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The barrier properties of endothelial cells are critical for
the maintenance of water and protein balance between the
intravascular and extravascular compartments. An
impairment of endothelial barrier function has been
implicated in the genesis and/or progression of a variety of
pathological conditions, including pulmonary edema,
ischemic stroke, neurodegenerative disorders, angioedema,
sepsis and cancer. The altered barrier function in these
conditions is often linked to the release of soluble mediators
from resident cells (e.g., mast cells, macrophages) and/or
recruited blood cells. The interaction of the mediators with
receptors expressed on the surface of endothelial cells
diminishes barrier function either by altering the expression
of adhesive proteins in the inter-endothelial junctions, by
altering the organization of the cytoskeleton, or both.
Reactive oxygen species (ROS), proteolytic enzymes (e.g.,
matrix metalloproteinase, elastase), oncostatin M, and VEGF
are part of a long list of mediators that have been implicated
in endothelial barrier failure. In this review, we address the
role of blood borne cells, including, neutrophils, lymphocytes,
monocytes, and platelets, in the regulation of endothelial
barrier function in health and disease. Attention is also
devoted to new targets for therapeutic intervention in
disease states with morbidity and mortality related to
endothelial barrier dysfunction.
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Endothelial Barrier Function

An intact layer of healthy endothelial cells is essential for nor-
mal blood vessel function. The close apposition and alignment of
endothelial cells in the vessel wall accounts for their ability to
form a barrier that restricts the movement of water, proteins and
blood cells between the intravascular and interstitial compart-
ments. This barrier is formed by a layer of endothelial cells that
are joined laterally by cell-cell junctions, while the basolateral
aspect of this layer is attached to a basement membrane com-
posed of collagen, fibronectin, laminin, and glycosaminoglycans
(GAG). Cell-surface expressed integrins, which form regions
called focal adhesions (FA), bind the endothelial cells to the
extracellular matrix. The resulting barrier is semi-permeable to
water and non-lipophilic molecules, and is both size- and charge-
selective for solutes passage.1 Precise regulation of the restrictive
properties of the endothelial barrier is essential for normal organ
function. Indeed, diminished barrier function (and increased vas-
cular permeability) is associated with organ dysfunction and can
lead to serious pathological consequences, as evidenced in dis-
eases such as sepsis, as well as inflammatory and neurodegenera-
tive diseases. Restoration of endothelial barrier integrity in these
conditions can significantly impede disease progression.1,2

Several different pools of proteins are assembled on endothelial
cells to form membrane domains that create the cohesive structure
that accounts for the barrier properties of the vessel wall. Among the
barrier-forming adhesive structures, the most important are the
adherens junctions (AJ), gap junctions (GJ), and tight junctions
(TJ). These domains collectively form the paracellular junctional
structure that regulates the partitioning of water and solutes between
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blood and interstitium, and an alteration in these membrane com-
ponents often underlie the increased vascular permeability that
accompanies inflammation.3 In addition to their barrier function,
signaling mediated through these adhesive membrane proteins con-
tribute to a variety of endothelial cell processes, such as cell growth,
cell polarity and their interactions with other cell types such as
smooth muscle cells and pericytes.4 Consequently, an alteration in
endothelial adhesive proteins affects not only vascular permeability
but also the vascular responses to changes in the perivascular
environment.

Adherens junctions mediate cell-cell contact among endothelial
cells in all types of blood vessels, and is composed mainly of VE-
cadherin, a member of a transmembrane Ca2C-dependent adhe-
sion molecule family that regulates vascular permeability.5 VE-cad-
herin on one cell strongly binds (homotypically) VE-cadherin on
an adjacent cell, which leads to a reorganization of the cytoskeleton
in both cells via an interaction with actin filaments after cadherin-
catenin binding (b-catenin, p120 catenin and a-catenin).6,7 VE-
cadherin recruits a-catenin, via b-catenin, to sites of adherens
junction assembly. Other actin-binding, such as vinculin, a-acti-
nin, and eplin are also recruited to the adherens junction by fol-
lowing conformational changes in a-catenin, which serve to
reinforce the adherens junction.8 The main function of VE-cad-
herin is to seal the paracellular space, but it also modulates angio-
genesis, inhibits growth (cell contact inhibition), and protects cells
from apoptosis.9 VE-cadherin has also been implicated in the tran-
scriptional regulation of claudin-5, another component of the
endothelial tight junction, via a mechanism that involves the phos-
phorylation of Fox01.10 Phosphorylation and dephosphorylation
of AJ residues, including the intracellular tail of VE-cadherin, reg-
ulates the function of VE-cadherin.11 The enzymes responsible for
the VE-cadherin phosphorylation include tyrosine kinase Src, pro-
tein kinase C, and focal adhesion tyrosine kinase (FAK),12-14 while
the dephosphorylating enzymes include Shp-2 and vascular endo-
thelial (VE) receptor protein tyrosine phosphatase (VE-PTP).15,16

