} Wessel¹⁷ have recently demonstrated that selective phosphorylation/dephosphorylation of specific tyrosine residues (Tyr685 or Tyr731) on VE-cadherin allows for the differential regulation of vascular permeability and leukocyte extravasation.

Gap junctions allow for cell-cell communication via the formation of clusters of intercellular hemi-channels that link to each other to connect the cytoplasm of the adjacent cells.¹⁸ Gap junctions are formed by proteins from the connexin family. Molecules less than 1000 daltons, such as ions, simple sugars, amino acids, nucleotides, and second messengers (cAMP, calcium, IP3) can move between cells via these channels.¹⁹ GJ are also involved in several cellular events, including metabolic transport, electrical coupling, apoptosis, differentiation, and tissue homeostasis,²⁰ and phosphorylation of the inner tail of this junctional structure can affect these functions of GJ.²¹ In addition to allowing for communication between endothelial cells,²² GJ also allow for cross-talk between the endothelium and smooth muscle cells in the vessel wall.²³

The cerebral vasculature contains an additional component of the endothelial barrier called tight junctions (TJ), which closely fuses adjacent endothelial cells and further restricts the exchange of fluid and solutes through the paracellular spaces.^{24,25} TJ contribute

to the highly selective properties of the blood brain barrier (BBB), which significantly limits the passage of substances from blood to brain interstitium. TJ are comprised of different proteins such as occludin, claudin family members, zonula occludens (ZO) family members and junctional adhesion molecules (JAM),²⁴ which form a charge selective pore that only allows for the passage of small ions and uncharged molecules.²⁶ Zonula occludens are scaffolding proteins that interact with intracellular components such as F-actin to influence cytoskeleton mobility and other functions.²⁷ The claudin family is comprised of more than 20 proteins and endothelial cells in the BBB are particularly rich in claudins 4, 5 and 16.²⁸ TJ permeability is significantly influenced by the type(s) of claudin present or absent in the endothelial cells.²⁹ For example, in the absence of claudin-5 BBB permeability is profoundly compromised.³⁰ Occludin is a phosphoprotein of 65-kDa located in the cytoplasmic membrane of endothelial cells in brain.³¹ Phosphorylation of occludin amino acid residues can strongly influence vascular barrier function.³² However, selective deletion of occludin has been shown not to affect vessel permeability, suggesting overlapping functions of the different TJ proteins.³³ JAM family members, including JAM-A, JAM-B and JAM-C, are also present in endothelial cells found in different vascular beds including liver, brain, intestine and lungs,³⁴ and are expressed by circulating blood cells, including platelets, lymphocytes and neutrophils.³⁵ Known functions of JAMs include signaling to cytoskeletal proteins, assembly of TJ, and gathering cell-polarity proteins to the TJ.³⁶ Alterations in either of these TJ constituents members may result in endothelial barrier failure.

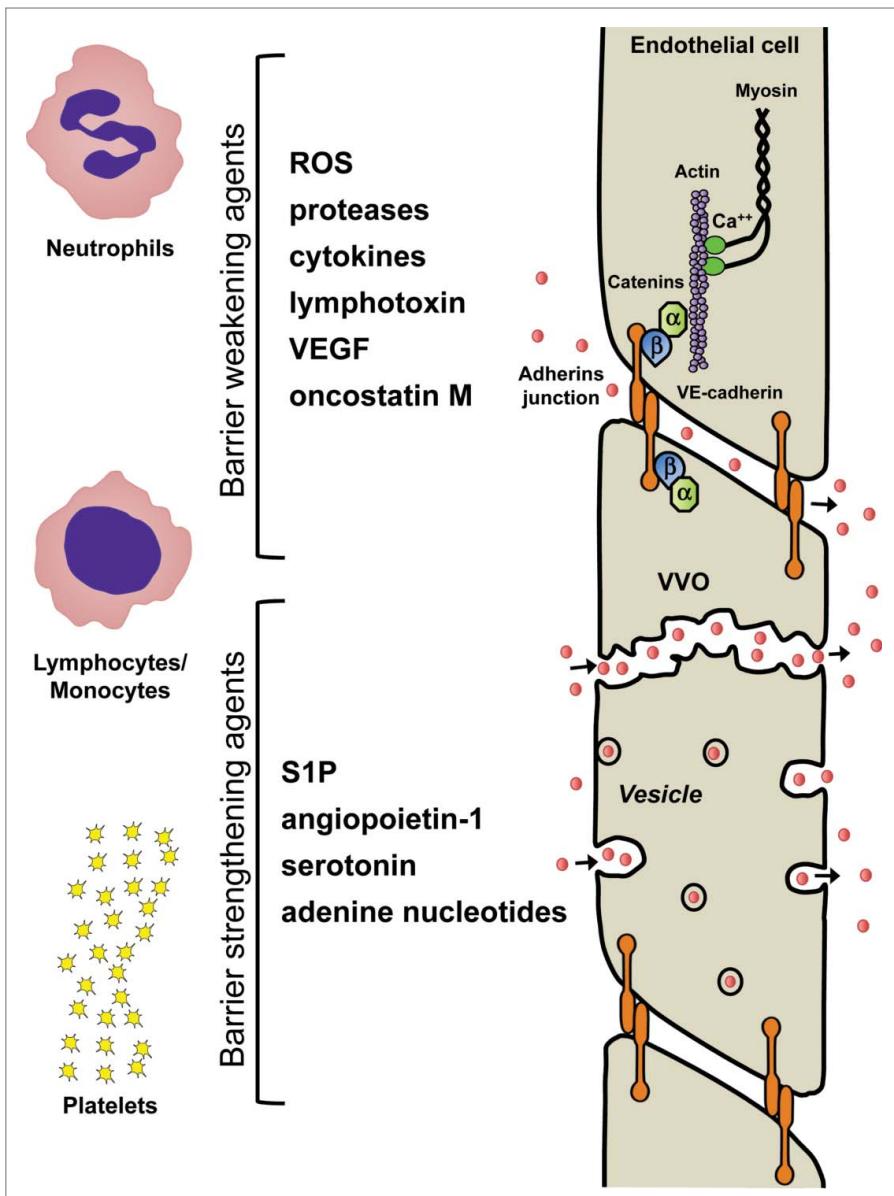
As a connective structure that links vascular endothelial cells to extracellular matrix proteins, focal adhesions (FA) are comprised of integrins, which participate in different cell functions such as adhesion, movement, and matrix remodeling. FA are connected to actomyosin bundles and serve as extracellular sensors.³⁷ While FA do not directly form cell-cell junctions, these structures act as mechano- and chemo-sensors that modulate cytoskeleton tension. Intracellular signaling events associated with FA include the recruitment and activation of kinases that can modulate the binding affinity of integrins via phosphorylation.³⁸ Immunoblockade of these integrins or interference with their binding to extracellular matrix constituents results in an increased vascular permeability,^{39,40} confirming the critical role of integrins in the regulation of endothelial barrier function. The relative importance of integrins in modulating endothelial barrier function appears to increase in conditions associated with angiogenesis or inflammation.^{41,42}

Another structural feature of endothelial cells that has been implicated in the modulation of vascular permeability is the glycocalyx, a 200–500 nm thick layer on the luminal surface of the cell that is comprised of proteoglycans with GAG side chains (e.g., heparan sulfates).^{43,44} A reduction in glycocalyx thickness caused by enzymatic degradation is associated with an increased transendothelial albumin flux,⁴⁴ while stabilization of the glycocalyx with angiopoietin-1 reduces albumin permeability.⁴⁵ The negative charge of GAGs in the glycocalyx is believed to impose a significant barrier to protein movement, while offering little resistance to the movement of water across the endothelial barrier.^{44,46}

While most attention devoted to vascular permeability has been given to modulation of the intercellular junctions (paracellular pathway), solutes and water can also cross the endothelial barrier via a transcellular pathway. Vesicles (or calveolae) have long been considered a pathway for the exchange of plasma proteins between the blood and interstitial compartment.⁴⁷ The transcytosis process is regulated by different factors that target components of the vesicle, such as caveolin-1, which serves as a scaffold for albumin-binding proteins as well as different signaling molecules that regulate transcytosis.⁴⁸ In the cerebral microvasculature, with its tight junctions, the transcellular route is also important for the exchange of water. Aquaporins (AQP), cell membrane channels in vascular endothelium, have been shown to contribute to water exchange across the BBB under both basal conditions and in certain pathological states.⁴⁹⁻⁵¹ However, for most vascular beds, the quantitative importance of the transcellular pathway for the exchange of water and plasma protein exchange across endothelial cells appears small.⁴⁷

cAMP, a second messenger that is constantly formed in most cells, including endothelial cells, plays an important role in the modulation of endothelial barrier function. It is generated by the membrane-associated enzyme adenylyl cyclase following activation of G-protein coupled receptors (GPCR) by either endogenous (e.g., inflammatory mediators, hormones, neurotransmitters)^{52,53} or exogenous (e.g., drugs, xenobiotics, germs)⁵⁴⁻⁵⁶ stimuli. cAMP degradation is mediated by phosphodiesterase (PDE).⁵⁷ The accumulation of cAMP in endothelial cells can result in either barrier-destabilization or -preservation, depending on the intracellular locus of cAMP generation, with cytosolic accumulation leading to increased vascular permeability, while increased cAMP in vacuoles appears to protect against barrier dysfunction.⁵⁸ At least part of the endothelial barrier preserving effect of cAMP reflects its influence on junctional proteins.⁵⁹ cAMP-induced barrier preserving signaling includes: 1) activation of cAMP-dependent protein kinase A (PKA) and phosphorylation of downstream proteins, such as ERK1/2 and myosin light-chain kinase (MLCK), important modulators of vascular permeability; and 2) binding to intracellular proteins involved in inflammation, such as the exchange protein activated by cyclic AMP (EPAC1).⁶⁰ EPAC1 is known to induce immunomodulatory genes such as suppressors of cytokine signaling 3 (SOCS-3) and to reduce integrin-mediated permeability responses.⁶⁰ Furthermore, both PKA and EPAC1 are known to activate Rac1, a small GTPase involved in endothelial barrier protection via inhibition of RhoA, which regulates the MLCK, a protein whose activation leads to endothelial cell contraction.⁶¹ EPAC1 activation by cAMP also results in the activation of Rap1, via a PKA-independent pathway, and ultimately leads to enhanced endothelial barrier function by inducing the reorganization of cortical actin, redistribution of VE-cadherin and other junctional proteins to cell-cell contacts.⁶² Consequently, cellular events that alter the bioavailability of cAMP can exert a major influence on the barrier function of vascular endothelial cells.

