

HHS Public Access

Author manuscript

Eur J Pharmacol. Author manuscript; available in PMC 2017 May 05.

Published in final edited form as:

Eur J Pharmacol. 2016 May 5; 778: 125–138. doi:10.1016/j.ejphar.2015.04.046.

Mast cells in airway diseases and interstitial lung disease

Glenn Cruse^{1,*} and Peter Bradding²

¹Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA

²Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK

Abstract

Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease.

Keywords

Mast cell; asthma; airway diseases; interstitial lung disease

1. Introduction

Mast cells are highly specialised granulocytes that contribute towards innate and adaptive immunity (Echtenacher et al., 1996) as well as tissue repair and revascularisation (Heissig et al., 2005; Iba et al., 2004; Weller et al., 2006). Mast cells perform the majority of their functions by releasing preformed and/or newly generated pleiotropic mediators in response to diverse activation signals to trigger a programmed inflammatory response. Mast cells are present in all vascularised tissues and are particularly abundant at sites of the environmental interface, such as the skin, gastrointestinal tract and the pulmonary epithelia. Thus mast cells are well equipped to respond to their environment where they can trigger an inflammatory response against a perceived tissue insult. Indeed, mast cells appear to be able to “sense” their environment by extending membranous projections into the lumen of blood vessels, which can sensitise the cells to respond to antigen (Cheng et al., 2013). However, in many disease states such as asthma, chronic inflammation may be due to inappropriate mast cell

*Name and address for correspondence: Glenn Cruse, PhD., Present address. Laboratory of Allergic Diseases, NIAID, National Institutes of Health, Building 10, Rm 11C213, 10 Center Drive MSC 1881, Bethesda, MD, 20892-1881, USA. Tel: 1-301-496-0348, Fax: 1-301-480-8384. glenn.cruse@nih.gov.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

activation and/or redistribution of mast cells to specific structures that could drive detrimental tissue remodelling processes contributing to disease progression. In fact, mast cells are found to be in an “activated” state in asthmatic airways (for review see (Bradding et al., 2006)) suggesting that either the tissue microenvironment is supporting chronic mast cell activation or mast cells in asthmatic airways are intrinsically hyper-secretory. Despite asthma being associated with atopy, the role of allergen exposure in chronic asthma may be overstated and the disease can become self-perpetuating once established. Indeed, mast cells may also play roles in other respiratory diseases that are not associated with atopy, such as chronic obstructive pulmonary disease (COPD) and interstitial lung diseases, where the drivers of mast cell involvement are often idiopathic, but unlikely to be allergens. In this review, we will discuss current opinion on the role that mast cells play in airway diseases with particular emphasis on asthma where the role of mast cells is more understood.

2. Mast cell heterogeneity

Mast cells are long-lived tissue-resident cells derived from haematopoietic stem cells that leave the bone marrow as mast cell-committed, but undifferentiated CD34⁺ progenitor cells. Mast cell precursors are recruited into tissues where they become resident and then mature and differentiate under the influence of the local cytokine milieu (for review see (Gurish and Boyce, 2006)). Therefore, mast cells represent heterogeneous populations depending upon the tissue where they reside and the local cytokine environment. For example, human lung mast cells can be discriminated from mast cells isolated from other tissues based on their profile of released mediators and surface expression of chemokine receptors (Bradding et al., 1995; Brightling et al., 2005b; Irani et al., 1991; Oskeritzian et al., 2005; Saito et al., 2006; Weidner and Austen, 1993). This heterogeneity also extends to the microlocalisation of mast cells within distinct tissue compartments (Bradding, 2009). Thus, human mast cells from different lung compartments contain granules with distinct protease content, which can be classified as mast cells containing either tryptase only (MC_T), chymase only (MC_C) or both tryptase and chymase (MC_{TC}) in their granules (Balzar et al., 2005; Bradding et al., 1995; Weidner and Austen, 1993).

The MC_T subtype is smaller and contains less histamine than the MC_{TC} subtype (Oskeritzian et al., 2005; Schulman et al., 1983; Schulman et al., 1990) and it is possible that MC_{TC} development from MC_T cells may be a step in maturation. However, it is clear that mast cells can change subtype in response to their environment and that changes in subtype can occur in both directions. For example, MC_{TC} cells cultured with human airway epithelial cells convert to an MC_T phenotype *in vitro* (Hsieh et al., 2005), whereas MC_T cells cultured with endothelial cells transform into an MC_{TC} phenotype (Mierke et al., 2000). This phenomenon most likely also occurs *in vivo* since the MC_T subtype predominates in the lung parenchyma, bronchial lamina propria and bronchial epithelium, while the MC_{TC} subtype surrounds pulmonary blood vessels with close proximity to the vascular endothelial cells (Andersson et al., 2009; Bradding et al., 1995; Irani et al., 1989; Irani et al., 1991). The significance and consequences of microlocalisation of mast cell subtypes is not yet clear and the factors that drive the development of each subtype are largely unknown and most likely multifactorial. However, these observations demonstrate the complexity of the mast cell

compartment and the heterogeneity of mast cell populations that can adapt to a changing environment.

3. Mechanisms that support mast cell growth and function

Many canonical mast cell functions are regulated by two distinct, but interconnected receptor-mediated signalling pathways. Mast cells regulate adaptive immune responses when they encounter antigen that crosslinks immunoglobulin E (IgE) bound to the high affinity IgE receptor, Fc ϵ RI (for review see (Rivera and Gilfillan, 2006)). Aggregation of Fc ϵ RI triggers a number of signalling pathways that lead to the release of Ca $^{2+}$ from intracellular stores, influx of extracellular Ca $^{2+}$ and reorganization of the cytoskeleton that are all critical processes for the release of pre-stored and newly generated mediators (Allen et al., 2009; Cruse et al., 2013; Draber et al., 2012; Gilfillan and Beaven, 2011; Gilfillan and Tkaczyk, 2006; Hajkova et al., 2011; Rivera and Gilfillan, 2006). Mast cells can also respond to a variety of alternative stimuli that may inhibit or augment Fc ϵ RI-dependent responses. One of the most important crosstalk interactions between receptors may be the synergism between Fc ϵ RI and KIT, the receptor tyrosine kinase for stem cell factor (SCF) encoded by the proto-oncogene *c-KIT* (for reviews see (Cruse et al., 2014; Gilfillan and Tkaczyk, 2006; Lennartsson and Ronnstrand, 2012)). SCF is the major growth and survival factor for mast cells and is absolutely required for mast cell survival (Jensen et al., 2007; Okayama and Kawakami, 2006). In addition, SCF is a chemoattractant for mast cells (Halova et al., 2012; Okayama and Kawakami, 2006) and synergistically enhances antigen-induced degranulation, cytokine production and migration (reviewed in (Gilfillan and Tkaczyk, 2006)). Therefore, increased concentrations of SCF in tissues may not only promote mast cell recruitment, survival and differentiation, but could also result in increased mast cell responsiveness. As will be discussed below, SCF expression in the airways of patients with asthma has been reported to be increased compared to control subjects (Al-Muhsen et al., 2004; Da Silva et al., 2006) and therefore may play an important role in asthma pathogenesis and contribute to low-level chronic activation of mast cells. Indeed, under certain circumstances where either the actin cytoskeleton (Smrz et al., 2013) or inhibitory molecules such as SH2 domain containing inositol-5-phosphatase-1 (SHIP-1) that interact with the actin cytoskeleton (Gimborn et al., 2005; Lesourne et al., 2005) are perturbed, SCF does not simply potentiate mast cell degranulation, but can directly induce degranulation (Huber et al., 1998; Smrz et al., 2013).

It is clear that SCF has the capacity to regulate most mast cell functions, which highlights the importance of understanding the signalling mechanisms that control specific functional responses to SCF. The mechanisms that regulate whether mast cells will differentiate or proliferate in response to SCF, for example, are not well understood. It is possible that the concentration of SCF and/or differential phosphorylation of specific tyrosine residues in KIT may play roles in dictating responses, although studies to specifically address these possibilities are needed. SCF also plays important roles in mast cell adhesion to structural cells where SCF exists as a membrane bound form (Hollins et al., 2008; Koma et al., 2005; Wygrecka et al., 2013). Most studies of SCF function in mast cells have been performed with the soluble form of SCF, which would be expected to undergo endocytosis more rapidly than a membrane tethered ligand. While studies on the membrane form of SCF have been

limited by technical difficulties, it has been suggested that transmembrane SCF on fibroblasts, or SCF immobilised onto culture plates increases histamine release and eotaxin production in mast cells, but the soluble SCF induced little or no eotaxin production (Hogaboam et al., 1998). In addition, the mechanism of KIT endocytosis and trafficking affects signalling and functional responses in human mast cells, which may be due to altered signalling at the plasma membrane or within intracellular compartments (Cruse et al., 2015). Therefore, it is attractive to hypothesise that a soluble version of SCF would result in different signals than a membrane tethered version of SCF that would act to tether mast cells in tissues and presumably sustain signalling events at the plasma membrane.