Wessel17 have recently demonstrated that selective phosphoryla-
tion/dephosphorylation of specific tyrosine residues (Tyr685 or
Tyr731) on VE-cadherin allows for the differential regulation of
vascular permeability and leukocyte extravasation.

Gap junctions allow for cell-cell communication via the forma-
tion of clusters of intercellular hemi-channels that link to each other
to connect the cytoplasm of the adjacent cells.18 Gap junctions are
formed by proteins from the connexin family. Molecules less than
1000 daltons, such as ions, simple sugars, amino acids, nucleotides,
and second messengers (cAMP, calcium, IP3) can move between
cells via these channels.19 GJ are also involved in several cellular
events, including metabolic transport, electrical coupling, apoptosis,
differentiation, and tissue homeostasis,20 and phosphorylation of
the inner tail of this junctional structure can affect these functions of
GJ.21 In addition to allowing for communication between endothe-
lial cells,22 GJ also allow for cross-talk between the endothelium and
smoothmuscle cells in the vessel wall.23

The cerebral vasculature contains an additional component of
the endothelial barrier called tight junctions (TJ), which closely
fuses adjacent endothelial cells and further restricts the exchange of
fluid and solutes through the paracellular spaces.24,25 TJ contribute

to the highly selective properties of the blood brain barrier (BBB),
which significantly limits the passage of substances from blood to
brain interstitium. TJ are comprised of different proteins such as
occludin, claudin family members, zonula occludens (ZO) family
members and junctional adhesion molecules (JAM),24 which form
a charge selective pore that only allows for the passage of small
ions and uncharged molecules.26 Zonula occludens are scaffolding
proteins that interact with intracellular components such as F-actin
to influence cytoskeleton mobility and other functions.27 The
claudin family is comprised of more than 20 proteins and endo-
thelial cells in the BBB are particularly rich in claudins 4, 5 and
16.28 TJ permeability is significantly influenced by the type(s) of
claudin present or absent in the endothelial cells.29 For example,
in the absence of claudin-5 BBB permeability is profoundly com-
prised.30 Occludin is a phosphoprotein of 65-kDa located in the
cytoplasmic membrane of endothelial cells in brain.31 Phosphory-
lation of occludin amino acid residues can strongly influence vas-
cular barrier function.32 However, selective deletion of occludin
has been shown not to affect vessel permeability, suggesting over-
lapping functions of the different TJ proteins.33 JAM family mem-
bers, including JAM-A, JAM-B and JAM-C, are also present in
endothelial cells found in different vascular beds including liver,
brain, intestine and lungs,34 and are expressed by circulating blood
cells, including platelets, lymphocytes and neutrophils.35 Known
functions of JAMs include signaling to cytoskeletal proteins,
assembly of TJ, and gathering cell-polarity proteins to the TJ.36

Alterations in either of these TJ constituents members may result
in endothelial barrier failure.