A variety of chemical and physical factors (e.g., shear stress) act constantly on endothelial cells to influence its barrier properties.^{7,63} To some extent, the factors that act on endothelial cells


are derived from other cell populations that comprise the vessel wall (e.g., podocytes, smooth muscle) or from neighboring cells that lie in the immediate perivascular space (e.g., mast cells, macrophages). Endothelial cells are also able to synthesize and release factors, such as adrenomedullin, that act to stabilize the endothelial barrier thereby opposing the actions of inflammatory mediators on vascular permeability.⁶⁴ However, when mediator release from these other cell populations is excessive, endothelial barrier dysfunction or failure may result. There is also mounting evidence that blood cells are capable of exerting a similar influence on endothelial barrier function, and may account for the barrier failure evidenced in different pathological conditions. In the following sections, we briefly summarize evidence implicating different blood cell populations in the modulation of endothelial barrier function, address their potential role in the vascular permeability responses in different disease states, and discuss potential therapeutic targets for prevention of endothelial barrier dysfunction.

Pericytes, which heavily populate the vessel wall in some vascular beds, such as brain, lie in close contact with endothelial cells.⁶⁵ The proximity between pericytes and endothelial cells allow for cross-talk between the 2 cell types, and accounts for the ability of pericytes to regulate the expression of junctional proteins.⁶⁶ In the brain, pericytes also influences astrocyte cell organization/polarization, thereby maintaining the restrictive properties of the BBB.⁶⁷ Some pericytes-derived mediators also exert a modulating influence on BBB function by regulating the expression of endothelial junction proteins. These include transforming growth factor-beta1 (TGF-beta1),⁶⁸ glial cell-derived neurotrophic factor (GDNF),⁶⁹ and angiopoietin 1 (ANG-1).⁷⁰

Leukocytes and Endothelial Barrier Function

Neutrophils

Neutrophils have been implicated as mediators of the increased vascular permeability that accompanies a variety of pathological conditions, including ischemia-reperfusion,⁷¹ sepsis,⁷² cancer^{73,74} and neurological diseases.⁷⁵ A role for neutrophils in these conditions is largely based on 2 observations: 1) neutrophils are recruited into the diseased/injured tissue, and 2) interfering with the neutrophil accumulation minimizes or prevents the endothelial barrier dysfunction.^{76,77} Activated neutrophils release an impressive mixture of chemicals that can impair endothelial barrier function, including reactive oxygen species (ROS), proteolytic enzymes, and cytokines (Fig. 1). These mediators and other products of neutrophil activation can alter barrier function by acting on the endothelial cell cytoskeleton, junctional proteins, and the endothelial glycocalyx. For example, endothelial cells exposed to ROS exhibit an increased permeability response that has been linked to disruption of the inter-endothelial junction, actomyosin contraction, gap formation, and an altered expression and phosphorylation state of junctional adhesion molecules.⁷⁸⁻⁸⁰ Since superoxide is known to rapidly interact with (and inactivate) nitric oxide, some have attributed the effects of ROS on endothelial barrier function to an alteration in NO

Figure 1. The endothelial barrier. Mediators released from neutrophils, lymphocytes, monocytes, and platelets act on endothelial cells to either weaken or strengthen the barrier. The mediators exert their effects on barrier function by altering the width of the intercellular junctions, either through changes in junctional proteins, the endothelial cell cytoskeleton, or both. Adherens junctions regulate paracellular leakage. Transcellular (vesiculo-vacuolar organelle [VVO] or vesicular) transport of water and solutes also occurs across the endothelial barrier. However, the quantitative significance of this pathway and its responsiveness to barrier altering agents remain unclear. Arrows designate the direction of transport across the barrier.

bioavailability.⁸¹ However, NO has been implicated as both a negative and a positive modulator of endothelial barrier function,^{82,83} with the protective role of NO attributed to its ability to inhibit leukocyte-endothelial cell adhesion.⁸⁴ Nitric oxide synthase inhibition increases the permeability of endothelial cell monolayers, a response that is associated with the formation of stress fibers and disruption of adherens junctions.⁸⁵

Neutrophils are also able to enhance transendothelial protein exchange by releasing proteases, like elastase and matrix

metalloproteinases (MMP), which appear to alter barrier function by disrupting junctional complexes and inducing endothelial cell retraction.⁸⁶⁻⁸⁸ Elastase has also been shown to promote the adhesion and transendothelial migration of leukocytes in the microcirculation,⁸⁹ suggesting that the permeability enhancing effect of the protease may also be related to an enhancement of neutrophil-endothelial cell adhesion. This possibility is supported by reports describing diminished endothelial barrier function, resulting from junctional disassembly and cytoskeletal reorganization, following the ligation of neutrophil adhesion molecules with their counter-receptors on endothelial cells, such as the binding of β-2 integrins with either ICAM-1 or VCAM-1.^{83,90,91} It has also been proposed that neutrophils can diminish barrier function due to physical disruption of the paracellular pathway caused by the passage of these cells through the junctions.^{92,93} This appears to occur despite the fact that endothelial cells can extend projections to envelop the migrating neutrophils, forming endothelial domes, with the leakage response resulting from the transfer of entrapped plasma proteins within the “dome.”^{83,94} It has also been reported that the endothelial barrier disruption caused by transmigrating leukocytes are detected by the endothelial cells as a release of isometric tension, which results in protective actin remodeling that is dependent on the production of reactive oxygen species.⁹⁵ Furthermore, the results of a recent study reveal that extravasating leukocytes deposit microparticles on the subendothelium during their passage through the junctions and that the microparticle deposition serves to maintain barrier function; inhibition of neutrophil-derived microparticle formation resulted in dramatically increased vascular leakage.⁹⁶

Another consequence of neutrophil activation within the microcirculation is capillary no-reflow, which is manifested as a reduced number of perfused capillaries

and tissue hypoxia.⁹⁷ The capillary malperfusion is worsened when neutrophil-dependent increases in vascular permeability lead to enhanced capillary fluid filtration and excessive accumulation of fluid in the interstitial compartment. The accompanying increase in interstitial fluid pressure leads to compression of the microvasculature, which further exacerbates the no-reflow response. This mechanism is supported by studies describing reductions in vascular permeability and interstitial edema, and an improvement of capillary

perfusion following neutrophil depletion or prevention of leucocyte-endothelial cell adhesion.⁹⁸

Lymphocytes

Less is known about the role of lymphocytes in the modulation of endothelial barrier function. Because T-cells are known to influence neutrophil function and to enhance the endothelial cell dysfunction mediated by neutrophils,⁹⁹ it is often assumed that the contribution of T-cells to inflammation-induced vascular protein leakage largely reflects the ability of T-cells to enhance the recruitment and reactivity of neutrophils.⁷⁷ However, studies in severe combined immunodeficient (SCID) mice,¹⁰⁰ CD3+ T-cell deficient¹⁰¹ mice and wild type mice treated with CD4+ T-cell depleting antibody¹⁰² have revealed an important role for T-lymphocytes in mediating the increased vascular permeability induced by ischemia-reperfusion in the intestine, kidney and lung. T-cells have also been implicated in mediating the blood-brain barrier (BBB) disruption that is associated with experimental autoimmune encephalomyelitis (EAE).¹⁰³ In this model of neurological disease, CD4+ T cells appear to elicit changes in tight junction architecture and BBB permeability by inducing astrocytes to release vascular endothelial growth factor (VEGF). Studies of a CD8+ T-cell dependent model of BBB disruption that mimics multiple sclerosis have revealed that stimulation of CNS infiltrating CD8 T cells leads to astrocyte activation, alteration of BBB tight junction proteins and increased BBB permeability in a non-apoptotic manner, but these responses were not observed in perforin deficient mice.¹⁰⁴ While other lymphocyte-derived products, such as lymphotoxin, have been shown to increase the permeability of endothelial cell monolayers in vitro,¹⁰⁵ the role of these products in T-cell dependent modulation of vascular permeability in vivo remains unclear.