4. Mast cells in asthma

Asthma is characterised by the presence of airway obstruction that is reversible, at least in part, either with pharmacological intervention or spontaneously. Asthma usually presents with symptoms of wheeze, dyspnoea, cough and tightness in the chest. Asthma symptoms can be triggered by many different stimuli depending in part upon whether the disease is atopic, non-atopic (intrinsic), or occupational. Common triggers for symptoms include allergen exposure, viral infection, inhaled irritants, exercise and drugs. With respect to acute allergen exposure, the immediate effects are classified as the early asthmatic reaction and include airflow obstruction caused by bronchoconstriction, mucosal oedema due to increased vascular permeability and mucus hypersecretion. This early asthmatic reaction is then followed by the late asthmatic reaction in about 50% of subjects, which includes aggravation of underlying airway inflammation due to an influx of activated inflammatory cells and increased airway hyperresponsiveness. The mechanisms driving the late asthmatic reaction were thought for many years to be representative of the factors promoting chronic inflammatory changes in the airways in day-to-day asthma. In addition, it has been proposed that these events may lead to tissue damage and if the inflammation is chronic, airway remodelling can ensue. However, this is an over simplification, and there is increasing evidence that airway inflammation and airway remodelling may occur independently.

There is strong evidence that mast cells play an important role in the early asthmatic reaction following allergen exposure. Mast cell-derived mediators induce the classical features of the early asthmatic reaction *in vivo*, inducing bronchoconstriction, mucus secretion and mucosal oedema (for reviews see (Bradding and Cruse, 2008; Bradding et al., 2006; Brightling et al., 2003a; Moiseeva and Bradding, 2011)). For example, several studies have identified an increase in histamine, prostaglandin D₂ (PGD₂) and leukotriene C₄ (LTC₄) in the BAL fluid of asthma subjects following bronchial allergen challenge (Casale et al., 1987; Liu et al., 1991; Murray et al., 1986; Sedgwick et al., 1991; Wenzel et al., 1988; Wenzel et al., 1990; Wenzel et al., 1991) and that the early asthmatic reaction is significantly alleviated with the administration of potent selective inhibitors of histamine, LTC₄ and to a lesser extent PGD₂ (Beasley et al., 1987; Curzen et al., 1987; Findlay et al., 1992; Rafferty et al., 1987; Taylor et al., 1991). These mediators are most likely derived from mast cells in the bronchial mucosa because histamine, PGD₂ and LTC₄ are all released from human lung mast cells *in vitro* with remarkably similar kinetics to the allergen challenge studies (Schleimer et al., 1986). In addition, evidence for mast cell degranulation comes from the mast cell-specific protease tryptase being recovered at increased levels from the BAL fluid after allergen challenge

(Sedgwick et al., 1991; Wenzel et al., 1988). Furthermore, the early asthmatic reaction can be significantly attenuated with neutralizing anti-IgE (Omalizumab) pretreatment demonstrating that IgE-dependent signalling is required (Boulet et al., 1997; Fahy et al., 1997).

Mast cells also synthesise and release a vast array of proinflammatory cytokines and chemokines that act to recruit inflammatory cells such as eosinophils, activated macrophages and lymphocytes (Bentley et al., 1993; De Monchy et al., 1985; Diaz et al., 1989; Metzger et al., 1987; Montefort et al., 1994; Tonnel et al., 1983) that participate in the late asthmatic reaction (for reviews see (Bradding and Cruse, 2008; Bradding and Holgate, 1999; Moiseeva and Bradding, 2011)). The late asthmatic reaction is associated with the infiltration of inflammatory cells including eosinophils, which were believed to contribute to airway obstruction and the development of airway hyperresponsiveness. However, anti-IL-5 therapy effectively inhibits eosinophil recruitment after allergen challenge but has no effect on the allergen-induced increase in airflow obstruction or airway hyperresponsiveness suggesting that other factors mediate this (Haldar et al., 2009). Elucidating roles for mast cells in the late asthmatic reaction is more difficult than the early asthmatic reaction. Indeed, it has been suggested that many of the features of the late asthmatic reaction are likely to be driven by the infiltrating cells rather than mast cells because levels of tryptase are reduced in the late asthmatic reaction (Sedgwick et al., 1991). However, a decline in tryptase levels during the late asthmatic reaction may be an indicator that the initial release of preformed mast cell mediators has subsided, but it does not necessarily mean that there is no longer mast cell involvement. Development of the late asthmatic reaction can be alleviated with anti-IgE (Omalizumab) therapy (Fahy et al., 1997) providing strong evidence that mast cell-driven events are a pre-requisite for the development of the late asthmatic reaction.

5. Chronic mast cell activation in asthma

The contribution of mast cells to the pathophysiology of asthma probably arises from the maladaptation of their protective roles in wound healing, defence against bacterial and parasitic infections and their important contribution to innate and adaptive immunity (for reviews see (Bradding and Cruse, 2008; Bradding and Holgate, 1999; Moiseeva and Bradding, 2011)). The role that mast cells play in these “healthy” responses is to elicit an inflammatory and/or immune response by releasing a number of proinflammatory mediators. In homeostatic mast cell responses, mast cells are usually protective and trigger inflammatory reactions that quickly resolve. However, in diseases such as asthma, mast cells within the asthmatic airways appear to be present in a chronically activated state with evidence of ongoing mediator secretion. There are increased numbers of mast cells in the bronchoalveolar lavage (BAL) fluid of patients with stable asthma when compared to control volunteers (Broide et al., 1991; Flint et al., 1985; Kirby et al., 1987) and increased levels of the mast cell mediators histamine and tryptase (Broide et al., 1991; Casale et al., 1987; Wenzel et al., 1988) suggesting on-going degranulation. It could be that the increase in mast cell mediators in BAL fluid of asthmatic subjects is due to an increase in mast cell numbers rather than mast cell hypersecretion. However, mast cells from the BAL fluid of symptomatic asthmatic subjects demonstrate an increase in both IgE-dependent degranulation and constitutive mediator release when compared to non-asthmatic controls

(Broide et al., 1991; Flint et al., 1985). In addition, mast cell morphology assessed by microscopy suggests that mast cells within key structures such as the airway smooth muscle are present in an activated state in the airways in asthma (Beasley et al., 1989; Begueret et al., 2007; Djukanovic et al., 1992; Laitinen et al., 1993). In addition, there is evidence of increased Th2 cytokine mRNA expression in mast cells in the airway wall in asthma, again providing evidence of activation (Ying et al., 1995). Bearing in mind the biological profile of mast cell autacoids, proteases and cytokines summarized in (Tables 1 and 2), it is easy to envisage how mast cell products could contribute to the development and propagation of airway inflammation, remodeling, bronchoconstriction, bronchial hyperresponsiveness, and mucus hypersecretion (Figure 1).

The studies discussed above provide strong evidence for mast cells in the airways of atopic asthma patients being present in an activated secretory state. Given the high incidence of atopy in asthmatic subjects under the age of 30, the role that pollen plays in exacerbating asthma (Newson et al., 1997, 1998), and the therapeutic efficacy of Omalizumab, it appears as though allergen-driven processes contribute to the pathophysiology of allergic asthma and the associated hypersecretory phenotype of mast cells. However, the precise role that allergens play in chronic asthma is not clear cut, and it is also evident that mast cells in both non-atopic asthma, and occupational asthma are also present in an activated state (Chan-Yeung et al., 1989; Di Stefano et al., 1993; Frew et al., 1993; Humbert et al., 1996; Saetta et al., 1992; Ying et al., 1997). In addition, while anti-IgE therapy with Omalizumab markedly reduces airway inflammation (Djukanovic et al., 2004), symptoms often persist at a lower level. In established asthma, the disease may become self-perpetuating and the on-going mast cell hypersecretion may arise from factors that activate mast cells independently of IgE, or that synergistically amplify very low level IgE signals. As is discussed elsewhere in this issue, mast cells can be activated by both IgE-dependent and IgE-independent mechanisms to release a plethora of autacoid mediators, proteases and cytokines (for additional reviews see (Gilfillan and Beaven, 2011; Gilfillan and Tkaczyk, 2006)). The maximum degranulation with different stimuli *in vitro* are often comparable and signalling triggered by various receptors share common pathways with co-stimulation often having synergistic effects (for reviews see (Gilfillan and Beaven, 2011; Gilfillan and Tkaczyk, 2006)).

6. Mast cell activation by microorganisms

Synergistic crosstalk between Fc ϵ RI and other receptors may play an important role in activation of mast cells by microorganisms such as bacteria and viruses that could exacerbate chronic asthma. Human mast cells express toll-like receptors (TLR)-1, -2, -3, -4, -5, -7 and -9 (Kulka et al., 2004; Kulka and Metcalfe, 2006), which can activate mast cells following binding of the relevant ligand. Respiratory viruses are a common cause of asthma exacerbations and thus TLR-3, which recognises double stranded RNA (viral RNA), is of particular relevance. Activation of mast cells with a synthetic activator of TLR-3, Poly I:C, induces the specific release of interferon α (IFN α), which reflects the responses to both respiratory syncytial virus (RSV) and the influenza virus (Kulka et al., 2004) suggesting a potential role for TLR-3 in virus-induced mast cell activation within the lung.