As a connective structure that links vascular endothelial cells to
extracellular matrix proteins, focal adhesions (FA) are comprised
of integrins, which participate in different cell functions such as
adhesion, movement, and matrix remodeling. FA are connected to
actomyosin bundles and serve as extracellular sensors.37 While FA
do not directly form cell-cell junctions, these structures act as
mechano- and chemo-sensors that modulate cytoskeleton tension.
Intracellular signaling events associated with FA include the
recruitment and activation of kinases that can modulate the bind-
ing affinity of integrins via phosphorylation.38 Immunoblockade
of these integrins or interference with their binding to extracellular
matrix constituents results in an increased vascular permeabil-
ity,39,40 confirming the critical role of integrins in the regulation
of endothelial barrier function. The relative importance of integ-
rins in modulating endothelial barrier function appears to increase
in conditions associated with angiogenesis or inflammation.41,42

Another structural feature of endothelial cells that has been
implicated in the modulation of vascular permeability is the gly-
cocalyx, a 200–500 nm thick layer on the luminal surface of the
cell that is comprised of proteoglycans with GAG side chains
(e.g., heparan sulfates).43,44 A reduction in glycocalyx thickness
caused by enzymatic degradation is associated with an increased
transendothelial albumin flux,44 while stabilization of the glyco-
calyx with angiopoietin-1 reduces albumin permeability.45 The
negative charge of GAGs in the glycocalyx is believed to impose a
significant barrier to protein movement, while offering little resis-
tance to the movement of water across the endothelial
barrier.44,46
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While most attention devoted to vascular permeability has
been given to modulation of the intercellular junctions (paracel-
lular pathway), solutes and water can also cross the endothelial
barrier via a transcellular pathway. Vesicules (or calveolae) have
long been considered a pathway for the exchange of plasma pro-
teins between the blood and interstitial compartment.47 The
transcytosis process is regulated by different factors that target
components of the vesicle, such as caveolin-1, which serves as a
scaffold for albumin-binding proteins as well as different signal-
ing molecules that regulate transcytosis.48 In the cerebral micro-
vasculature, with its tight junctions, the transcellular route is also
important for the exchange of water. Aquaporins (AQP), cell
membrane channels in vascular endothelium, have been shown
to contribute to water exchange across the BBB under both basal
conditions and in certain pathological states.49-51 However, for
most vascular beds, the quantitative importance of the transcellu-
lar pathway for the exchange of water and plasma protein
exchange across endothelial cells appears small.47

cAMP, a second messenger that is constantly formed in most
cells, including endothelial cells, plays an important role in the
modulation of endothelial barrier function. It is generated by the
membrane-associated enzyme adenylyl cyclase following activa-
tion of G-protein coupled receptors (GPCR) by either endoge-
nous (e.g., inflammatory mediators, hormones,
neurotransmitters)52,53 or exogenous (e.g., drugs, xenobiotics,
germs)54-56 stimuli. cAMP degradation is mediated by phospho-
diesterase (PDE).57 The accumulation of cAMP in endothelial
cells can result in either barrier-destabilization or -preservation,
depending on the intracellular locus of cAMP generation, with
cytosolic accumulation leading to increased vascular permeabil-
ity, while increased cAMP in vacuoles appears to protect against
barrier dysfunction.58 At least part of the endothelial barrier pre-
serving effect of cAMP reflects its influence on junctional pro-
teins.59 cAMP-induced barrier preserving signaling includes: 1)
activation of cAMP-dependent protein kinase A (PKA) and phos-
phorylation of downstream proteins, such as ERK1/2 and myo-
sin light-chain kinase (MLCK), important modulators of
vascular permeability; and 2) binding to intracellular proteins
involved in inflammation, such as the exchange protein activated
by cyclic AMP (EPAC1).60 EPAC1 is known to induce immuno-
modulatory genes such as suppressors of cytokine signaling 3
(SOCS-3) and to reduce integrin-mediated permeability
responses.60 Furthermore, both PKA and EPAC1 are known to
activate Rac1, a small GTPase involved in endothelial barrier
protection via inhibition of RhoA, which regulates the MLCK, a
protein whose activation leads to endothelial cell contraction.61

EPAC1 activation by cAMP also results in the activation of
Rap1, via a PKA-independent pathway, and ultimately leads to
enhanced endothelial barrier function by inducing the reorgani-
zation of cortical actin, redistribution of VE-cadherin and other
junctional proteins to cell-cell contacts.62 Consequently, cellular
events that alter the bioavailability of cAMP can exert a major
influence on the barrier function of vascular endothelial cells.