Monocytes

Monocytes are known to produce and release a variety of mediators of endothelial barrier dysfunction, notably factors such as oncostatin M (OSM) and VEGF. Oncostatin M (OSM), a member of the IL-6 superfamily, has been shown to reduce transendothelial electrical resistance (TEER) of monolayers comprised of cultured rat cerebral microvascular endothelial cells.¹⁰⁶ OSM may also promote BBB dysfunction by stimulating brain cells to produce cytokines and prostaglandins,^{107,108} and to increase the expression of cell adhesion molecules on endothelial cells.¹⁰⁹ While monocytes are the dominant source of OCM produced by blood cells, activated microglia and astrocytes are additional sources of OCM in the brain. Monocytes are also a rich source of VEGF.¹¹⁰ Monocyte-derived VEGF has been implicated in the enhanced vascular leakage that accompanies breast tumor metastasis to the lung.¹¹¹ This mechanism may also contribute to the endothelial barrier dysfunction detected in other disease models that includes the recruitment of monocytes, such as atherosclerosis. Other monocyte-derived mediators that have been shown to increase vascular permeability include high mobility group box 1 (HMGB-1), TNF- α and IL-1 β .^{112,113}

The engagement of some inflammatory cells with integrins expressed on the endothelial cell surface can initiate a series of

responses that will facilitate the transendothelial migration of the attached blood cell. For example, the binding of integrins present on monocytic cells with adhesion molecules on endothelial cells induces HRas\Raf\MEK\ERK signaling, which leads to myosin light chain (MLC) activation. This results in the recruitment of Src to VE-cadherin and phosphorylation, the dissociation of VE-cadherin/ β -catenin complex, and ultimately gap junction formation.¹¹⁴

There is also evidence that supports a protective role for monocytes in the maintenance of endothelial barrier function. As described above for neutrophils,⁹⁶ it has been reported that micro-particles released from activated monocytes enhance the tightness of endothelial cell monolayers after exposure to bacterial endotoxin.¹¹⁵ While this microparticle mediated response was associated with inhibition of pSrc (tyr416) signaling, a cause-effect relationship with endothelial barrier function was not demonstrated. In another study,¹¹⁶ a different mechanism of monocyte-mediated protection was demonstrated. CD14+ peripheral monocytes, cultured under angiogenic conditions, were shown to acquire phenotypic and functional properties similar to cerebral microvascular endothelial cells. The features acquired by the monocytes included the expression of tight junction proteins, high transcellular electrical resistance and low permeability to solutes. It was proposed that CD14+ blood monocytes may play an important role in repairing (sealing) the BBB after brain injury.¹¹⁶

Platelets and endothelial barrier function

Recently, much attention has been devoted to addressing the role of platelets in inflammation, and the evolving consensus is that platelets tend to amplify different components of the inflammatory response, most notably the expression of endothelial cell adhesion molecules and the recruitment of leukocytes.^{117,118} While there are some reports that describe the ability of platelets to diminish endothelial barrier function,¹¹⁹ there is a larger body of evidence that supports an anti-permeability effect of platelets.¹²⁰ For example, thrombocytopenia appears to elicit an increased vascular permeability in resting microvessels and this response is reversed following the restoration of blood platelet count.¹²¹ Some of the beneficial effects of platelets in support of barrier function have been attributed to a purely physical effect resulting from adherent platelets covering gaps in the endothelial lining of injured blood vessels,^{120,122} however, soluble factors released by platelets are a more likely to explain the ability of these cells to maintain vascular wall integrity in the setting of inflammation or other pathological conditions.^{77,120} Platelet-conditioned media^{123,124} and different molecules released from platelets, including sphingosin-1-phosphate (S1P),¹²³ serotonin,¹²⁵ angiopoietin-1,¹²⁶ and adenine nucleotides,¹²⁷ have been shown to enhance the barrier properties of endothelial cells either in vivo or in vitro. S1P is believed to be continuously secreted into the blood stream by platelets as well as erythrocytes under physiological conditions.¹²⁸ The S1P subsequently binds to its receptor on the surface of endothelial cells thereby activating Rac1, which acts to preserve endothelial barrier function. The importance of platelet and erythrocyte-derived S1P in modulating vascular permeability is evidenced by reports that describe a high basal leak of proteins in pulmonary microvessels of mutant

mice that selectively lack S1P in plasma,¹²⁹ and the observation that the increased permeability observed in intact microvessels perfused with an erythrocyte-free solution is reversed following the administration of exogenous S1P.¹³⁰

Platelets also hold the potential to influence endothelial barrier function by forming heterotypic aggregates with leukocytes. For example, platelet-neutrophil aggregates (PNA) have been implicated in the increased pulmonary vascular permeability in mice with sickle cell disease.¹³¹ In this model of human disease, interfering with PNA formation with a P-selectin blocking antibody decreased the lung vascular permeability response. While it is not clear how the aggregate formation leads to altered barrier function, the response may be related to the observation that neutrophils and monocytes with attached activated platelets produce more than twice the amount of superoxide than their platelet-free counterparts, and P-selectin mediated signaling underlies this response.¹³² Similarly, it has been demonstrated that the generation of platelet activating factor (PAF) by the combination of platelets and neutrophils is 2-times higher than that detected in either cell activated separately, but this amplification effect on PAF production results from transcellular phospholipid metabolism between the 2 cells, and does not require cell-cell adhesion.¹³³ PAF, which is known to increase vascular permeability when engaged with its receptor on endothelial cells, disrupts the interendothelial junctions via Rac1-dependent relocation of junctional proteins (e.g., VE-cadherin, ZO-1) and actin polymerization.¹³⁴

Diseases associated with endothelial barrier dysfunction

An injured or dysfunctional endothelial barrier has the potential to significantly impact tissue function and viability. Discontinuities or breaks in the endothelial lining can impair blood flow regulation by interfering with vasodilatory responses that are dependent on endothelial cell-cell communication (e.g., ascending vasodilation).¹³⁵ Clot formation can also result if the breach in the barrier is sufficient to expose platelets to the collagen layer that normally lies beneath the endothelial cell lining.¹²⁰ However, endothelial barrier dysfunction is more commonly associated with subtle changes in the inter-endothelial junctions (discussed above) that can result in the excessive loss of water and proteins into the extravascular compartment.¹³⁶ The magnitude of the leakage of fluid and protein that accompanies an increased vascular permeability can lead to edemagenic responses that range from small, reversible and without a long-lasting effect on tissue function to a severe and irreversible response that leads to tissue necrosis and organ failure. The entire range of permeability-dependent edemagenic responses is evidenced in human disease states. As noted in Table 1, increased vascular permeability has been implicated in a variety of pathological conditions, including both acute and chronic diseases. In some conditions, the permeability response is largely manifested in one organ system (e.g., COPD, nephrotic syndrome, Alzheimer disease) while a more widespread (systemic) permeability response is noted in other diseases (e.g., sepsis, diabetes mellitus).

The contribution of the endothelial barrier dysfunction to disease morbidity and mortality appears to be condition- and organ-dependent. For example, while the vascular permeability increases

Table 1. Pathological conditions associated with endothelial barrier dysfunction

Local response	Systemic response
Acute conditions/diseases	
Stroke ^{71,137,138}	Sepsis ¹³⁹
Acute respiratory distress syndrome ¹⁴⁰	Dengue fever ¹⁴¹
Nephrotic syndrome ¹⁴²	Malaria ¹⁴³
Myocardial infarction ¹⁴⁴	Ebola ¹⁴⁵
Hantavirus pulmonary syndrome ¹⁴⁶	Preeclampsia ¹⁴⁷
Anaphylaxis ¹⁴⁸	
Chemical/thermal injury ¹⁴⁹	
Chronic conditions/diseases	
Atherosclerosis ¹⁵⁰	Hypertension ¹⁵¹
Inflammatory bowel disease ¹⁵²	Diabetes mellitus ¹⁵³
COPD ^{1,154}	Sickle cell disease ¹⁵⁵
Tumors ^{156,157,137}	Hereditary angioedema ¹⁵⁸
Arthritis ¹⁵⁹	
Asthma ¹⁵⁴	
Neurological diseases	
Alzheimer ¹⁶⁰	
Multiple sclerosis ¹³⁷	
Amyotrophic lateral sclerosis ¹⁶¹	
Epilepsy ¹³⁸	
Major depressive disorder ¹⁶²	

¹Chronic obstructive pulmonary disease (COPD).

that accompanies sickle cell disease and hypertension are not likely to contribute significantly to disease induction, progression and/or mortality, a significant contribution to disease outcome may be expected of the endothelial barrier failure that is associated with conditions such as sepsis, acute kidney injury, dengue hemorrhagic fever, and stroke. Two organs that appear to be most vulnerable to the deleterious consequences of endothelial barrier dysfunction are the brain and lungs. In both tissues, excessive fluid loss across a leaky endothelial cell layer has the potential to profoundly impact organ function and/or viability. This is commonly manifested in the lungs as an accumulation of interstitial fluid in the alveolar spaces (pulmonary edema), which results when the alveolar membrane is ruptured due to excessive interstitial fluid accumulation (and an elevated interstitial pressure) secondary to capillary fluid leakage.¹⁶³ A similar phenomenon has been described in the intestine, with excessive capillary fluid and protein leakage resulting in mucosal barrier disruption and the movement of interstitial fluid in the gut lumen.¹⁶⁴ However, the response in gut is not as immediately life-threatening as pulmonary edema, which impairs gas exchange and may cause respiratory failure. The rapidly evolving and often fatal (despite mechanical ventilation) pulmonary edema that is associated with Hantavirus infection likely results from endothelial barrier failure.¹⁶⁵