Mast cells can also be activated by bacterial products such as lipopolysaccharide (LPS) that acts through TLR-4. Addition of LPS to mast cell cultures *in vitro* augments IL-5 and IL-13 production as well as mRNA levels for IL-4, IL-5 and IL-13 in mouse bone marrow-derived mast cells activated with IgE/Ag (Nigo et al., 2006). These results were reinforced with *in vivo* studies that demonstrated a dramatic increase in ovalbumin-induced eosinophilia in the lung with LPS treatment in wild-type mice, which was ablated in TLR-4-deficient mice (Nigo et al., 2006). In addition, mast cell-deficient mice ($Kit^{W/Wv}$) adoptively transferred with wild-type bone marrow-derived mast cells restored the synergistic effect of LPS on ovalbumin-induced airway eosinophilia, but TLR-4^{-/-} bone marrow-derived mast cells did not (Nigo et al., 2006). Furthermore, inhalation of LPS into the lungs of mice increased IL-5 production by mast cells and exacerbated airway inflammation in a mouse model of asthma (Murakami et al., 2007). Taken together, these studies demonstrate that mast cell responsiveness and airway inflammation can be augmented by both viruses and bacteria and thus could contribute to deteriorating lung physiology in asthma during asthma exacerbations.

7. Potential mechanisms of chronic mast cell activation

The mechanism(s) underlying chronic mast cell activation in asthma are not understood, but *in vitro* studies highlight several possible candidates that are relevant to the asthmatic airway. The first of these is IgE, which appears obvious because of the well-defined role of the high affinity IgE receptor, Fc ϵ RI, in mast cell degranulation. However, IgE may have roles in mast cell activation and function beyond that of recognising antigen. Monomeric IgE alone activates mouse mast cells leading to the release of cytokines but not degranulation, and this production of cytokines can promote mast cell survival in an autocrine or paracrine manner (Kalesnikoff et al., 2001; Kitaura et al., 2003; Oka et al., 2004; Pandey et al., 2004). When IgE is added to human lung mast cells in the presence of SCF, it induces a dose-dependent increase in the release of histamine, LTC₄ and IL-8 (Cruse et al., 2005). In addition, monomeric IgE in the absence of SCF promotes human lung mast cell survival through the autocrine production of IL-6 (Cruse et al., 2008). Signalling from monomeric IgE is maintained provided that there is free IgE in the medium suggesting that binding of IgE to Fc ϵ RI may heighten mast cell responsiveness and could account for the observation that there is a reproducible correlation between serum IgE levels, airway hyperresponsiveness and asthma (Burrows et al., 1989; Sears et al., 1991; Sunyer et al., 1996; Sunyer et al., 1995). Furthermore, IgE binding to Fc ϵ RI increases surface Fc ϵ RI expression on mast cells by stabilising the Fc ϵ RI complex at the plasma membrane (Yamaguchi et al., 1997). Moreover, sensitisation of mast cells with IgE markedly increases the expression of the Fc ϵ RI receptor β subunit and a smaller splice variant of Fc ϵ RI β (Brenzovich et al., 2009).

Fc ϵ RI β is encoded by the membrane spanning 4A gene family member 2 (*MS4A2*). This is of interest because human linkage analyses identified that the gene loci 11q12-q13 are linked to allergy and asthma susceptibility (Cookson and Hopkin, 1988; Cookson et al., 1989; Sandford et al., 1993; Stafford et al., 1994) and the MS4A family are clustered in these regions (Liang et al., 2001; Liang and Tedder, 2001). *MS4A1* (CD20) and *MS4A2* (Fc ϵ RI β) are associated with the activation and proliferation of B cells (Tedder and Engel,

1994) and mast cells (Cruse et al., 2013; Cruse et al., 2010a; Gilfillan and Tkaczyk, 2006) respectively. Fc ϵ RI β contributes to IgE-dependent mast cell signalling by trafficking Fc ϵ RI to the cell surface and amplifying Fc ϵ RI-induced signalling. The first transmembrane domain of Fc ϵ RI β is required for trafficking the receptor complex (Singleton et al., 2009), whilst the C-terminal immunoreceptor tyrosine-based activation motif (ITAM) amplifies signalling (On et al., 2004). Fc ϵ RI signalling plays an important role in atopic asthma. Thus a report that polymorphisms in *MS4A2* were associated with asthma gained interest (Laprise et al., 2000). Studies into the functional consequence of mutations in Fc ϵ RI β did not affect the function of Fc ϵ RI β (Donnadieu et al., 2000). However, we have identified expression of a novel truncated isoform of Fc ϵ RI β (t-Fc ϵ RI β) in human mast cells with a naturally occurring truncation of exon 3 that encodes the first two transmembrane domains of Fc ϵ RI β (Cruse et al., 2010a). Since the first transmembrane domain of full length Fc ϵ RI β is responsible for the formation of the Fc ϵ RI complex (Singleton et al., 2009), t-Fc ϵ RI β consequently appears not to associate with the Fc ϵ RI complex. However, t-Fc ϵ RI β retains the signalling ITAM motif and thus has the capacity to signal. While full-length Fc ϵ RI β functions at the plasma membrane, t-Fc ϵ RI β displays cytosolic and juxta-nuclear localisation, where it appears to bind calmodulin and traffic adaptor molecules and kinases to the peri-centrosome in response to Ca²⁺ signals, triggering microtubule formation and degranulation (Cruse et al., 2013). In addition, another truncation of full-length Fc ϵ RI β has been reported that contains an inclusion of intron 5 and as a result loses the signaling ITAM, but retains the first two transmembrane domains and thus the ability to associate with the Fc ϵ RI complex (Donnadieu et al., 2003). This isoform of Fc ϵ RI β acts to downregulate Fc ϵ RI expression by targeting the Fc ϵ RI complex for proteasomal degradation (Donnadieu et al., 2003).

These observations could be particularly important because the linkage of *MS4A2* with asthma susceptibility could be much more complex than the function of a single Fc ϵ RI β isoform and may be related to differences in expression levels of alternative splice forms. Indeed, polymorphisms have been reported to be linked to asthma susceptibility in the promoter region of *MS4A2*, which could affect expression levels of Fc ϵ RI β (Sharma et al., 2009). In addition, mutations within regions recognised by the spliceosome could differentially affect isoform expression. However, reports of linkage of *MS4A2* with asthma are conflicting and require more in-depth study before any conclusions can be drawn. With these caveats in mind, overexpression of full-length Fc ϵ RI β actually inhibits mast cell degranulation (Cruse et al., 2013; Okayama et al., 2014), while overexpression of t-Fc ϵ RI β potentiates degranulation (Cruse et al., 2013). One possible mechanism for inhibition of mast cell degranulation is that incorporation of Fc ϵ RI β into the Fc ϵ RI complex is limited by the availability of the Fc ϵ RI β and Fc ϵ RI β subunits. Therefore, full-length Fc ϵ RI β that is not incorporated into Fc ϵ RI could compete with either full-length Fc ϵ RI β that is in complex with Fc ϵ RI for binding to Lyn kinase (Okayama et al., 2014) restricting the availability of the kinase for recruitment into lipid rafts, or possibly competition with t-Fc ϵ RI β for binding Fyn or Gab2 (Cruse et al., 2013). Either way, it is likely that Fc ϵ RI β isoforms have competitive actions that sequester kinases and adaptor proteins to distinct subcellular localisations that can alter spatio-temporal signalling dynamics.

SCF may also play a major role in asthma as the expression of SCF is markedly increased in asthmatic airways (Al-Muhsen et al., 2004; Da Silva et al., 2006) and this expression is suppressed by glucocorticosteroids (Da Silva et al., 2006). Neutralising SCF in an animal model of asthma attenuates airway hyperresponsiveness, goblet cell hyperplasia and eosinophilia, which were accompanied by reduced IL-5 and TNF α production (Berlin et al., 2006; Berlin et al., 2004). This is particularly interesting because TNF α is strongly implicated in asthma pathophysiology. TNF α is expressed at higher levels in the asthmatic lung, particularly in mast cells, (Berry et al., 2006; Bradding et al., 1994; Howarth et al., 2005) and inhalation of TNF α induces airway hyperresponsiveness (Thomas and Heywood, 2002; Thomas et al., 1995). However, in spite of early promise, recent studies of anti-TNF α therapy in asthma have been disappointing (Brightling et al., 2008; Holgate et al., 2011). Another interesting aspect is that both SCF and IgE impact on the efficacy of β_2 -adrenoceptor agonists, which are widely used as reliever medication in asthma. Administration of β_2 -adrenoceptor agonists acutely *in vitro* inhibits IgE-dependent human lung mast cell degranulation in the absence of SCF. However, this inhibition is lost in the presence of SCF and furthermore, when IgE is also present, the β_2 -adrenoceptor agonist salbutamol increases degranulation (Cruse et al., 2010b). This phenomenon may help to explain clinical observations where regular administration of the long acting β_2 -adrenoceptor agonist salmeterol increases the magnitude of the early asthmatic reaction and accompanied mast cell mediator release is enhanced (Giannini et al., 1996; Swystun et al., 2000). It might also explain why the regular administration of short acting β_2 -adrenoceptor agonists to asthmatic subjects has been associated with loss of asthma control (Taylor et al., 1993; Taylor et al., 1998).