A variety of chemical and physical factors (e.g., shear stress)
act constantly on endothelial cells to influence its barrier proper-
ties.7,63 To some extent, the factors that act on endothelial cells

are derived from other cell populations that comprise the vessel
wall (e.g., podocytes, smooth muscle) or from neighboring cells
that lie in the immediate perivascular space (e.g., mast cells, mac-
rophages). Endothelial cells are also able to synthesize and release
factors, such as adrenomedullin, that act to stabilize the endothe-
lial barrier thereby opposing the actions of inflammatory media-
tors on vascular permeability.64 However, when mediator release
from these other cell populations is excessive, endothelial barrier
dysfunction or failure may result. There is also mounting evi-
dence that blood cells are capable of exerting a similar influence
on endothelial barrier function, and may account for the barrier
failure evidenced in different pathological conditions. In the fol-
lowing sections, we briefly summarize evidence implicating dif-
ferent blood cell populations in the modulation of endothelial
barrier function, address their potential role in the vascular per-
meability responses in different disease states, and discuss poten-
tial therapeutic targets for prevention of endothelial barrier
dysfunction.

Pericytes, which heavily populate the vessel wall in some vas-
cular beds, such as brain, lie in close contact with endothelial
cells.65 The proximity between pericytes and endothelial cells
allow for cross-talk between the 2 cell types, and accounts for the
ability of pericytes to regulate the expression of junctional pro-
teins.66 In the brain, pericytes also influences astrocyte cell orga-
nization/polarization, thereby maintaining the restrictive
properties of the BBB.67 Some pericytes-derived mediators also
exert a modulating influence on BBB function by regulating the
expression of endothelial junction proteins. There include trans-
forming growth factor-beta1 (TGF-beta1),68 glial cell-derived
neurotrophic factor (GDNF),69 and angiopoietin 1 (ANG-1).70

Leukocytes and Endothelial Barrier Function

Neutrophils
Neutrophils have been implicated as mediators of the

increased vascular permeability that accompanies a variety of
pathological conditions, including ischemia-reperfusion,71 sep-
sis,72 cancer73,74 and neurological diseases.75 A role for neutro-
phils in these conditions is largely based on 2 observations: 1)
neutrophils are recruited into the diseased/injured tissue, and 2)
interfering with the neutrophil accumulation minimizes or pre-
vents the endothelial barrier dysfunction.76,77 Activated neutro-
phils release an impressive mixture of chemicals that can impair
endothelial barrier function, including reactive oxygen species
(ROS), proteolytic enzymes, and cytokines (Fig. 1). These medi-
ators and other products of neutrophil activation can alter barrier
function by acting on the endothelial cell cytoskeleton, junctional
proteins, and the endothelial glycocalyx. For example, endothe-
lial cells exposed to ROS exhibit an increased permeability
response that has been linked to disruption of the inter-endothe-
lial junction, actomyosin contraction, gap formation, and an
altered expression and phosphorylation state of junctional adhe-
sion molecules.78-80 Since superoxide is known to rapidly interact
with (and inactivate) nitric oxide, some have attributed the effects
of ROS on endothelial barrier function to an alteration in NO
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bioavailability.81 However, NO has been implicated as both a
negative and a positive modulator of endothelial barrier func-
tion,82,83 with the protective role of NO attributed to its ability
to inhibit leukocyte-endothelial cell adhesion.84 Nitric oxide syn-
thase inhibition increases the permeability of endothelial cell
monolayers, a response that is associated with the formation of
stress fibers and disruption of adherens junctions.85

Neutrophils are also able to enhance transendothelial protein
exchange by releasing proteases, like elastase and matrix