The structurally unique and highly restrictive endothelial barrier in the brain offers a level of tissue protection that is beyond that manifested in other organs. The BBB is largely impermeable to water, ions, plasma proteins, inflammatory mediators (e.g., cytokines), immune cells, and a variety of drugs. Consequently, BBB disruption in the brain can be associated with more profound local and systemic detrimental effects than observed in other tissues following endothelial barrier failure. The fact that

the brain is encased in a vault (the skull) results in significantly larger increases in interstitial pressure when high fluid filtration rates result from BBB failure, which can result in blood vessel compression and blood flow restriction.¹⁶⁶ Macrophages that normally reside in the brain, like microglia and astrocytes, no longer enjoy an “immunoprivileged” environment following BBB disruption. Consequently, inflammatory response elicited by a pathological insult is greatly amplified when the BBB loses its ability to impede the egress of immune cells and mediators. Many of these manifestations of BBB dysfunction are evidenced following an ischemic stroke and this response is believed to promote expansion of the infarcted area.¹⁶⁷ While restoration of BBB function has gained attention as a potentially useful therapeutic goal in stroke patients,¹⁶⁸ BBB disruption has also been exploited for enhanced delivery of imaging agents to optimize the detection and quantification of brain edema and infarct size following stroke.¹⁶⁹

Drugs targeting endothelial barrier dysfunction

Our understanding of the cellular and molecular events that regulate vascular permeability has advanced significantly over the past few decades. However, this expanded knowledge base has not translated into the identification or development of therapeutic approaches that can be widely used to enhance endothelial barrier function in patients with life-threatening conditions that are linked to barrier dysfunction or failure. While efforts to target individual barrier-enhancing agents (e.g., cytokines, reactive oxygen species), derived from either circulating blood cells, cellular components of the vessel wall or perivascular cells (mast cells, macrophages) have shown promise in some animal models of human disease, this strategy has limited effectiveness in more complicated pathological conditions that involve a role for multiple mediators of endothelial barrier dysfunction. Hence, more recent efforts have focused on identifying therapeutically relevant agents that directly target the endothelial barrier to render it more restrictive to fluid and solute exchange. Table 2 summarizes endothelial barrier enhancing agents that have been proposed as

Table 2. Agents that protect or enhance endothelial barrier function*

Sphingosine-1-phosphate
Activated protein C
Angiopoietins
Protein kinase C inhibitors
RhoA inhibitors
Corticosteroids
Antihistamines
Vasopressin type 1a agonists

*^{1,170,171}

potential drugs for the clinical management of patients suffering from a condition characterized by vascular hyper permeability.^{1,170} Some of these agents (e.g, sphingosine-1-phosphate, activated protein C) appear to act on the barrier to stabilize both the junctions and the cytoskeleton, while other agents target either specific receptors for known potent barrier-altering agents (e.g., VEGF, vasopressin type 1a receptor) or act to interfere with key signaling molecules that promote changes in the junction and/or cytoskeleton to produce a hyperpermeability state (e.g, protein kinase C and RhoA inhibitors).^{1,170,171} While these strategies hold promise, additional work is needed to translate the existing knowledge on endothelial barrier regulation to the development of a therapeutic agent that can be routinely used to protect or enhance endothelial barrier function.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

The authors are supported by grants from the National Heart Lung and Blood Institute (HL26441) (DNG) and from the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, 2011/02438-8) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 470895/2011-0) in Brazil (SFR).

References

- Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. *Expert Rev Mol Med* 2010; 11:e19; PMID:19563700; <http://dx.doi.org/10.1017/S1462399409001112>
- Dejana E, Tournier-Lasserre E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. *Dev Cell* 2009; 16:209-21; PMID:19217423; <http://dx.doi.org/10.1016/j.devcel.2009.01.004>
- Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. *Physiol Rev* 2006; 86:279-367; PMID:16371600; <http://dx.doi.org/10.1152/physrev.00012.2005>
- Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM. Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. *Cell Tissue Res* 2009; 335:17-25; PMID:8855014; <http://dx.doi.org/10.1007/s00441-008-0694-5>
- Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. *Cell* 1996; 84:345-57; PMID:8608588; [http://dx.doi.org/10.1016/S0092-8674\(00\)81279-9](http://dx.doi.org/10.1016/S0092-8674(00)81279-9)
- Lusciunas FW, Shaw SK. The biology of endothelial cell-cell lateral junctions. *Microcirculation*. 2001 Jun;8(3):141-2. PMID:11498777.
- Yuan SY, Rigor RR. Regulation of endothelial barrier function. In: Granger DN, Granger JP, editors. *Integrated Systems Physiology: From Molecule to Function*. San Rafael (CA): Morgan & Claypool Life Sciences; 2011. p.1-146.
- García-Ponce A, Citalán-Madrid AF, Velázquez-Avila M, Vargas-Robles H, Schnoor M. The role of actin-binding proteins in the control of endothelial barrier integrity. *Thromb Haemost* 2014; 112; PMID:25183310
- Dejana E, Vestweber D. The role of VE-cadherin in vascular morphogenesis and permeability control. *Prog Mol Biol Transl Sci* 2013; 116:119-44; PMID:23481193; <http://dx.doi.org/10.1016/B978-0-12-394311-8.00006-6>
- Gavard J, Gutkind JS. VE-cadherin and claudin-5: it takes two to tango. *Nat Cell Biol* 2008; 10:883-5; PMID:18670447; <http://dx.doi.org/10.1038/ncb0808-883>
- Volberg T, Geiger B, Dror R, Zick Y. Modulation of intercellular adherens-type junctions and tyrosine phosphorylation of their components in RSV-transformed cultured chick lens cells. *Cell Regul* 1991; 2:105-20; PMID:1650581.
- Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E, Lim ST, Tomar A, Tancioni I, Uryu S, et al. VEGF-induced vascular permeability is mediated by FAK. *Dev Cell* 2012; 22:146-57; PMID:22264731; <http://dx.doi.org/10.1016/j.devcel.2011.11.002>
- Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. *J Cell Sci* 2008; 121:2115-22; PMID:18565824; <http://dx.doi.org/10.1242/jcs.017897>
- Konstantoulaki M, Kouklis P, Malik AB. Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. *Am J Physiol Lung Cell Mol Physiol* 2003; 285:L434-L442; PMID:12740216
- Ukropec JA, Hollinger MK, Salva SM, Woolkalis MJ. SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. *J Biol Chem* 2000; 275:5983-6; PMID:10681592; <http://dx.doi.org/10.1074/jbc.275.8.5983>
- Vockel M, Vestweber D. How T cells trigger the dissociation of the endothelial receptor phosphatase VE-PTP from VE-cadherin. *Blood* 2013; 122:2512-

22; PMID:23908467; <http://dx.doi.org/10.1182/blood-2013-04-499228>

17. Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, Linnepo R, Ipe U, Stadtmann A, Zarbock A, et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. *Nat Immunol* 2014; 15:223-30; PMID:24487320; <http://dx.doi.org/10.1038/ni.2824>

18. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. *Annu Rev Biochem* 1996; 65:475-02; PMID:8811187; <http://dx.doi.org/10.1146/annurev.bi.65.070196.002355>

19. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. *Physiol Rev* 2003; 83:1359-400; PMID:14506308

20. Laird DW. The gap junction proteome and its relationship to disease. *Trends Cell Biol* 2010; 20:92-101; PMID:19944606; <http://dx.doi.org/10.1016/j.tcb.2009.11.001>

21. Solan JL, Lampe PD. Connexin43 phosphorylation: structural changes and biological effects. *Biochem J* 2009; 419:261-72; PMID:19309313; <http://dx.doi.org/10.1042/BJ20082319>

22. Loft-Wilson RC, Payne GW, Segal SS. Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. *J Appl Physiol* (1985). 2004; 97:1152-8; PMID:15169746

23. Isakson BE, Ramos SI, Duling BR. Ca^{2+} and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction. *Circ Res* 2007; 100:246-54; PMID:17218602; <http://dx.doi.org/10.1161/01.RESH.0000257744.23795.93>

24. Ajaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. *Int Rev Cytol* 2006; 248:261-98; PMID:16487793; [http://dx.doi.org/10.1016/S0074-7696\(06\)48005-0](http://dx.doi.org/10.1016/S0074-7696(06)48005-0)

25. Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. *Fluids Barriers CNS* 2012; 9:23; PMID:23140302

26. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. *Annu Rev Physiol* 2011; 73:283-309; PMID:20936941; <http://dx.doi.org/10.1146/annurev-physiol-012110-142150>

27. Furuse M. Molecular basis of the core structure of tight junctions. *Cold Spring Harbor Perspect Biol* 2010; 2:a002907; PMID:20182608; <http://dx.doi.org/10.1101/cshperspect.a002907>

28. Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielli N, Ghersi-Egea JF. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. *Histochem Cell Biol* 2012; 138:861-79; PMID:22886143; <http://dx.doi.org/10.1007/s00418-012-1001-9>

29. Anderson JM, Van Itallie CM. Physiology and function of the tight junction. *Cold Spring Harbor Perspect Biol* 2009; 1:a002584; PMID:20066090; <http://dx.doi.org/10.1101/cshperspect.a002584>

30. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. *J Cell Biol* 2003; 161:653-60; PMID:12743111

31. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. *J Cell Biol* 1993; 123:1777-88; PMID:8276896; <http://dx.doi.org/10.1083/jcb.123.6.1777>

32. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludens and zonula occludens 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. *J Biol Chem* 1999; 274:23463-67; PMID:10438525; <http://dx.doi.org/10.1074/jbc.274.33.23463>