8. Integration and crosstalk of adhesion and signalling

The involvement of SCF in mast cell responsiveness could also extend to roles in adhesion and related pathways. For example, mast cell progenitors in the blood would be likely to encounter soluble SCF, whereas mast cells in tissue would be exposed to membrane bound SCF expressed on structural cells. Recent evidence suggests that membrane bound SCF expressed on airway smooth muscle cells plays a critical role in the functional consequences of mast cell adhesion to airway smooth muscle cells. In collaboration with the mast cell-expressed cell adhesion molecule 1 (CADM1) and soluble IL-6, SCF promotes mast cell survival, proliferation and secretion (Hollins et al., 2008). The cooperative actions of SCF and CADM1 could be due to direct interactions between CADM1 and KIT in mast cells facilitating stable interactions between KIT and membrane bound SCF on airway smooth muscle cells (Hollins et al., 2008) and lung fibroblasts (Moiseeva et al., 2013b). CADM1 exists as several isoforms (Moiseeva et al., 2012, 2013a). The SP6 isoform is encoded by the full-length splice variant containing 12 exons. SP1 contains an internal in-frame truncation of exon 10. SP4 has exons 9 and 10 truncated in-frame, while SP3 is the shorter variant with truncations of exons 8, 9 and 10 (Moiseeva et al., 2013a). Differential expression of CADM1 splice variants affects both the adhesion of mast cells and their survival (Moiseeva et al., 2012, 2013a).

Downregulation of CADM1 expression reduced mast cell adhesion to airway smooth muscle and lung fibroblasts *in vitro* (Moiseeva et al., 2013b) and reduced mast cell viability

(Moiseeva et al., 2012). However, overexpression of the CADM1 SP4 splice variant, which is the dominantly expressed isoform in human mast cells, increased mast cell adhesion to human lung fibroblasts without affecting adhesion of mast cells to human airway smooth muscle cells (Moiseeva et al., 2013b). Conversely, overexpression of either SP1 or SP6 reduced adhesion of mast cells to lung fibroblasts and not airway smooth muscle cells (Moiseeva et al., 2013a). These results are intriguing since they provide potential mechanisms for targeted adhesion of mast cells to specific cell types, which could be regulated by alternative splicing of CADM1 in the spliceosome, possibly in response to environmental cues.

9. Mast cell microlocalisation in the asthmatic lung

In addition to the microenvironment affecting mast cell function, it also contributes to mast cell microlocalisation within the lung, which itself may regulate mast cell function through cell-cell contact and adhesion signals. Mast cells are present near blood vessels and throughout the lamina propria of healthy airways (Carroll et al., 2002a; de Magalhaes Simoes et al., 2005; Pesci et al., 1993b). Mast cells infiltrate three key sites in asthmatic airways that may be critical for the development and propagation of the pathophysiology. The first of these sites is the airway smooth muscle where mast cell infiltration is a characteristic and reproducible feature of asthma (Amin et al., 2005; Begueret et al., 2007; Berger et al., 2003; Brightling et al., 2005a; Brightling et al., 2002a; Chen et al., 2004; El-Shazly et al., 2006; Shikotra et al., 2012). It has long been considered that the disordered airway physiology and airway wall remodelling in asthma are a culmination of the effects of infiltrating eosinophils recruited to the lung by activated Th2 lymphocytes. However, the relationship between airway inflammation and airflow obstruction is weak.

A good example of this weak relationship was demonstrated by the study of eosinophilic bronchitis, which accounts for approximately 15% of patients referred to respiratory specialists for chronic cough (Brightling et al., 1999). Eosinophilic bronchitis is characterised by the presence of sputum eosinophilia without variable airflow obstruction or airway hyperresponsiveness (Brightling et al., 1999). Detailed comparisons between asthma and eosinophilic bronchitis reveal remarkable similarities between the two conditions. In terms of immunopathology, both asthma and eosinophilic bronchitis have identical mucosal inflammatory infiltration, subbasement membrane thickening and collagen deposition as well as comparable mucosal IL-4 and IL-5 expression (Berry et al., 2004; Brightling et al., 2002b; Brightling et al., 2003b; Brightling et al., 2000). In addition to the histological similarities of the lungs in these two diseases, the inflammation patterns also appear similar with comparable levels of the inflammatory mediators histamine and PGD₂ in induced sputum and BAL fluid as well as almost identical numbers of IL-4-expressing T cells (Brightling et al., 2002b; Brightling et al., 2000). Therefore, in eosinophilic bronchitis, it appears as though a seemingly identical pattern of inflammation as asthma exists without accompanied disordered airway physiology and airway hyperresponsiveness. This indicates that the Th2-related inflammation of the airways in asthma may not be fundamental to the pathogenesis of asthma. Instead, the picture that emerged was that the striking difference between asthma and eosinophilic bronchitis lay within the airway smooth muscle bundles.

10. Mast cell infiltration into airway smooth muscle

Several studies have now demonstrated that mast cells infiltrate the airway smooth muscle bundles in asthma, but not in control subjects (Amin et al., 2005; Begueret et al., 2007; Berger et al., 2003; Brightling et al., 2005a; Brightling et al., 2002a; El-Shazly et al., 2006; Shikotra et al., 2012) or eosinophilic bronchitis patients (Brightling et al., 2002a). In addition, there is good correlation between the number of mast cells in the airway smooth muscle bundles and the severity of airway hyperresponsiveness (Brightling et al., 2002a). In contrast, we could not find T cells or eosinophils in the airway smooth muscle bundles of any of the subjects. Taken together, these studies suggest that mast cell infiltration into the airway smooth muscle bundles could be important for the development of airway hyperresponsiveness where direct interactions between mast cells and airway smooth muscle cells could be critical. Indeed, co-culture of human lung mast cells with human airway smooth muscle cells demonstrates that human airway smooth muscle promotes survival and proliferation of human lung mast cells and induces constitutive mast cell degranulation (Hollins et al., 2008). It is likely that the promotion of mast cell functional responses by interactions with airway smooth muscle cells is due to interactions with membrane bound SCF, possibly facilitated by the adhesion molecule CADM1 (Hollins et al., 2008). As described above, SCF primes mast cells for degranulation and under conditions that modulate the actin cytoskeleton, SCF can directly induce degranulation (Smrz et al., 2013). Reorganisation of the actin cytoskeleton would be expected to occur during adhesion and migration processes where low-level secretion of mediators would aid migration. Indeed, downregulation of CADM1 that plays an important role in mast cell adhesion to airway smooth muscle, alters filamentous actin dynamics (Moiseeva et al., 2014) and ultrastructural analysis of mast cells within the airway smooth muscle bundles of asthma patients show evidence of ongoing activation (Begueret et al., 2007).

The ability of airway smooth muscle cells to modulate human lung mast cell function is not one-directional, because mast cells can also alter airway smooth muscle responses. For example, the mast cell autacoid mediators histamine, PGD₂ and LTC₄ all potently induce bronchoconstriction and as discussed above, are all released during allergen provocation challenge. However, the effects of mast cells on airway smooth muscle may be more complex than this suggests. For example, mast cell-derived tryptase induces the production and release of transforming growth factor β (TGF β) from human airway smooth muscle cells (Woodman et al., 2008). TGF β then upregulates α -smooth muscle actin expression promoting differentiation of airway smooth muscle cells in an autocrine manner rendering the cells more responsive to histamine-induced contraction, thus acting as a positive feedback loop (Woodman et al., 2008). In addition, administration of tryptase to either dogs or sheep induces bronchoconstriction and airway hyperresponsiveness (Molinari et al., 1996; Sekizawa et al., 1989). Tryptase also increases the contractile response of sensitised bronchi to histamine *in vitro* and induces proliferation of human airway smooth muscle cells (Berger et al., 2001; Brown et al., 2002). However, co-culture of human lung mast cells with airway smooth muscle cells did not affect either proliferation or survival of airway smooth muscle cells even if they were activated with IgE and anti-IgE (Kaur et al., 2010) indicating that

other mechanisms are involved when mast cells are activated that may counteract the mitogenic actions of tryptase on airway smooth muscle cells.

11. Mast cell infiltration into airway epithelium and submucosal glands

Mast cells also infiltrate epithelial structures in asthmatic airways (Bradding et al., 1994; Laitinen et al., 1993; Pesci et al., 1993b). The microlocalisation of mast cells within the airway epithelium places them in an ideal environment to respond to stimuli such as aeroallergens and other noxious stimuli where mast cell-driven inflammatory and effector cell responses may be on-going. However, mast cells in the epithelium also have the capacity to suppress allergic inflammation. For example, mast cell activation by allergens and subsequent release of tryptase could act as a negative feedback signal since tryptase degrades respiratory allergens and IgE (Rauter et al., 2006; Rauter et al., 2008). Tryptase also stimulates epithelial proliferation as well as upregulation of IL-8 and intercellular adhesion molecule (ICAM1) expression (Cairns and Walls, 1996), thus promoting recruitment and adhesion of inflammatory cells. Indeed, mast cells adhere strongly to bronchial epithelial cells (Sanmugalingam et al., 2000). However, the interaction between mast cells and epithelial cells in health may actually keep mast cells “in check” since coculture experiments reveal that IgE-dependent degranulation of human lung mast cells is suppressed when cocultured with the bronchial epithelial cell line BEAS-2B or primary human epithelial cells (Martin et al., 2012; Yang et al., 2006). Therefore in healthy airways, mast cells adjacent to the epithelium may be suppressed by factors released by the epithelial cells, but in asthma where there is airway epithelial denudation and injury, this suppressive effect could be lost.

Mucus plugging is a feature of fatal asthma, but mucus hypersecretion is also present in milder disease (Cutz et al., 1978). Mast cells appear abundant in airway mucosal glands (Bradding et al., 1994). When comparing lung sections post-mortem from patients with fatal asthma, patients with asthma who died of unrelated causes (non-fatal asthma) and subjects without asthma, there was a significant increase in the number of mast cells within the mucosal gland stroma of fatal asthma and non-fatal asthma compared to control subjects, and there was evidence of mast cell degranulation in both non-fatal and fatal asthma (Carroll et al., 2002b). However, what was perhaps more striking was that the number of degranulated and intact mast cells within the mucous glands correlated strongly with the degree of mucus obstruction, suggesting that mast cells could be involved in the pathogenesis of fatal asthma.