metalloproteinases (MMP), which appear to
alter barrier function by disrupting junctional
complexes and inducing endothelial cell
retraction.86-88 Elastase has also been shown
to promote the adhesion and transendothelial
migration of leukocytes in the microcircula-
tion,89 suggesting that the permeability
enhancing effect of the protease may also be
related to an enhancement of neutrophil-
endothelial cell adhesion. This possibility is
supported by reports describing diminished
endothelial barrier function, resulting from
junctional disassembly and cytoskeletal reor-
ganization, following the ligation of neutro-
phil adhesion molecules with their counter-
receptors on endothelial cells, such as the
binding of b-2 integrins with either ICAM-1
or VCAM-1.83,90,91 It has also been pro-
posed that neutrophils can diminish barrier
function due to physical disruption of the
paracellular pathway caused by the passage of
these cells through the junctions.92,93 This
appears to occur despite the fact that endo-
thelial cells can extend projections to envelop
the migrating neutrophils, forming endothe-
lial domes, with the leakage response result-
ing from the transfer of entrapped plasma
proteins within the “dome.”83,94 It has also
been reported that the endothelial barrier
dysruption caused by transmigrating leuko-
cytes are detected by the endothelial cells as a
release of isometric tension, which results in
protective actin remodeling that is dependent
on the production of reactive oxygen spe-
cies.95 Furthermore, the results of a recent
study reveal that extravasating leukocytes
deposit microparticles on the subendothe-
lium during their passage through the junc-
tions and that the microparticle deposition
serves to maintain barrier function; inhibi-
tion of neutrophil-derived microparticle for-
mation resulted in dramatically increased
vascular leakage.96

Another consequence of neutrophil
activation within the microcirculation is
capillary no-reflow, which is manifested as
a reduced number of perfused capillaries

and tissue hypoxia.97 The capillary
malperfusion is worsened when neutrophil-dependent increases
in vascular permeability lead to enhanced capillary fluid filtra-
tion and excessive accumulation of fluid in the interstitial com-
partment. The accompanying increase in interstitial fluid
pressure leads to compression of the microvasculature, which
further exacerbates the no-reflow response. This mechanism is
supported by studies describing reductions in vascular perme-
ability and intersitital edema, and an improvement of capillary

Figure 1. The endothelial barrier. Mediators released from neutrophils, lymphocytes, monocytes,
and platelets act on endothelial cells to either weaken or strengthen the barrier. The mediators
exert their effects on barrier function by altering the width of the intercellular junctions, either
through changes in junctional proteins, the endothelial cell cytoskeleton, or both. Adherens junc-
tions regulate paracellular leakage. Transcellular (vesiculo-vacuolar organelle [VVO] or vesicular)
transport of water and solutes also occurs across the endothelial barrier. However, the quantitative
significance of this pathway and its responsiveness to barrier altering agents remain unclear.
Arrows designate the direction of transport across the barrier.
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perfusion following neutrophil depletion or prevention of leu-
kocyte-endothelial cell adhesion.98

Lymphocytes
Less is known about the role of lymphocytes in the modula-

tion of endothelial barrier function. Because T-cells are known to
influence neutrophil function and to enhance the endothelial cell
dysfunction mediated by neutrophils,99 it is often assumed that
the contribution of T-cells to inflammation-induced vascular
protein leakage largely reflects the ability of T-cells to enhance
the recruitment and reactivity of neutrophils.77 However, studies
in severe combined immunodeficient (SCID) mice,100 CD3C
T-cell deficient101 mice and wild type mice treated with CD4C
T-cell depleting antibody102 have revealed an important role for
T-lymphocytes in mediating the increased vascular permeability
induced by ischemia-reperfusion in the intestine, kidney and
lung. T-cells have also been implicated in mediating the blood-
brain barrier (BBB) disruption that is associated with experimen-
tal autoimmune encephalomyelitis (EAE).103 In this model of
neurological disease, CD4C T cells appear to elicit changes in
tight junction architecture and BBB permeability by inducing
astrocytes to release vascular endothelial growth factor (VEGF).
Studies of a CD8C T-cell dependent model of BBB disruption
that mimics multiple sclerosis have revealed that stimulation of
CNS infiltrating CD8 T cells leads to astrocyte activation, alter-
ation of BBB tight junction proteins and increased BBB perme-
ability in a non-apoptotic manner, but these responses were not
observed in perforin deficient mice.104 While other lymphocyte-
derived products, such as lymphotoxin, have been shown to
increase the permeability of endothelial cell monolayers in
vitro,105 the role of these products in T-cell dependent modula-
tion of vascular permeability in vivo remains unclear.