33. Saitou M, Furuse M, Sasaki H, Schulz JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. *Mol Biol Cell* 2000; 11:4131-42; PMID:11102513; <http://dx.doi.org/10.1091/mbc.11.12.4131>

34. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscola P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. *J Cell Biol* 1998; 142:117-27; PMID:9660867; <http://dx.doi.org/10.1083/jcb.142.1.117>

35. Williams LA, Martin-Padura I, Dejana E, Hogg N, Simmons DL. Identification and characterisation of human junctional adhesion molecule (JAM). *Mol Immunol* 1999; 36:1175-88; PMID:10698320; [http://dx.doi.org/10.1016/S0161-5890\(99\)00122-4](http://dx.doi.org/10.1016/S0161-5890(99)00122-4)

36. Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordeonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. *J Biol Chem* 2000; 275:20520-6; PMID:10877843; <http://dx.doi.org/10.1074/jbc.M9095251199>

37. Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. *Circ Res* 2002; 91:877-87; PMID:12433832; <http://dx.doi.org/10.1161/01.RES.0000039537.73816.E5>

38. Cohen LA, Guan JL. Mechanisms of focal adhesion kinase regulation. *Curr Cancer Drug Targets* 2005; 5:629-43; PMID:16375667; <http://dx.doi.org/10.2174/1568009050774932798>

39. Curtis TM, McKeown-Longo PJ, Vincent PA, Homan SM, Wheatley EM, Saba TM. Fibronectin attenuates increased endothelial monolayer permeability after RGD peptide, anti-alpha 5 beta 1, or TNF-alpha exposure. *Am J Physiol* 1995; 269:L248-60; PMID:7544537

40. Wu MH, Ustinova E, Granger HJ. Integrin binding to fibronectin and vitronectin maintains the barrier function of isolated porcine coronary venules. *J Physiol* 2001; 532:785-91; PMID:11313446; <http://dx.doi.org/10.1111/j.1469-7793.2001.0785x>

41. Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ, Sheppard D, Chersch DA. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. *J Cell Biol* 2002; 157:149-60; PMID:12927607; <http://dx.doi.org/10.1083/jcb.200109079>

42. Guo M, Daines D, Tang J, Shen Q, Perrin RM, Takada Y, Yuan SY, Wu MH. Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism. *Arterioscler Thromb Vasc Biol* 2009; 29:394-400; PMID:19122172; <http://dx.doi.org/10.1161/ATVBAHA.108.180950>

43. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. *Annu Rev Biomed Eng* 2007; 9:121-167; PMID:17373886; <http://dx.doi.org/10.1146/annurev.bioeng.9.060906.151959>

44. Singh A, Satchell SC, Neal CR, McKenzie EA, Took JE, Mathieson PW. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. *J Am Soc Nephrol* 2007; 18:2885-93; PMID:17942961; <http://dx.doi.org/10.1681/ASN.2007010119>

45. Salmon AH, Neal CR, Sage LM, Glass CA, Harper SJ, Bates DO. Angiopoietin-1 alters microvascular permeability coefficients *in vivo* via modification of endothelial glycocalyx. *Cardiovasc Res* 2009; 83:24-33; PMID:19297368; <http://dx.doi.org/10.1093/cvr/cvp093>

46. Haraldsson B, Nystrom J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. *Physiol Rev* 2008; 88:451-87; PMID:18391170; <http://dx.doi.org/10.1152/physrev.00055.2006>

47. Rippe B, Rosengren BI, Carlsson O, Venturoli D. Transendothelial transport: the vesicle controversy. *J Vasc Res* 2002; 39:375-90; PMID:12297701; <http://dx.doi.org/10.1159/000064521>

48. Minshall RD, Tiruppathi C, Vogel SM, Malik AB. Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. *Histochem Cell Biol* 2002; 117:105-12; PMID:11935286; <http://dx.doi.org/10.1007/s00418-001-0367-x>

49. Carlsson O, Nielsen S, Zakaria E, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. *Am J Physiol* 1996; 271:H2254-H2262; PMID:8997281

50. Badaut J, Ashwal S, Adami A, Tone B, Recker R, Spagnoli D, Ternon B, Obenauer A. Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. *J Cereb Blood Flow Metab* 2011; 31:819-831; PMID:20877385; <http://dx.doi.org/10.1038/jcbfm.2010.163>

51. Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S. Increased aquaporin 1 water channel expression in human brain tumours. *Br J Cancer* 2002; 87:621-23; PMID:12237771; <http://dx.doi.org/10.1038/sj.bjc.6600512>

52. Birukova AA, Zaganichnaya T, Fu P, Alekseeva E, Chen W, Jacobson JR, Birukov KG. Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. *Exp Cell Res* 2007; 313:2504-20; PMID:17493609; <http://dx.doi.org/10.1016/j.yexcr.2007.03.036>

53. Buonassisi V, Venter JC. Hormone and neurotransmitter receptors in an established vascular endothelial cell line. *Proc Natl Acad Sci U S A* 1976; 73:1612-6; PMID:179091; <http://dx.doi.org/10.1073/pnas.73.5.1612>

54. Ahuja N, Kumar P, Bhatnagar R. The adenylyl cyclase toxins. *Crit Rev Microbiol* 2004; 30:187-96; PMID:15490970; <http://dx.doi.org/10.1080/10408410490468795>

55. Vogel CF, Sciuolo E, Park S, Liedtke C, Trautwein C, Matsumura F. Dioxin increases C/EBPbeta transcription by activating cAMP/protein kinase A. *J Biol Chem* 2004; 279:8886-94; PMID:14684744; <http://dx.doi.org/10.1074/jbc.M310190200>

56. Vulliemoz Y, Verosky M, Triner L. Effect of albuterol and terbutaline, synthetic beta adrenergic stimulants, on the cyclic 3',5'-adenosine monophosphate system in smooth muscle. *J Pharmacol Exp Ther* 1975; 195:549-56; PMID:172625

57. Lugnier C, Schini VB. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells. *Biochem Pharmacol* 1990; 39:75-84; PMID:2153383; [http://dx.doi.org/10.1016/0006-2952\(90\)90650-A](http://dx.doi.org/10.1016/0006-2952(90)90650-A)

58. Sayen SL, Alexeyev MDC, Stevens T. Soluble adenylyl cyclase reveals the significance of cAMP compartmentation on pulmonary microvascular endothelial cell barrier. *Circ Res* 2006; 98:675-81; PMID:16469954; <http://dx.doi.org/10.1161/01.RES.0000209516.84815.3c>

59. Adamson RH, Liu B, Fry GN, Rubin LL, Curry FE. Microvascular permeability and number of tight junctions are modulated by cAMP. *Am J Physiol* 1998; 274:H1885-94; PMID:9841516

60. Parnell E, Smith BO, Palmer TM, Terrin A, Zaccolo M, Yarwood SJ. Regulation of the inflammatory response of vascular endothelial cells by EPAC1. *Br J Pharmacol* 2012; 166:434-46; PMID:22145651; <http://dx.doi.org/10.1111/j.1476-5381.2011.01808.x>

61. Waschke J, Baumgartner W, Adamson RH, Zeng M, Aktories K, Barth H, Wilde C, Curry FE, Drenckhahn D. Requirement of Rac activity for maintenance of capillary endothelial barrier properties. *Am J*

Physiol Heart Circ Physiol 2004; 286:H394-H401; PMID:14512275; <http://dx.doi.org/10.1152/ajpheart.00221.2003>

62. Cullere X, Shaw SK, Andersson L, Hirashiki J, Luscinas FW, Mayadas TN. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. *Blood* 2005; 105:1950-5; PMID:15374886; <http://dx.doi.org/10.1182/blood-2004-05-1987>

63. Yuan SY, Granger DN, Zawieja DC, Chilian WM. Flow modulates coronary venular permeability by a nitric oxide-related mechanism. *Am J Physiol* 1992; 263:H641-6; PMID:1510161

64. Temmelsfeld-Wollbrück B, Hocke AC, Suttorp N, Hippchenstiel S. Adrenomedullin and endothelial barrier function. *Thromb Haemost* 2007; 98:944-51; PMID:18000597

65. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. *Neurobiol Dis* 2010; 37:13-25; PMID:19664713; <http://dx.doi.org/10.1016/j.nbd.2009.07.030>

66. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. *Neurobiol Dis* 2004; 16:1-13; PMID:15207256; <http://dx.doi.org/10.1016/j.nbd.2003.12.016>

67. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al. Pericytes regulate the blood-brain barrier. *Nature* 2010; 468:557-61; PMID:20944627; <http://dx.doi.org/10.1038/nature09522>

68. Dohgu S, Yamauchi A, Takata F, Naito M, Tsuruo T, Higuchi S, Sawada Y, Kataoka Y. Transforming growth factor-beta1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. *Cell Mol Neurobiol* 2004; 24:491-7; PMID:15206827; <http://dx.doi.org/10.1023/B:CEMN.0000022776.47302>

69. Shimizu F, Sano Y, Saito K, Abe MA, Maeda T, Haruki H, Kanda T. Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. *Neurochem Res* 2012; 37:401-9; PMID:22002662; <http://dx.doi.org/10.1007/s11064-011-0626-8>

70. Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. *J Neurochem* 2004; 89:503-13; PMID:15056293; <http://dx.doi.org/10.1111/j.1471-4159.2004.02343.x>

71. Rodrigues SF, Granger DN. Leukocyte-mediated tissue injury in ischemic stroke. *Curr Med Chem* 2014; 21:2130-7; PMID:24372215; <http://dx.doi.org/10.2174/092986732166131228192119>