12. Mast cells in chronic obstructive pulmonary disease (COPD)

In addition to the strong evidence presented for a role of mast cells in the pathophysiology of asthma, there is growing evidence that mast cells may also play roles in other diseases of the airways. COPD is characterised by fixed airflow obstruction that is usually progressive. The disease is strongly associated with noxious inhaled particles or smoke such as tobacco smoke and is the result of chronic inflammation that leads the development of emphysema, chronic airway inflammation, mucus gland hyperplasia and small airway wall fibrosis. Although the density of mast cells in the lung decreases in COPD, mast cell activation and

degranulation are increased with evidence of enhanced histamine release in advanced COPD (Andersson et al., 2010; Wessler et al., 2007). An increase in the density of mast cells of the MC_{TC} subtype has been reported in the alveolar parenchyma and airway smooth muscle in COPD (Andersson et al., 2010; Gosman et al., 2008). This could be important as CD88 (the receptor for the anaphylatoxin C5a) is expressed in the MC_{TC} subtype of human lung mast cells (Oscheritzian et al., 2005) and C5a expression is increased in COPD patients (Marc et al., 2004). In addition, CD88 expression is increased in both MC_{TC} and MC_T cells in COPD (Andersson et al., 2010) and thus may be a cause for chronic mast cell activation in the disease.

13. Mast cells in interstitial lung disease

Interstitial lung diseases are a group of diseases characterised by the presence of pulmonary fibrosis. The most commonly encountered interstitial lung disease is idiopathic pulmonary fibrosis (IPF) with a histological pattern of usual interstitial pneumonia. The development of IPF is not well understood, but most likely driven by on-going damage to the alveolar epithelium, basement membrane and capillary endothelium (for review see (Strieter, 2005)). Chronic tissue damage leads to dysregulated repair mechanisms and generation of fibroblastic foci with the production of profibrotic mediators such as transforming growth factor β (TGF β), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF). The key cell type in IPF is an intermediary between fibroblasts and smooth muscle, termed the myofibroblast, that expresses α -smooth muscle actin (α SMA) and exhibits contractility, but has the capability of producing and depositing a fibrotic matrix (Zhang et al., 1994). Extensive literature indicates that there are important bidirectional interactions between mast cells and myofibroblasts in fibrotic tissues that are also of likely relevance to airway wall matrix deposition in COPD and asthma.

Mast cell numbers in the lung of patients with fibrotic lung disease are increased compared to control subjects and correlate with the severity of fibrosis (Pesci et al., 1993a). In addition, histamine concentrations in the BAL fluid of patients with IPF are elevated about 10-fold that of control subjects (Casale et al., 1988; Rankin et al., 1987), and tryptase levels are increased in the lung tissue of IPF patients (Wygrecka et al., 2013). Mast cells present in pulmonary fibrosis show signs of on-going degranulation (Hunt et al., 1992; Kawanami et al., 1979) and coculture of human lung mast cells with human lung fibroblasts from IPF patients activates the mast cells to release tryptase (Wygrecka et al., 2013). Furthermore, infiltrating bFGF expressing cells are abundant in IPF and these cells have been identified as mast cells (Inoue et al., 2002; Inoue et al., 1996; Qu et al., 1995), which are surrounded by collagen, elastic fibres and smooth muscle cell/myofibroblast-like cells (Inoue et al., 2002; Wygrecka et al., 2013). SCF may again play an important role in interstitial lung disease since secretion of SCF by alveolar fibroblasts is increased in patients with diffuse interstitial fibrosis (Fireman et al., 1999). In addition, membrane bound SCF, but not soluble SCF, expression is increased in both lung tissue and in isolated lung fibroblasts in patients with IPF compared to control subjects (Wygrecka et al., 2013). Furthermore, coculture of isolated lung fibroblasts from IPF patients with mast cells enhanced SCF-driven survival and proliferation (Wygrecka et al., 2013) in a similar manner to human airway smooth muscle cells (Hollins et al., 2008). These observations suggest that interactions between mast cells

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

and smooth muscle and/or myofibroblasts may play a role in matrix deposition and fibrosis in interstitial lung diseases. Indeed, mast cell mediators such as histamine, bFGF and TGF β promote fibroblast proliferation in humans (Boucek and Noble, 1973; Feghali et al., 1992; Hetzel et al., 2005; Jordana et al., 1988) and mast cells adhere strongly to fibroblasts in coculture (Moiseeva et al., 2013b; Trautmann et al., 1997; Wygrecka et al., 2013).

14. Concluding remarks

Mast cells play an important role in the pathogenesis of asthma and this role most likely depends upon the microlocalisation of mast cells, providing a niche to support mast cell growth, survival and activation through cell-to-cell contact. There is growing evidence that this may also be true for other airway diseases where direct interactions may also be critical for chronic mast cell activation. The factors that regulate the functional responses of mast cells and structural cells that interact with mast cells are not yet understood, but we are beginning to identify important mediators. One of the critical aspects may be that studying functional responses of soluble mediators in suspension cultures might not represent what is happening *in vivo* where cell-to-cell contact, formation of co-stimulatory and adhesion complexes and ligands tethered at the surface may drastically alter the signalling from receptors. This aspect could be critical for mast cells that mature within tissues where a complex milieu of soluble and membrane bound growth factors appear to be able to drive differentiation of the cells with a great deal of plasticity. Understanding the mechanisms that regulate mast cell activation by cellular crosstalk both in health and disease could lead to the identification of novel therapies that might be effective when administered chronically *in vivo*.

Acknowledgments

Financial support was provided by the Division of Intramural Research of NIAID within the National Institutes of Health, and by the National Institute for Health Research Leicester Respiratory Biomedical Research Unit.

References

- Al-Muhsen SZ, Shablovsky G, Olivenstein R, Mazer B, Hamid Q. The expression of stem cell factor and c-kit receptor in human asthmatic airways. *Clin Exp Allergy*. 2004; 34:911–916. [PubMed: 15196279]
- Allen JD, Jaffer ZM, Park SJ, Burgin S, Hofmann C, Sells MA, Chen S, Derr-Yellin E, Michels EG, McDaniel A, et al. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. *Blood*. 2009; 113:2695–2705. [PubMed: 19124833]
- Amin K, Janson C, Boman G, Venge P. The extracellular deposition of mast cell products is increased in hypertrophic airways smooth muscles in allergic asthma but not in nonallergic asthma. *Allergy*. 2005; 60:1241–1247. [PubMed: 16134989]
- Andersson CK, Mori M, Bjerner L, Lofdahl CG, Erjefalt JS. Novel site-specific mast cell subpopulations in the human lung. *Thorax*. 2009; 64:297–305. [PubMed: 19131451]
- Andersson CK, Mori M, Bjerner L, Lofdahl CG, Erjefalt JS. Alterations in lung mast cell populations in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med*. 2010; 181:206–217. [PubMed: 19926870]
- Balzar S, Chu HW, Strand M, Wenzel S. Relationship of small airway chymase-positive mast cells and lung function in severe asthma. *Am J Respir Crit Care Med*. 2005; 171:431–439. [PubMed: 15563633]

Bandeira-Melo C, Hall JC, Penrose JF, Weller PF. Cysteinyl leukotrienes induce IL-4 release from cord blood-derived human eosinophils. *J Allergy Clin Immunol.* 2002; 109:975–979. [PubMed: 12063527]

Beasley R, Roche WR, Roberts JA, Holgate ST. Cellular events in the bronchi in mild asthma and after bronchial provocation. *Am Rev Respir Dis.* 1989; 139:806–817. [PubMed: 2923380]

Beasley R, Varley J, Robinson C, Holgate ST. Cholinergic-mediated bronchoconstriction induced by prostaglandin D2, its initial metabolite 9 alpha,11 beta-PGF2, and PGF2 alpha in asthma. *Am Rev Respir Dis.* 1987; 136:1140–1144. [PubMed: 2960256]

Begueret H, Berger P, Verneuil JM, Dubuisson L, Marthan R, Tunon-de-Lara JM. Inflammation of bronchial smooth muscle in allergic asthma. *Thorax.* 2007; 62:8–15. [PubMed: 17189531]

Bentley AM, Meng Q, Robinson DS, Hamid Q, Kay AB, Durham SR. Increases in activated T lymphocytes, eosinophils, and cytokine mRNA expression for interleukin-5 and granulocyte/macrophage colony-stimulating factor in bronchial biopsies after allergen inhalation challenge in atopic asthmatics. *Am J Respir Cell Mol Biol.* 1993; 8:35–42. [PubMed: 8417755]

Berger P, Girodet PO, Begueret H, Ousova O, Perng DW, Marthan R, Walls AF, Tunon de Lara JM. Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis. *FASEB J.* 2003; 17:2139–2141. [PubMed: 14500550]

Berger P, Perng DW, Thabrew H, Compton SJ, Cairns JA, McEuen AR, Marthan R, Tunon De Lara JM, Walls AF. Tryptase and agonists of PAR-2 induce the proliferation of human airway smooth muscle cells. *J Appl Physiol (1985).* 2001; 91:1372–1379. [PubMed: 11509538]