Monocytes
Monocytes are known to produce and release a variety of

mediators of endothelial barrier dysfunction, notably factors such
as oncostatin M (OSM) and VEGF. Oncostatin M (OSM), a
member of the IL-6 superfamily, has been shown to reduce trans-
endothelial electrical resistance (TEER) of monolayers comprised
of cultured rat cerebral microvascular endothelial cells.106 OSM
may also promote BBB dysfunction by stimulating brain cells to
produce cytokines and prostaglandins,107,108 and to increase the
expression of cell adhesion molecules on endothelial cells.109

While monocytes are the dominant source of OCM produced by
blood cells, activated microglia and astrocytes are additional sour-
ces of OCM in the brain. Monocytes are also a rich source of
VEGF.110 Monocyte-derived VEGF has been implicated in the
enhanced vascular leakage that accompanies breast tumor metas-
tasis to the lung.111 This mechanism may also contribute to the
endothelial barrier dysfunction detected in other disease models
that includes the recruitment of monocytes, such as atherosclero-
sis. Other monocyte-derived mediators that have been shown to
increase vascular permeability include high mobility group box 1
(HMGB-1), TNF-a and IL-1b.112,113

The engagement of some inflammatory cells with integrins
expressed on the endothelial cell surface can initiate a series of

responses that will facilitate the transendothelial migration of the
attached blood cell. For example, the binding of integrins present on
monocytic cells with adhesionmolecules on endothelial cells induces
HRas\Raf\MEK\ERK signaling, which leads to myosin light chain
(MLC) activation. This results in the recruitment of Src to VE-cad-
herin and phosphorylation, the dissociation of VE-cadherin/b-cate-
nin complex, and ultimately gap junction formation.114

There is also evidence that supports a protective role for mono-
cytes in the maintenance of endothelial barrier function. As
described above for neutrophils,96 it has been reported that micro-
particles released from activated monocytes enhance the tightness
of endothelial cell monolayers after exposure to bacterial endo-
toxin.115 While this microparticle mediated response was associ-
ated with inhibition of pSrc (tyr416) signaling, a cause-effect
relationship with endothelial barrier function was not demon-
strated. In another study,116 a different mechanism of monocyte-
mediated protection was demonstrated. CD14C peripheral mono-
cytes, cultured under angiogenic conditions, were shown to
acquire phenotypic and functional properties similar to cerebral
microvascular endothelial cells. The features acquired by the
monocytes included the expression of tight junction proteins, high
transcellular electrical resistance and low permeability to solutes. It
was proposed that CD14C blood monocytes may play an impor-
tant role in repairing (sealing) the BBB after brain injury.116

Platelets and endothelial barrier function
Recently, much attention has been devoted to addressing the

role of platelets in inflammation, and the evolving consensus is
that platelets tend to amplify diffrent components of the inflam-
matory response, most notably the expression of endothelial cell
adhesion molecules and the recruitment of leukocytes.117,118

While there are some reports that describe the ability of platelets
to diminish endothelial barrier function,119 there is a larger body
of evidence that supports an anti-permeability effect of plate-
lets.120 For example, thrombocytopenia appears to elicit an
increased vascular permeability in resting microvessels and this
response is reversed following the restoration of blood platelet
count.121 Some of the beneficial effects of platelets in support of
barrier function have been attributed to a purely physical effect
resulting from adherent platelets covering gaps in the endothelial
lining of injured blood vessels,120,122 however, soluble factors
released by platelets are a more likely to explain the ability of
these cells to maintain vascular wall integrity in the setting of
inflammation or other pathological conditions.77,120 Platelet-
conditioned media123,124 and different molecules released from
platelets, including sphingosin-1-phosphate (S1P),123 seroto-
nin,125 angiopoietin-1,126 and adenine nucleotides,127 have been
shown to enhance the barrier properties of endothelial cells either
in vivo or in vitro. S1P is believed to be continuously secreted
into the blood stream by platelets as well as erythrocytes under
physiological conditions.128 The S1P subsequently binds to its
receptor on the surface of endothelial cells thereby activating
Rac1, which acts to preserve endothelial barrier function. The
importance of platelet and erythrocyte-derived S1P in modulat-
ing vascular permeability is evidenced by reports that describe a
high basal leak of proteins in pulmonary microvessels of mutant
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mice that selectively lack S1P in plasma,129 and the observation
that the increased permeability observed in intact microvessels
perfused with an erythrocyte-free solution is reversed following
the administration of exogenous S1P.130