72. Fox ED, Heffernan DS, Cioffi WG, Reichner JS. Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. *Crit Care* 2013; 17:R226; PMID:24099563

73. Hofman PM. Pathobiology of the neutrophil-intestinal epithelial cell interaction: role in carcinogenesis. *World J Gastroenterol* 2010; 16:5790-800; PMID:21154999; <http://dx.doi.org/10.3748/wjg.v16.i46.5790>

74. Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. *Proc Natl Acad Sci U S A* 2006; 103:12493-8; PMID:16891410; <http://dx.doi.org/10.1073/pnas.0601807103>

75. Baik SH, Cha MY, Hyun YM, Cho H, Hamza B, Kim DK, Han SH, Choi H, Kim KH, Moon M, et al. Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. *Neurobiol Aging* 2014; 35:1286-92; PMID:24485508; <http://dx.doi.org/10.1016/j.neurobiolaging.2014.01.003>

76. Granger DN. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. *Am J Physiol* 1988; 255:H1269-1275; PMID:3059826

77. Rodrigues SF, Granger DN. Role of blood cells in ischaemia-reperfusion induced endothelial barrier failure. *Cardiovasc Res* 2010; 87:291-9; PMID:20299333; <http://dx.doi.org/10.1093/cvr/cvq090>

78. Bouéz A, Hassoun PM. Regulation of endothelial barrier function by reactive oxygen and nitrogen species. *Microvasc Res* 2009; 77:26-34; PMID:19041330; <http://dx.doi.org/10.1016/j.mvr.2008.10.005>

79. Monaghan-Benson E, Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. *J Biol Chem* 2009; 284:25602-11; PMID:19633358; <http://dx.doi.org/10.1074/jbc.M109.009894>

80. van Wetering S, van Buul JD, Quik S, Mul FP, Anthony EC, ten Klooster JP, Collard JG, Hordijk PL. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. *J Cell Sci* 2002; 115:1837-46; PMID:11956315

81. Kviety PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. *Free Radic Biol Med* 2012; 52:556-592; PMID:22154653; <http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.002>

82. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. *Am J Physiol* 1992; 262:H611-5; PMID:1539722

83. Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase in microvascular endothelial barrier function. *Cardiovasc Res* 2010; 87:272-80; PMID:20479130; <http://dx.doi.org/10.1093/cvr/cvq144>

84. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. *Proc Natl Acad Sci U S A* 1991; 88:4651-5; PMID:1675786; <http://dx.doi.org/10.1073/pnas.88.11.4651>

85. Wojciak-Stothard B, Torondel B, Zhao L, Renne T, Leiper JM. Modulation of Rac1 activity by ADMA/DDAH regulates pulmonary endothelial barrier function. *Mol Biol Cell* 2009; 20:33-42; PMID:18923147; <http://dx.doi.org/10.1091/mbc.E08-04-0395>

86. Kviety PR, Granger DN. Endothelial cell monolayers as a tool for studying microvascular pathophysiology. *Am J Physiol* 1997; 273:G1189-99; PMID:9435543

87. Rosenberg GA, Yang Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. *Neurosurg Focus* 2007; 22:E4; PMID:17613235

88. Hermant B, Bibert S, Concord E, Dublet B, Weidenhaupt M, Vernet T, Gulino-Debra D. Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration. *J Biol Chem* 2003; 278:14002-12; PMID:12584200; <http://dx.doi.org/10.1074/jbc.M300351200>

89. Zimmerman BJ, Granger DN. Reperfusion-induced leukocyte infiltration: role of elastase. *Am J Physiol* 1990; 259:H390-4; PMID:2167021

90. DiStasi MR, Ley K. Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. *Trends Immunol* 2009; 30:547-56; PMID:19783480; <http://dx.doi.org/10.1016/j.it.2009.07.012>

91. van Wetering S, van den Berk N, van Buul JD, Mul FP, Lommersse I, Mous R, ten Klooster JP, Zwaginga JJ, Hordijk PL. VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration. *Am J Physiol Cell Physiol* 2003; 285: C343-52; PMID:12700137; <http://dx.doi.org/10.1152/ajpcell.00048.2003>

92. Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. *Circ Res* 1994; 74:376-82; PMID:8118946; <http://dx.doi.org/10.1161/01.RES.74.3.376>

93. Cepinskas G, Noseworthy R, Kviety PR. Transendothelial neutrophil migration: role of neutrophil-derived proteases and relationship to transendothelial protein movement. *Circ Res* 1997; 81:618-26; PMID:9314844; <http://dx.doi.org/10.1161/01.RES.81.4.618>

94. Phillipson M, Kaur J, Colarusso P, Ballantyne CM, Kubes P. Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration. *PLoS One* 2008; 3:e1649; PMID:18297135

95. Martinelli R, Kamei M, Sage PT, Massol R, Varghese L, Sciuto T, Toporsian M, Dvorak AM, Kirchhausen T, Springer TA, et al. Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. *J Cell Biol* 2013; 201:449-65; PMID:23629967; <http://dx.doi.org/10.1083/jcb.201209077>

96. Lim K, Sumagin R, Hyun YM. Extravasating neutrophil-derived microparticles preserve vascular barrier function in inflamed tissue. *Immune Netw* 2013; 13:102-06; PMID:23885224; <http://dx.doi.org/10.4110/in.2013.13.3.102>

97. Carden DL, Granger DN. Pathophysiology of ischemia-reperfusion injury. *J Pathol* 2000; 190:255-66; PMID:10685060

98. Jerome SN, Akimitsu T, Korthuis RJ. Leukocyte adhesion, edema, and development of postischemic capillary no-reflow. *Am J Physiol* 1994; 267:H1329-36; PMID:7943378

99. Tennenberg SD, Weller JJ. Endotoxin-induced, neutrophil-mediated endothelial cytotoxicity is enhanced by T-lymphocytes. *J Surg Res* 1997; 69:11-3; PMID:9202640; <http://dx.doi.org/10.1006/jsrc.1996.4996>

100. Shigematsu T, Wolf RE, Granger DN. T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia-reperfusion. *Microcirculation* 2002; 9:99-109; PMID:11932777; <http://dx.doi.org/10.1080/092986732166131228192119>

101. Liu M, Chien CC, Grigoryev DN, Gandolfo MT, Colvin RB, Rabb H. Effect of T cells on vascular permeability in early ischemic acute kidney injury in mice. *Microvasc Res* 2009; 77:340-7; PMID:19323971; <http://dx.doi.org/10.1016/j.mvr.2009.01.011>

102. Yang Z, Sharma AK, Linden J, Kron IL, Laubach VE. CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. *J Thorac Cardiovasc Surg* 2009; 137:695-702; PMID:19258091; <http://dx.doi.org/10.1016/j.jtcvs.2008.10.044>

103. Johnson HL, Chen Y, Jin F, Hanson LM, Gamez JD, Pirko I, Johnson AJ. CD8-T-cell initiated blood brain barrier disruption is independent of neutrophils. *J Immunol* 2012; 189:1937-45; PMID:22772449; <http://dx.doi.org/10.4049/jimmunol.1200658>

104. Suidan GL, McDole JR, Chen Y, Pirko I, Johnson AJ. Induction of blood-brain barrier tight junction alterations by CD8 T-cells. *PLoS One* 2008; 3:e3037; PMID:18725947

105. Shinjo K, Tsuda S, Havami T, Asahi T, Kawaharada H. Increase in permeability of human endothelial cell monolayer by recombinant human lymphotoxin. *Biochem Biophys Res Comm* 1989; 162:1431-7; PMID:2788411; [http://dx.doi.org/10.1016/0006-291X\(89\)90834-6](http://dx.doi.org/10.1016/0006-291X(89)90834-6)

106. Takata F, Sumi N, Nishioku T, Harada E, Wakigawa T, Shuto H, Yamauchi A, Kataoka Y. Oncostatin M induces functional and structural impairment of blood-brain barriers comprised of rat brain capillary endothelial cells. *Neurosci Lett* 2008; 441:163-166; PMID:18603369; <http://dx.doi.org/10.1016/j.neulet.2008.06.030>

107. Repovic P, Mi K, Benveniste EN. Oncostatin M enhances the expression of prostaglandin E2 and cyclooxygenase-2 in astrocytes: synergy with interleukin-1beta, tumor necrosis factor-alpha, and bacterial lipopolysaccharide. *Glia* 2003; 42:433-46; PMID:12730964; <http://dx.doi.org/10.1002/glia.10182>

108. van Wagoner NJ, Choi C, Repovic P, Benveniste EN. Oncostatin M regulation of interleukin-6 expression in astrocytes: biphasic regulation involving the mitogen-activated protein kinases ERK1/2 and p38. *J Neurochem* 2000; 75:563-75; PMID:10899931; <http://dx.doi.org/10.1046/j.jn.1471-4159.2000.0750563.x>

109. Ruprecht K, Kuhlmann T, Seif F, Hummel V, Kruse N, Brück W, Rieckmann P. Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions. *J Neuropathol Exp Neurol* 2001; 60:1087-98; PMID:11706938

110. Haneda Y, Hasegawa S, Hirano R, Hashimoto K, Ohsaki A, Ichiyama T. Leukotriene D4 enhances tumor necrosis factor- α -induced vascular endothelial growth factor production in human monocytes/macrophages. *Cytokine* 2011; 55:24-8; PMID:21482134; <http://dx.doi.org/10.1016/j.cyto.2011.03.018>

111. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Camplion LR, Kaiser EA, Snyder LA, Pollard JW. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. *Nature* 2011; 475:222-5; PMID:21654748; <http://dx.doi.org/10.1038/nature10138>

112. Ong SP, Lee LM, Leong YF, Ng ML, Chu JJ. Dengue virus infection mediates HMBG1 release from monocytes involving PCAF acetylase complex and induces vascular leakage in endothelial cells. *PLoS One* 2012; 7:e41932; PMID:2260034; <http://dx.doi.org/10.1371/journal.pone.0041932>

113. Wakamoto S, Fujihara M, Sakagawa H, Takahashi D, Niwi K, Morioka M, Sato S, Kato T, Azuma H, Ikeda H. Endothelial permeability is increased by the supernatant of peripheral blood mononuclear cells stimulated with HLA Class II antibody. *Transfusion* 2008; 48:2060-8; PMID:18564388; <http://dx.doi.org/10.1111/j.1537-2995.2008.01809.x>

114. Haidari M, Zhang W, Chen Z, Ganjehei L, Warier N, Vanderslice P, Dixon R. Myosin light chain phosphorylation facilitates monocyte transendothelial migration by dissociating endothelial adherens junctions. *Cardiovasc Res* 2011; 92:456-65; PMID:21908648; <http://dx.doi.org/10.1093/cvr/cvr240>

115. Wen B, Combes V, Bonhoure A, Weksler BB, Couraud PO, Grau GE. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses. *PLoS One* 2014; 9(3):e91597; PMID:24646764; <http://dx.doi.org/10.1371/journal.pone.0091597>

116. Glod J, Kobiler D, Noel M, Koneru R, Lehrer S, Medina D, Maric D, Fine HA. Monocytes form a vascular barrier and participate in vessel repair after brain injury. *Blood* 2006; 107:940-6; PMID:16204319; <http://dx.doi.org/10.1182/blood-2004-11-4403>

117. Leslie M. Beyond clotting: the powers of platelets. *Science* 2010; 328:562-4

118. Stokes KY, Granger DN. Platelets: A critical link between inflammation and microvascular dysfunction. *J Physiol* 2012; 590:1023-34; PMID:22183721

119. Cloutier N, Pare A, Farmdale RW, Schumacher R, Nigrovic PA, Lacroix S, Boilard E. Platelets can enhance vascular permeability. *Blood* 2012; 120:1334-1343; PMID:22544703; <http://dx.doi.org/10.1182/blood-2012-02-413047>

120. Ho-Tin-Noe B, Demers M, Wagner DD. How platelets safeguard vascular integrity. *J Thromb Haemost* 2011; 9:56-65; PMID:21781242; <http://dx.doi.org/10.1111/j.1538-7836.2011.04317.x>

121. Kitchens CS, Weiss L. Ultrastructural changes of endothelium associated with thrombocytopenia. *Blood* 1975; 46:567-78; PMID:1174690

122. Gimbrone MA Jr, Aster RH, Cotran RS, Corkery J, Jandl JH, Folkman J. Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. *Nature* 1969; 222:33-36; PMID:5775827; <http://dx.doi.org/10.1038/222033a0>

123. Schaphorst KL, Chiang E, Jacobs KN, Zaiman A, Natarajan V, Wigley F, Garcia JG. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. *Am J Physiol Lung Cell Mol Physiol* 2003; 285:L258-67; PMID:12626332

124. Shepard JM, Moon DG, Sherman PF, Weston LK, Del Vecchio PJ, Minnear FL, Malik AB, Kaplan JE. Platelets decrease albumin permeability of pulmonary artery endothelial cell monolayers. *Microvasc Res* 1989; 37:256-66; PMID:2733598; [http://dx.doi.org/10.1016/0026-2862\(89\)90044-7](http://dx.doi.org/10.1016/0026-2862(89)90044-7)

125. Shepro D, Welles SL, Hechtman HB. Vasoactive agonists prevent erythrocyte extravasation in thrombocytopenic hamsters. *Thromb Res* 1984; 35:421-430; PMID:6484891; [http://dx.doi.org/10.1016/0049-3848\(84\)90234-2](http://dx.doi.org/10.1016/0049-3848(84)90234-2)

126. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD. Angiopoietin-1 protects the adult vasculature against plasma leakage. *Nat Med* 2000; 6:460-3; PMID:10742156; <http://dx.doi.org/10.1038/74725>

127. Paty PS, Sherman PF, Shepard JM, Malik AB, Kaplan JE. Role of adenosine in platelet-mediated reduction in pulmonary vascular permeability. *Am J Physiol* 1992; 262:H771-7; PMID:1558187

128. Hänel P, Andréani P, Gräler MH. Erythrocytes store and release sphingosine-1-phosphate in blood. *FASEB J* 2007; 21:1202-9; PMID:17215483; <http://dx.doi.org/10.1096/fj.06-7433com>

129. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Pappu R, Coughlin SR. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. *J Clin Invest* 2009; 119:1871-9; PMID:19603543

130. Curry FE, Clark JF, Adamson RH. Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels. *Am J Physiol Heart Circ Physiol* 2012; 303:H825-34; PMID:22865384; <http://dx.doi.org/10.1152/ajpheart.00181.2012>

131. Polanowska-Grabowska R, Wallace K, Field JJ, Chen L, Marshall MA, Figler R, Gear AR, Linden J. P-selectin mediated platelet-neutrophil aggregate formation activates neutrophils in mouse and human sickle cell disease. *Arterioscler Thromb Vasc Biol* 2010; 30:2392-9; PMID:21071696; <http://dx.doi.org/10.1161/ATVBAHA.110.211615>

132. Nagata K, Tsuji T, Todoroki N, Katagiri Y, Tanoue K, Yamazaki H, Hanai N, Irimura T. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62) J. Immunol. 1993; 151:3267-73; PMID:7690799

133. Coeffier E, Delautier D, Couedic LeJP, Chignard M, Denizot Y, Benveniste J. Cooperation between platelets and neutrophils for paf-acether (platelet-activating factor) formation. *J Leukoc Biol* 1990; 47:234-43; PMID:2307906

134. Knezevic II, Predescu SA, Neamu RF, Gorovoy MS, Knezevic NM, Easington C, Malik AB, Predescu DN. Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability. *J Biol Chem* 2009; 284:5381-94; PMID:19095647; <http://dx.doi.org/10.1074/jbc.M808958200>

135. Schmidt VJ, Wölflé SE, Boettcher M, de Wit C. Gap junctions synchronize vascular tone within the microcirculation. *Pharmacol Rep* 2008; 60:68-74; PMID:18276987

136. Michel CC, Curry FE. Microvascular permeability. *Physiol Rev* 1999; 79:703-61; PMID:10390517

137. Rosenberg GA. Neurological diseases in relation to the blood-brain barrier. *J Cereb Blood Flow Metab* 2012; 32:1139-51; PMID:22252235; <http://dx.doi.org/10.1038/jcbfm.2011.197>

138. Schoknecht K, Shalev H. Blood-brain barrier dysfunction in brain diseases: clinical experience. *Epilepsia* 2012;53(Suppl 6):7-13; PMID:23134490; <http://dx.doi.org/10.1111/j.1528-1167.2012.03697.x>

139. Wang L, Patel M, Razavi HM, Weicker S, Joseph MG, McCormack DG, Mehta S. Role of inducible nitric oxide synthase in pulmonary microvascular protein leak in murine sepsis. *Am J Respir Crit Care Med* 2002; 165:1634-9; PMID:12070065; <http://dx.doi.org/10.1164/rccm.2110017>

140. Palmgren MS, deShazo RD, Carter RM, Zimny ML, Shah SV. Mechanisms of neutrophil damage to human alveolar extracellular matrix: the role of serine and metalloproteases. *J Allergy Clin Immunol* 1992; 89:905-15; PMID:1560171; [http://dx.doi.org/10.1016/0091-6749\(92\)90447-A](http://dx.doi.org/10.1016/0091-6749(92)90447-A)

141. Dalrymple NA, Mackow ER. Virus interactions with endothelial cell receptors: implications for viral pathogenesis. *Curr Opin Virol* 2014; 7C:134-40; PMID:25063986; <http://dx.doi.org/10.1016/j.coviro.2014.06.006>

142. Certikova-Chabova V, Tesar V. Recent insights into the pathogenesis of nephrotic syndrome. *Minerva Med* 2013; 104:333-47; PMID:23748287

143. Hawkes M, Elphinstone RE, Conroy AL, Kain KC. Contrasting pediatric and adult cerebral malaria: the role of the endothelial barrier. *Virulence* 2013;4:543-55; PMID:23924893; <http://dx.doi.org/10.4161/viru.25949>

144. Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, McSharry H, Iwakura A, Yoon YS, Himes N, et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. *J Clin Invest* 2004; 113:885-94; PMID:15067321; <http://dx.doi.org/10.1172/JCI200420702>

145. Wahl-Jensen VM, Afanasieva TA, Seebach J, Stroher U, Feldmann H, Schnittler HJ. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. *J Virol* 2005; 79:10442-50; PMID:16051836; <http://dx.doi.org/10.1128/JVI.79.16.10442-10450.2005>

146. Mackow ER, Gorbunova EE, Dalrymple NA, Gavrilovskaya IN. Role of vascular and lymphatic endothelial cells in hantavirus pulmonary syndrome suggests targeted therapeutic approaches. *Lymphat Res Biol* 2013; 11:128-35; PMID:24024573; <http://dx.doi.org/10.1089/lrb.2013.0006>