Berlin AA, Hogaboam CM, Lukacs NW. Inhibition of SCF attenuates peribronchial remodeling in chronic cockroach allergen-induced asthma. *Lab Invest.* 2006; 86:557–565. [PubMed: 16607380]

Berlin AA, Lincoln P, Tomkinson A, Lukacs NW. Inhibition of stem cell factor reduces pulmonary cytokine levels during allergic airway responses. *Clin Exp Immunol.* 2004; 136:15–20. [PubMed: 15030509]

Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, Bradding P, Brightling CE, Wardlaw AJ, Pavord ID. Evidence of a role of tumor necrosis factor alpha in refractory asthma. *N Engl J Med.* 2006; 354:697–708. [PubMed: 16481637]

Berry MA, Parker D, Neale N, Woodman L, Morgan A, Monk P, Bradding P, Wardlaw AJ, Pavord ID, Brightling CE. Sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis. *J Allergy Clin Immunol.* 2004; 114:1106–1109. [PubMed: 15536417]

Bossé Y, Thompson C, Stankova J, Rola-Pleszczynski M. Fibroblast growth factor 2 and transforming growth factor beta1 synergism in human bronchial smooth muscle cell proliferation. *Am J Respir Cell Mol Biol.* 2006; 34:746–753. [PubMed: 16439802]

Boucek RJ, Noble NL. Histamine, norepinephrine, and bradykinin stimulation of fibroblast growth and modification of serotonin response. *Proc Soc Exp Biol Med.* 1973; 144:929–933. [PubMed: 4797302]

Boulet LP, Chapman KR, Cote J, Kalra S, Bhagat R, Swystun VA, Laviolette M, Cleland LD, Deschesnes F, Su JQ, et al. Inhibitory effects of an anti-IgE antibody E25 on allergen-induced early asthmatic response. *Am J Respir Crit Care Med.* 1997; 155:1835–1840. [PubMed: 9196083]

Bradding P. Human lung mast cell heterogeneity. *Thorax.* 2009; 64:278–280. [PubMed: 19329727]

Bradding, P.; Cruse, G. Mast cells: Biological properties and role in health and allergic diseases. In: Kay, B.; Kaplan, A.; Bousquet, J.; Holt, P., editors. *Allergy and Allergic Diseases.* 2. Wiley-Blackwell; 2008. p. 217–257.

Bradding P, Holgate ST. Immunopathology and human mast cell cytokines. *Crit Rev Oncol Hematol.* 1999; 31:119–133. [PubMed: 10451798]

Bradding P, Okayama Y, Howarth PH, Church MK, Holgate ST. Heterogeneity of human mast cells based on cytokine content. *J Immunol.* 1995; 155:297–307. [PubMed: 7602107]

Bradding P, Roberts JA, Britten KM, Montefort S, Djukanovic R, Mueller R, Heusser CH, Howarth PH, Holgate ST. Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. *Am J Respir Cell Mol Biol.* 1994; 10:471–480. [PubMed: 8179909]

Bradding P, Walls AF, Holgate ST. The role of the mast cell in the pathophysiology of asthma. *J Allergy Clin Immunol.* 2006; 117:1277–1284. [PubMed: 16750987]

Braun A, Appel E, Baruch R, Herz U, Botchkarev V, Paus R, Brodie C, Renz H. Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. *Eur J Immunol*. 1998; 28:3240–3251. [PubMed: 9808193]

Brenzovich J, Macey M, Fernando J, Chong HJ, Barnstein B, Mirmonsef P, Morales JK, Kimura A, Cruz TD, Ryan JJ. IgE signaling suppresses Fc epsilon RI beta expression. *J Leukoc Biol*. 2009; 86:1351–1358. [PubMed: 19741159]

Brightling C, Berry M, Amrani Y. Targeting TNF-alpha: a novel therapeutic approach for asthma. *J Allergy Clin Immunol*. 2008; 121:5–10. quiz 11–12. [PubMed: 18036647]

Brightling CE, Ammit AJ, Kaur D, Black JL, Wardlaw AJ, Hughes JM, Bradding P. The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. *Am J Respir Crit Care Med*. 2005a; 171:1103–1108. [PubMed: 15879427]

Brightling CE, Bradding P, Pavord ID, Wardlaw AJ. New insights into the role of the mast cell in asthma. *Clin Exp Allergy*. 2003a; 33:550–556. [PubMed: 12752581]

Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. *N Engl J Med*. 2002a; 346:1699–1705. [PubMed: 12037149]

Brightling CE, Kaur D, Berger P, Morgan AJ, Wardlaw AJ, Bradding P. Differential expression of CCR3 and CXCR3 by human lung and bone marrow-derived mast cells: implications for tissue mast cell migration. *J Leukoc Biol*. 2005b; 77:759–766. [PubMed: 15673545]

Brightling CE, Symon FA, Birring SS, Bradding P, Pavord ID, Wardlaw AJ. TH2 cytokine expression in bronchoalveolar lavage fluid T lymphocytes and bronchial submucosa is a feature of asthma and eosinophilic bronchitis. *J Allergy Clin Immunol*. 2002b; 110:899–905. [PubMed: 12464957]

Brightling CE, Symon FA, Birring SS, Bradding P, Wardlaw AJ, Pavord ID. Comparison of airway immunopathology of eosinophilic bronchitis and asthma. *Thorax*. 2003b; 58:528–532. [PubMed: 12775868]

Brightling CE, Ward R, Goh KL, Wardlaw AJ, Pavord ID. Eosinophilic bronchitis is an important cause of chronic cough. *Am J Respir Crit Care Med*. 1999; 160:406–410. [PubMed: 10430705]

Brightling CE, Ward R, Woltmann G, Bradding P, Sheller JR, Dworski R, Pavord ID. Induced sputum inflammatory mediator concentrations in eosinophilic bronchitis and asthma. *Am J Respir Crit Care Med*. 2000; 162:878–882. [PubMed: 10988099]

Broide DH, Gleich GJ, Cuomo AJ, Coburn DA, Federman EC, Schwartz LB, Wasserman SI. Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway. *J Allergy Clin Immunol*. 1991; 88:637–648. [PubMed: 1717532]

Brown JK, Jones CA, Rooney LA, Caughey GH, Hall IP. Tryptase's potent mitogenic effects in human airway smooth muscle cells are via nonproteolytic actions. *Am J Physiol Lung Cell Mol Physiol*. 2002; 282:L197–206. [PubMed: 11792624]

Busse WW. Leukotrienes and inflammation. *Am J Respir Crit Care Med*. 1998; 157:S210–213.

Brusselle GG, Kips JC, Tavernier JH, van der Heyden JG, Cuvelier CA, Pauwels RA, Bluethmann H. Attenuation of allergic airway inflammation in IL-4 deficient mice. *Clin Exp Allergy*. 1994; 24:73–80. [PubMed: 8156448]

Brusselle G, Kips J, Joos G, Bluethmann H, Pauwels R. Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. *Am J Respir Cell Mol Biol*. 1995; 12:254–259. [PubMed: 7873190]

Burrows B, Martinez FD, Halonen M, Barbee RA, Cline MG. Association of asthma with serum IgE levels and skin-test reactivity to allergens. *N Engl J Med*. 1989; 320:271–277. [PubMed: 2911321]

Cairns JA, Walls AF. Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. *J Immunol*. 1996; 156:275–283. [PubMed: 8598474]

Cairns JA, Walls AF. Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. *J Clin Invest*. 1997; 99:1313–1321. [PubMed: 9077541]

Caron G, Delneste Y, Roelandts E, Duez C, Herbault N, Magistrelli G, Bonnefoy JY, Pestel J, Jeannin P. Histamine induces CD86 expression and chemokine production by human immature dendritic cells. *J Immunol*. 2001; 166:6000–6006. [PubMed: 11342615]

Carroll NG, Mutavdzic S, James AL. Distribution and degranulation of airway mast cells in normal and asthmatic subjects. *Eur Respir J*. 2002a; 19:879–885. [PubMed: 12030728]

Carroll NG, Mutavdzic S, James AL. Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma. *Thorax*. 2002b; 57:677–682. [PubMed: 12149526]

Casale TB, Trapp S, Zehr B, Hunninghake GW. Bronchoalveolar lavage fluid histamine levels in interstitial lung diseases. *Am Rev Respir Dis*. 1988; 138:1604–1608. [PubMed: 3202511]

Casale TB, Wood D, Richerson HB, Trapp S, Metzger WJ, Zavala D, Hunninghake GW. Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with methacholine bronchial hyperresponsiveness. *J Clin Invest*. 1987; 79:1197–1203. [PubMed: 3549781]

Caughey GH. Roles of mast cell tryptase and chymase in airway functions. *Am J Physiol*. 1989; 257:L39–46. [PubMed: 2669522]

Chan-Yeung M, Chan H, Tse KS, Salari H, Lam S. Histamine and leukotrienes release in bronchoalveolar fluid during plicatic acid-induced bronchoconstriction. *J Allergy Clin Immunol*. 1989; 84:762–768. [PubMed: 2478608]

Chatila TA. Interleukin-4 receptor signaling pathways in asthma pathogenesis. *Trends Mol Med*. 2004; 10:493–499. [PubMed: 15464449]

Chen FH, Samson KT, Miura K, Ueno K, Odajima Y, Shougo T, Yoshitsugu Y, Shiota S. Airway remodeling: a comparison between fatal and nonfatal asthma. *J Asthma*. 2004; 41:631–638. [PubMed: 15584312]

Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. *J Biol Chem*. 2003; 278:17036–17043. [PubMed: 12624114]

Cheng LE, Hartmann K, Roers A, Krummel MF, Locksley RM. Perivascular mast cells dynamically probe cutaneous blood vessels to capture immunoglobulin E. *Immunity*. 2013; 38:166–175. [PubMed: 23290520]

Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY, McElwain K, McElwain S, Friedman S, Broide DH. Inhibition of airway remodeling in IL-5-deficient mice. *J Clin Invest*. 2004; 113:551–560. [PubMed: 14966564]

Cookson WO, Hopkin JM. Dominant inheritance of atopic immunoglobulin-E responsiveness. *Lancet*. 1988; 1:86–88. [PubMed: 2891984]

Cookson WO, Sharp PA, Faux JA, Hopkin JM. Linkage between immunoglobulin E responses underlying asthma and rhinitis and chromosome 11q. *Lancet*. 1989; 1:1292–1295. [PubMed: 2566826]

Cruse G, Beaven MA, Ashmole I, Bradding P, Gilfillan AM, Metcalfe DD. A truncated splice-variant of the Fc epsilon RI beta receptor subunit is critical for microtubule formation and degranulation in mast cells. *Immunity*. 2013; 38:906–917. [PubMed: 23643722]

Cruse G, Beaven MA, Music SC, Bradding P, Gilfillan AM, Metcalfe DD. The CD20-homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. *Mol Biol Cell*. 2015 Feb 25. pii: mbc.E14-07-1221.

Cruse G, Cockerill S, Bradding P. IgE alone promotes human lung mast cell survival through the autocrine production of IL-6. *BMC Immunol*. 2008; 9:2. [PubMed: 18215266]

Cruse G, Kaur D, Leyland M, Bradding P. A novel Fc epsilon RI beta-chain truncation regulates human mast cell proliferation and survival. *FASEB J*. 2010a; 24:4047–4057. [PubMed: 20554927]

Cruse G, Kaur D, Yang W, Duffy SM, Brightling CE, Bradding P. Activation of human lung mast cells by monomeric immunoglobulin E. *Eur Respir J*. 2005; 25:858–863. [PubMed: 15863643]

Cruse G, Metcalfe DD, Olivera A. Functional deregulation of KIT: link to mast cell proliferative diseases and other neoplasms. *Immunol Allergy Clin North Am*. 2014; 34:219–237. [PubMed: 24745671]

Cruse G, Yang W, Duffy SM, Chachi L, Leyland M, Amrani Y, Bradding P. Counterregulation of beta(2)-adrenoceptor function in human mast cells by stem cell factor. *J Allergy Clin Immunol*. 2010b; 125:257–263. e251–255. [PubMed: 19864009]

Curzen N, Rafferty P, Holgate ST. Effects of a cyclo-oxygenase inhibitor, flurbiprofen, and an H1 histamine receptor antagonist, terfenadine, alone and in combination on allergen induced immediate bronchoconstriction in man. *Thorax*. 1987; 42:946–952. [PubMed: 2894081]

Cutz E, Levison H, Cooper DM. Ultrastructure of airways in children with asthma. *Histopathology*. 1978; 2:407–421. [PubMed: 730122]

Dahlén SE, Hedqvist P, Hammarström S, Samuelsson B. Leukotrienes are potent constrictors of human bronchi. *Nature*. 1980; 288:484–486. [PubMed: 6108512]

Dannull J, Schneider T, Lee WT, de Rosa N, Tyler DS, Pruitt SK. Leukotriene C4 induces migration of human monocyte-derived dendritic cells without loss of immunostimulatory function. *Blood*. 2012; 119:3113–3122. [PubMed: 22323449]

Da Silva CA, Blay F, Israel-Biet D, Laval AM, Glasser N, Pauli G, Frossard N. Effect of glucocorticoids on stem cell factor expression in human asthmatic bronchi. *Clin Exp Allergy*. 2006; 36:317–324. [PubMed: 16499642]

de Magalhaes Simoes S, dos Santos MA, da Silva Oliveira M, Fontes ES, Fernezlian S, Garippo AI, Castro I, Castro FF, de Arruda Martins M, Saldiva PH, et al. Inflammatory cell mapping of the respiratory tract in fatal asthma. *Clin Exp Allergy*. 2005; 35:602–611. [PubMed: 15898982]

De Monchy JG, Kauffman HF, Venge P, Koeter GH, Jansen HM, Sluiter HJ, De Vries K. Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. *Am Rev Respir Dis*. 1985; 131:373–376. [PubMed: 3977174]

De Vries A, Delsing MC, Engels F, Henricks PAJ, Nijkamp FP. Nerve growth factor induces a neurokinin-1 receptor-mediated airway hyperresponsiveness in guinea pigs. *Am J Respir Crit Care Med*. 1999; 159:1541–1544. [PubMed: 10228123]

Di Stefano A, Saetta M, Maestrelli P, Milani G, Pivirrotto F, Mapp CE, Fabbri LM. Mast cells in the airway mucosa and rapid development of occupational asthma induced by toluene diisocyanate. *Am Rev Respir Dis*. 1993; 147:1005–1009. [PubMed: 8385428]

Diaz P, Gonzalez MC, Galleguillos FR, Ancic P, Cromwell O, Shepherd D, Durham SR, Gleich GJ, Kay AB. Leukocytes and mediators in bronchoalveolar lavage during allergen-induced late-phase asthmatic reactions. *Am Rev Respir Dis*. 1989; 139:1383–1389. [PubMed: 2543245]

Djukanovic R, Lai CK, Wilson JW, Britten KM, Wilson SJ, Roche WR, Howarth PH, Holgate ST. Bronchial mucosal manifestations of atopy: a comparison of markers of inflammation between atopic asthmatics, atopic nonasthmatics and healthy controls. *Eur Respir J*. 1992; 5:538–544. [PubMed: 1612155]

Djukanovic R, Wilson SJ, Kraft M, Jarjour NN, Steel M, Chung KF, Bao W, Fowler-Taylor A, Matthews J, Busse WW, et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. *Am J Respir Crit Care Med*. 2004; 170:583–593. [PubMed: 15172898]

Donnadieu E, Cookson WO, Jouvin MH, Kinet JP. Allergy-associated polymorphisms of the Fc epsilon RI beta subunit do not impact its two amplification functions. *J Immunol*. 2000; 165:3917–3922. [PubMed: 11034399]

Donnadieu E, Jouvin MH, Rana S, Moffatt MF, Mockford EH, Cookson WO, Kinet JP. Competing functions encoded in the allergy-associated F(c)epsilonRIbeta gene. *Immunity*. 2003; 18:665–674. [PubMed: 12753743]

Draber P, Sulimenko V, Draberova E. Cytoskeleton in mast cell signaling. *Front Immunol*. 2012; 3:130. [PubMed: 22654883]

Dunford PP, Holgate ST. The role of histamine in asthma. *Adv Exp Med Biol*. 2010; 709:53–66. [PubMed: 21618887]

Echtenacher B, Mannel DN, Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis. *Nature*. 1996; 381:75–77. [PubMed: 8609992]

El-Shazly A, Berger P, Girodet PO, Ousova O, Fayon M, Verneuil JM, Marthan R, Tunon-de-Lara JM. Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. *J Immunol*. 2006; 176:1860–1868. [PubMed: 16424217]

Espinosa K, Bossé Y, Stankova J, Rola-Pleszczynski M. CysLT1 receptor upregulation by TGF-beta and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. *J Allergy Clin Immunol*. 2003; 111:1032–1040. [PubMed: 12743568]

Fahy JV, Fleming HE, Wong HH, Liu JT, Su JQ, Reimann J, Fick RB Jr, Boushey HA. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. *Am J Respir Crit Care Med*. 1997; 155:1828–1834. [PubMed: 9196082]

Feghali CA, Bost KL, Boulware DW, Levy LS. Human recombinant interleukin-4 induces proliferation and interleukin-6 production by cultured human skin fibroblasts. *Clin Immunol Immunopathol*. 1992; 63:182–187. [PubMed: 1611720]

Findlay SR, Barden JM, Easley CB, Glass M. Effect of the oral leukotriene antagonist, ICI 204,219, on antigen-induced bronchoconstriction in subjects with asthma. *J Allergy Clin Immunol*. 1992; 89:1040–1045. [PubMed: 1583246]

Fireman E, Kivity S, Shahar I, Reshef T, Mekori YA. Secretion of stem cell factor by alveolar fibroblasts in interstitial lung diseases. *Immunol Lett*. 1999; 67:229–236. [PubMed: 10369131]

Flint KC, Leung KB, Hudspith BN, Brostoff J, Pearce FL, Johnson NM. Bronchoalveolar mast cells in extrinsic asthma: a mechanism for the initiation of antigen specific bronchoconstriction. *Br Med J (Clin Res Ed)*. 1985; 291:923–926.