Platelets also hold the potential to influence endothelial barrier
function by forming heterotypic aggregates with leukocytes. For
example, platelet-neutrophil aggregates (PNA) have been impli-
cated in the increased pulmonary vascular permeability in mice
with sickle cell disease.131 In this model of human disease, interfer-
ing with PNA formation with a P-selectin blocking antibody
decreased the lung vascular permeability response. While it is not
clear how the aggregate formation leads to altered barrier function,
the response may be related to the observation that neutrophils
and monocytes with attached activated platelets produce more
than twice the amount of superoxide than their platelet-free coun-
terparts, and P-selectin mediated signaling underlies this
response.132 Similarly, it has been demonstrated that the genera-
tion of platelet activating factor (PAF) by the combination of pla-
telets and neutrophils is 2-times higher than that detected in either
cell activated separately, but this amplification effect on PAF pro-
duction results from transcellular phospholipid metabolism
between the 2 cells, and does not require cell–cell adhesion.133

PAF, which is known to increase vascular permeability when
engaged with its receptor on endothelial cells, disrupts the inter-
endothelial junctions via Rac1-dependent relocation of junctional
proteins (e.g., VE-cadherin, ZO-1) and actin polymerization.134

Diseases associated with endothelial barrier dysfunction
An injured or dysfunctional endothelial barrier has the poten-

tial to significantly impact tissue function and viability. Disconti-
nuities or breaks in the endothelial lining can impair blood flow
regulation by interfering with vasodilatory responses that are
dependent on endothelial cell-cell communication (e.g., ascend-
ing vasodilation).135 Clot formation can also result if the breach
in the barrier is sufficient to expose platelets to the collagen layer
that normally lies beneath the endothelial cell lining.120 How-
ever, endothelial barrier dysfunction is more commonly associ-
ated with subtle changes in the inter-endothelial junctions
(discussed above) that can result in the excessive loss of water and
proteins into the extravascular compartment.136 The magnitude
of the leakage of fluid and protein that accompanies an increased
vascular permeability can lead to edemagenic responses that range
from small, reversible and without a long-lasting effect on tissue
function to a severe and irreversible response that leads to tissue
necrosis and organ failure. The entire range of permeability-
dependent edemagenic responses is evidenced in human disease
states. As noted in Table 1, increased vascular permeability has
been implicated in a variety of pathological conditions, including
both acute and chronic diseases. In some conditions, the perme-
ability response is largely manifested in one organ system (e.g.,
COPD, nephrotic syndrome, Alzheimer disease) while a more
widespread (systemic) permeability response is noted in other dis-
eases (e.g., sepsis, diabetes mellitus).

The contribution of the endothelial barrier dysfunction to dis-
ease morbidity and mortality appears to be condition- and organ-
dependent. For example, while the vascular permeability increases

that accompanies sickle cell disease and hypertension are not likely
to contribute significantly to disease induction, progression and/or
mortality, a significant contribution to disease outcome may be
expected of the endothelial barrier failure that is associated with
conditions such as sepsis, acute kidney injury, dengue hemorrhagic
fever, and stroke. Two organs that appear to be most vulnerable to
the deleterious consequences of endothelial barrier dysfunction are
the brain and lungs. In both tissues, excessive fluid loss across a
leaky endothelial cell layer has the potential to profoundly impact
organ function and/or viability. This is commonly manifested in
the lungs as an accumulation of interstitial fluid in the alveolar
spaces (pulmonary edema), which results when the alveolar mem-
brane is ruptured due to excessive interstitial fluid accumulation
(and an elevated interstitial pressure) secondary to capillary fluid
leakage.163 A similar phenomenon has been described in the intes-
tine, with excessive capillary fluid and protein leakage resulting in
mucosal barrier disruption and the movement of interstitial fluid
in the gut lumen.164 However, the response in gut is not as imme-
diately life-threatening as pulmonary edema, which impairs gas
exchange and may cause respiratory failure. The rapidly evolving
and often fatal (despite mechanical ventilation) pulmonary edema
that is associated with Hantavirus infection likely results from
endothelial barrier failure.165