147. Wang Y, Lewis DF, Alexander JS, Granger DN. Endothelial barrier function in preeclampsia. *Front Biosci* 2007; 12:2412-24; PMID:17127251; <http://dx.doi.org/10.2741/2243>

148. Fisher M. Treatment of acute anaphylaxis. *BMJ* 1995; 311:731-3; PMID:7549690; <http://dx.doi.org/10.1136/bmj.311.7007.731>

149. Arturson G. Pathophysiology of the burn wound. *Ann Chir Gynaecol* 1980; 69:178-90; PMID:6162412

150. Eiselein L, Wilson DW, Lamé MW, Rutledge JC. Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. *Am J Physiol Heart Circ Physiol* 2007; 292:H2745-53; PMID:17259442; <http://dx.doi.org/10.1152/ajpheart.00686.2006>

151. Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. *Microcirculation* 2010; 17:192-205; PMID:20374483; <http://dx.doi.org/10.1111/j.1549-8719.2009.00015.x>

152. Deng X, Szabo S, Khomenko T, Tolstanova G, Pauovic B, French SW, Sandor Z. Novel pharmacologic approaches to the prevention and treatment of

ulcerative colitis. *Curr Pharm Des* 2013; 19:17-28; PMID:22950505

153. Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJ, Stehouwer CD, Smulders YM, van Hinsberg VW. Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. *Rev Endocr Metab Disord* 2013; 14:39-48; PMID:23417760; <http://dx.doi.org/10.1007/s11154-013-9239-7>

154. Olivieri D, Chetta A. Therapeutic perspectives in vascular remodeling in asthma and chronic obstructive pulmonary disease. *Chem Immunol Allergy* 2014; 99:216-25; PMID:24217612; <http://dx.doi.org/10.1159/000353307>

155. Leong CS, Stark P. Thoracic manifestations of sickle cell disease. *J Thorac Imaging* 1998; 13:128-34; PMID:9556290; <http://dx.doi.org/10.1097/00005382-199804000-00008>

156. Sauer T, Pedersen MK, Ebeltoft K, Naess O. Reduced expression of Claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. *Cytopathology* 2005; 16:193-8; PMID:16048505; <http://dx.doi.org/10.1111/j.1365-2303.2005.00257.x>

157. Tabaries S, Dupuy F, Dong Z, Monast A, Annis MG, Spicer J, Ferri LE, Omeroglu A, Basik M, Amir E, et al. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. *Mol Cell Biol* 2012; 32:2979-91; PMID:22645303; <http://dx.doi.org/10.1128/MCB.00299-12>

158. Walford HH, Zuraw BL. Current update on cellular and molecular mechanisms of hereditary angioedema. *Ann Allergy Asthma Immunol* 2014; 112:413-8; PMID:24484972; <http://dx.doi.org/10.1016/j.anai.2013.12.023>

159. McQueen FM, Chan E. Insights into rheumatoid arthritis from use of MRI. *Curr Rheumatol Rep* 2014; 16:388; PMID:24258615

160. Carmeliet P, De Strooper B. Alzheimer's disease: a breach in the blood-brain barrier. *Nature* 2012; 485:451-2; PMID:22622564; <http://dx.doi.org/10.1038/485451a>

161. Nicaise C, Mitrecic D, Demetter P, De Decker R, Authet M, Boom A, Pochet R. Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. *Brain Res* 2009; 1301:152-62; PMID:19748495; <http://dx.doi.org/10.1016/j.brainres.2009.09.018>

162. Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. *J Neuroinflammation* 2013; 10:142; PMID:24289502; <http://dx.doi.org/10.1186/1742-2094-10-142>

163. Martin GS, Brigham KL. Fluid flux and clearance in acute lung injury. *Compr Physiol* 2012; 2:2471-80; PMID:23720254

164. Granger DN, Barrowman JA. Microcirculation of the alimentary tract. II. Pathophysiology of edema. *Gastroenterology* 1983; 84:1035-49; PMID:6339310

165. Spiropoulou CF, Srikiatkachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. *Virulence* 2013; 15:525-36; PMID:23841977; <http://dx.doi.org/10.4161/viru.25569>

166. Heiss WD. The ischemic penumbra: how does tissue injury evolve? *Ann N Y Acad Sci* 2012; 1268:26-34; PMID:22994218; <http://dx.doi.org/10.1111/j.1749-6632.2012.06668.x>

167. Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. *Stroke* 2011; 42:3323-8; PMID:21940972; <http://dx.doi.org/10.1161/STROKEAHA.110.608257>

168. Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, Cortes L, Borlongan CV. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. *Curr Pharm Des* 2012; 18:3731-4; PMID:22574986; <http://dx.doi.org/10.2174/138161212802002733>

169. Abulrob A, Brunette E, Slinn J, Baumann E, Stanimirovic D. Dynamic analysis of the blood-brain disruption in experimental stroke using time domain *in vivo* fluorescence imaging. *Mol Imaging* 2008; 7:248-62; PMID:19123995

170. Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. *J Appl Physiol* 2001; 91:1487-500; PMID:11568129

171. Maybauer MO, Maybauer DM, Enkhbaatar P, Laporte R, Wiśniewska H, Traber LD, Lin C, Fan J, Hawkins HK, Cox RA, et al. The selective vasopressin type 1a receptor agonist selexipressin (FE 201258) blocks vascular leak in ovine severe sepsis. *Crit Care Med* 2014; 42:e525-33; PMID:24674922

172. Artus C, Glacial F, Ganeshamoorthy K, Ziegler N, Godet M, Guibert T, Liebner S, Couraud PO. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. *J Cereb Blood Flow Metab* 2014; 34:433-40; PMID:24346691; <http://dx.doi.org/10.1038/jcbfm.2013.213>

173. Abdul Muneer PM, Alikunju S, Szlachetka AM, Murin LC, Haorah J. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. *Mol Neurodegener* 2011; 6:23; PMID:21426580

174. Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. *Circ Res* 2010; 107:943-52; PMID:20947863; <http://dx.doi.org/10.1161/CIRCRESAHA.110.223750>

175. Dixit M, Bess E, Fisslthaler B, Härtel FV, Noll T, Busse R, Fleming I. Shear stress-induced activation of the AMP-activated protein kinase regulates FoxO1a and angiopoietin-2 in endothelial cells. *Cardiovasc Res* 2008; 77:160-8; PMID:18006475; <http://dx.doi.org/10.1093/cvr/cvm017>

176. Ghitescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted to plasma-lemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. *J Cell Biol* 1986; 102:1304-11; PMID:3007533; <http://dx.doi.org/10.1083/jcb.102.4.1304>

177. Hamann S, Herrera-Perez JJ, Bundgaard M, Varez-Leefmans FJ, Zeuthen T. Water permeability of Na^+ - K^+ - 2Cl^- cotransporters in mammalian epithelial cells. *J Physiol* 2005; 568:123-35; PMID:16020454; <http://dx.doi.org/10.1113/jphysiol.2005.093526>

178. Hecquet CM, Ahmed GU, Malik AB. TRPM2 channel regulates endothelial barrier function. *Adv Exp Med Biol* 2010; 661:155-67; PMID:20204729; http://dx.doi.org/10.1007/978-1-60761-500-2_10

179. Heisey SR, Held D, Papponeheimer JR. Bulk flow and diffusion in the cerebrospinal fluid system of the goat. *Am J Physiol* 1962; 203:775-81; PMID:13953498

180. Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). *J Cell Biol* 1995; 129:203-17; <http://dx.doi.org/10.1083/jcb.129.1.203>; PMID:7698986

181. Ma J, Wang P, Liu Y, Zhao L, Li Z, Xue Y. Krüppel-like factor 4 regulates blood-tumor barrier permeability via ZO-1, occludin and claudin-5. *J Cell Physiol* 2014; 229:916-26; PMID:24318462; <http://dx.doi.org/10.1002/jcp.24523>

182. McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. *Physiol Rev* 2010; 90:1337-81; PMID:20959618; <http://dx.doi.org/10.1152/physrev.00058.2009>

183. Rehm K, Panzer L, van Vliet V, Genot E, Linder S. Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions. *J Cell Sci* 2013; 126:3756-69; PMID:23750010; <http://dx.doi.org/10.1242/jcs.129437>

184. Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. *Brain* 2008; 131:1087-98; <http://dx.doi.org/10.1093/brain/awn014>; PMID:18267965

185. Saunders N, Strazielle N, Gherzi-Egea JF. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. *Histochem. Cell Biol* 2012; 138:861-79; PMID:22886143

186. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. *Nat Cell Biol* 2008; 10:923-34; PMID:18604199; <http://dx.doi.org/10.1038/ncb1752>

187. Tawa H, Rikitake Y, Takahashi M, Amano H, Miyata M, Satomi-Kobayashi S, Kinugasa M, Nagamatsu Y, Majima T, Ogita H, et al. Role of afadin in vascular endothelial growth factor- and sphingosine 1-phosphate-induced angiogenesis. *Circ Res* 2010; 106:1731-42; PMID:20413783; <http://dx.doi.org/10.1161/CIRCRESAHA.110.216747>

188. Yilmaz G, Granger DN. Leukocyte recruitment and ischemic brain injury. *Neuromolecular Med* 2010; 12:193-204; PMID:19579016; <http://dx.doi.org/10.1007/s12017-009-8074-1>