The structurally unique and highly restrictive endothelial bar-
rier in the brain offers a level of tissue protection that is beyond
that manifested in other organs. The BBB is largely impermeable
to water, ions, plasma proteins, inflammatory mediators (e.g.,
cytokines), immune cells, and a variety of drugs. Consequently,
BBB disruption in the brain can be associated with more pro-
found local and systemic detrimental effects than observed in
other tissues following endothelial barrier failure. The fact that

Table 1. Pathological conditions associated with endothelial barrier
dysfunction

Local response Systemic response

Acute conditions/diseases
Stroke71,137,138 Sepsis139

Acute respiratory distress syndrome140 Dengue fever141

Nephrotic syndrome142 Malaria143

Myocardial infarction144 Ebola145

Hantavirus pulmonary syndrome146 Preeclampsia147

Anaphylaxis148

Chemical/thermal injury149

Chronic conditions/diseases
Atherosclerosis150 Hypertension151

Inflammatory bowel disease152 Diabetes mellitus153

COPD1 154 Sickle cell disease155

Tumors156,157,137 Hereditary angioedema158

Arthritis159

Asthma154

Neurological diseases
Alzheimer160

Multiple sclerosis137

Amylotrophic lateral sclerosis161

Epilepsy138

Major depressive disorder162

1Chronic obstructive pulmonary disease (COPD).
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the brain is encased in a vault (the skull) results in significantly
larger increases in interstitial pressure when high fluid filtration
rates result from BBB failure, which can result in blood vessel
compression and blood flow restriction.166 Macrophages that
normally reside in the brain, like microglia and astrocytes, no
longer enjoy an “immunoprivileged” environment following
BBB disruption. Consequently, inflammatory response elicited
by a pathological insult is greatly amplified when the BBB loses
its ability to impede the egress of immune cells and mediators.
Many of these manifestations of BBB dysfunction are evidenced
following an ischemic stroke and this response is believed to pro-
mote expansion of the infarcted area.167 While restoration of
BBB function has gained attention as a potentially useful thera-
peutic goal in stroke patients,168 BBB disruption has also been
exploited for enhanced delivery of imaging agents to optimize
the detection and quantification of brain edema and infarct size
following stroke.169

Drugs targeting endothelial barrier dysfunction
Our understanding of the cellular and molecular events that

regulate vascular permeability has advanced significantly over the
past few decades. However, this expanded knowledge base has
not translated into the identification or development of therapeu-
tic approaches that can be widely used to enhance endothelial
barrier function in patients with life-threatening conditions that
are linked to barrier dysfunction or failure. While efforts to target
individual barrier-enhancing agents (e.g., cytokines, reactive oxy-
gen species), derived from either circulating blood cells, cellular
components of the vessel wall or perivascular cells (mast cells,
macrophages) have shown promise in some animal models of
human disease, this strategy has limited effectiveness in more
complicated pathological conditions that involve a role for multi-
ple mediators of endothelial barrier dysfunction. Hence, more
recent efforts have focused on identifying therapeutically relevant
agents that directly target the endothelial barrier to render it
more restrictive to fluid and solute exchange. Table 2 summarizes
endothelial barrier enhancing agents that have been proposed as

potential drugs for the clinical management of patients suffering
from a condition characterized by vascular hyper permeabil-
ity.1,170 Some of these agents (e.g, sphingosine-1-phosphate, acti-
vated protein C) appear to act on the barrier to stabilize both the
junctions and the cytoskeleton, while other agents target either
specific receptors for known potent barrier-altering agents (e.g.,
VEGF, vasopressin type 1a receptor) or act to interfere with key
signaling molecules that promote changes in the junction and/or
cytoskeleton to produce a hyperpermeability state (e.g, protein
kinase C and RhoA inhibitors).1,170,171 While these strategies
hold promise, additional work is needed to translate the existing
knowledge on endothelial barrier regulation to the development
of a therapeutic agent that can be routinely used to protect or
enhance endothelial barrier function.
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