Frew A, Chan H, Dryden P, Salari H, Lam S, Chan-Yeung M. Immunologic studies of the mechanisms of occupational asthma caused by western red cedar. *J Allergy Clin Immunol*. 1993; 92:466–478. [PubMed: 8360398]

Friberg SG, Olgart C, Gustafsson LE. Nerve growth factor increases airway responsiveness and decreases levels of exhaled nitric oxide during histamine challenge in an in vivo guinea pig model. *Acta Physiol Scand*. 2001; 173:239–245. [PubMed: 11683682]

Frossard N, Freund V, Advenier C. Nerve growth factor and its receptors in asthma and inflammation. *Eur J Pharmacol*. 2004; 500:453–465. [PubMed: 15464052]

Frossard N, Naline E, Olgart Hoglund C, Georges O, Advenier C. Nerve growth factor is released by IL-1 β and induces hyperresponsiveness of the human isolated bronchus. *Eur Respir J*. 2005; 26:15–20. [PubMed: 15994384]

Fukami H, Okunishi H, Miyazaki M. Chymase: its pathophysiological roles and inhibitors. *Curr Pharm Des*. 1998; 4:439–453. [PubMed: 10197055]

Galli SJ, Tsai M, Wershil BK. The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. *Am J Pathol*. 1993; 142:965–974. [PubMed: 7682764]

Gao G, Goldfarb M. Heparin can activate a receptor tyrosine kinase. *EMBO J*. 1995; 14:2183–2190. [PubMed: 7774576]

Garbuzenko E, Nagler A, Pickholtz D, Gillery P, Reich R, Maquart FX, Levi-Schaffer F. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis. *Clin Exp Allergy*. 2002; 32:237–246. [PubMed: 11929488]

Giannini D, Carletti A, Dente FL, Bacci E, Di Franco A, Vagaggini B, Paggiaro PL. Tolerance to the protective effect of salmeterol on allergen challenge. *Chest*. 1996; 110:1452–1457. [PubMed: 8989060]

Gilfillan AM, Beaven MA. Regulation of mast cell responses in health and disease. *Crit Rev Immunol*. 2011; 31:475–529. [PubMed: 22321108]

Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. *Nat Rev Immunol*. 2006; 6:218–230. [PubMed: 16470226]

Gimborn K, Lessmann E, Kuppig S, Krystal G, Huber M. SHIP down-regulates Fc ϵ RI-induced degranulation at supraoptimal IgE or antigen levels. *J Immunol*. 2005; 174:507–516. [PubMed: 15611277]

Godding V, Stark JM, Sedgwick JB, Busse WW. Adhesion of activated eosinophils to respiratory epithelial cells is enhanced by tumor necrosis factor-alpha and interleukin-1 beta. *Am J Respir Cell Mol Biol*. 1995; 13:555–562. [PubMed: 7576691]

Gosset P, Bureau F, Angeli V, Pichavant M, Faveeuw C, Tonnel AB, Trottein F. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. *J Immunol*. 2003; 170:4943–4952. [PubMed: 12734337]

Gosman MM, Postma DS, Vonk JM, Rutgers B, Lodewijk M, Smith M, Luinge MA, Ten Hacken NH, Timens W. Association of mast cells with lung function in chronic obstructive pulmonary disease. *Respir Res*. 2008; 9:64. [PubMed: 18783610]

Gurish MF, Boyce JA. Mast cells: ontogeny, homing, and recruitment of a unique innate effector cell. *J Allergy Clin Immunol*. 2006; 117:1285–1291. [PubMed: 16750988]

Hajkova Z, Bugajev V, Draberova E, Vinopal S, Draberova L, Janacek J, Draber P, Draber P. STIM1-directed reorganization of microtubules in activated mast cells. *J Immunol.* 2011; 186:913–923. [PubMed: 21160048]

Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID. Mepolizumab and exacerbations of refractory eosinophilic asthma. *N Engl J Med.* 2009; 360:973–984. [PubMed: 19264686]

Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. *Front Immunol.* 2012; 3:119. [PubMed: 22654878]

Hardy CC, Robinson C, Tattersfield AE, Holgate ST. The bronchoconstrictor effect of inhaled prostaglandin D2 in normal and asthmatic men. *N Engl J Med.* 1984; 311:209–213. [PubMed: 6588293]

Hargreave FE, Ryan G, Thomson NC, O’Byrne PM, Latimer K, Juniper EF, Dolovich J. Bronchial responsiveness to histamine or methacholine in asthma: measurement and clinical significance. *J Allergy Clin Immunol.* 1981; 68:347–355. [PubMed: 7028842]

He S, Walls AF. Human mast cell tryptase: a stimulus of microvascular leakage and mast cell activation. *Eur J Pharmacol.* 1997; 328:89–97. [PubMed: 9203574]

He SH, Zheng J. Stimulation of mucin secretion from human bronchial epithelial cells by mast cell chymase. *Acta Pharmacol Sin.* 2004; 25:827–832. [PubMed: 15169640]

Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, Rafael T, Zhu Z, Hicklin DJ, Okumura K, Ogawa H, et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. *J Exp Med.* 2005; 202:739–750. [PubMed: 16157686]

Hetz M, Bachem M, Anders D, Trischler G, Faehling M. Different effects of growth factors on proliferation and matrix production of normal and fibrotic human lung fibroblasts. *Lung.* 2005; 183:225–237. [PubMed: 16211459]

Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. *J Exp Med.* 2001; 193:255–261. [PubMed: 11208866]

Hirota N, Risso PA, Novali M, McGovern T, Al-Alwan L, McCuaig S, Proud D, Hayden P, Hamid Q, Martin JG. Histamine may induce airway remodeling through release of epidermal growth factor receptor ligands from bronchial epithelial cells. *FASEB J.* 2012; 26:1704–1716. [PubMed: 22247333]

Hogaboam C, Kunkel SL, Strieter RM, Taub DD, Lincoln P, Standiford TJ, Lukacs NW. Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions. *J Immunol.* 1998; 160:6166–6171. [PubMed: 9637535]

Holgate ST, Noonan M, Chanez P, Busse W, Dupont L, Pavord I, Hakulinen A, Paolozzi L, Wajdula J, Zang C, et al. Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial. *Eur Respir J.* 2011; 37:1352–1359. [PubMed: 21109557]

Hollins F, Kaur D, Yang W, Cruse G, Saunders R, Sutcliffe A, Berger P, Ito A, Brightling CE, Bradding P. Human airway smooth muscle promotes human lung mast cell survival, proliferation, and constitutive activation: cooperative roles for CADM1, stem cell factor, and IL-6. *J Immunol.* 2008; 181:2772–2780. [PubMed: 18684968]

Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, Beckett P, Al Ali M, Chauhan A, Wilson SJ, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. *Thorax.* 2005; 60:1012–1018. [PubMed: 16166100]

Hsieh FH, Sharma P, Gibbons A, Goggans T, Erzurum SC, Haque SJ. Human airway epithelial cell determinants of survival and functional phenotype for primary human mast cells. *Proc Natl Acad Sci U S A.* 2005; 102:14380–14385. [PubMed: 16186496]

Huber M, Helgason CD, Scheid MP, Duronio V, Humphries RK, Krystal G. Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. *EMBO J.* 1998; 17:7311–7319. [PubMed: 9857188]

Humbert M, Grant JA, Taborda-Barata L, Durham SR, Pfister R, Menz G, Barkans J, Ying S, Kay AB. High-affinity IgE receptor (Fc ϵ RI)-bearing cells in bronchial biopsies from atopic and nonatopic asthma. *Am J Respir Crit Care Med.* 1996; 153:1931–1937. [PubMed: 8665058]

Hunt LW, Colby TV, Weiler DA, Sur S, Butterfield JH. Immunofluorescent staining for mast cells in idiopathic pulmonary fibrosis: quantification and evidence for extracellular release of mast cell tryptase. *Mayo Clin Proc.* 1992; 67:941–948. [PubMed: 1434854]

Iba Y, Shibata A, Kato M, Masukawa T. Possible involvement of mast cells in collagen remodeling in the late phase of cutaneous wound healing in mice. *Int Immunopharmacol.* 2004; 4:1873–1880. [PubMed: 15531302]

Inoue Y, King TE Jr, Barker E, Daniloff E, Newman LS. Basic fibroblast growth factor and its receptors in idiopathic pulmonary fibrosis and lymphangioleiomyomatosis. *Am J Respir Crit Care Med.* 2002; 166:765–773. [PubMed: 12204879]

Inoue Y, King TE Jr, Tinkle SS, Dockstader K, Newman LS. Human mast cell basic fibroblast growth factor in pulmonary fibrotic disorders. *Am J Pathol.* 1996; 149:2037–2054. [PubMed: 8952537]

Irani AM, Bradford TR, Kepley CL, Schechter NM, Schwartz LB. Detection of MCT and MCTC types of human mast cells by immunohistochemistry using new monoclonal anti-tryptase and anti-chymase antibodies. *J Histochem Cytochem.* 1989; 37:1509–1515. [PubMed: 2674273]

Irani AM, Goldstein SM, Wintrob BU, Bradford T, Schwartz LB. Human mast cell carboxypeptidase. Selective localization to MCTC cells. *J Immunol.* 1991; 147:247–253. [PubMed: 2051021]

Jensen BM, Metcalfe DD, Gilfillan AM. Targeting kit activation: a potential therapeutic approach in the treatment of allergic inflammation. *Inflamm Allergy Drug Targets.* 2007; 6:57–62. [PubMed: 17352689]

Johnson PR, Ammit AJ, Carlin SM, Armour CL, Caughey GH, Black JL. Mast cell tryptase potentiates histamine-induced contraction in human sensitized bronchus. *Eur Respir J.* 1997; 10:38–43. [PubMed: 9032489]

Jordana M, Befus AD, Newhouse MT, Bienenstock J, Gauldie J. Effect of histamine on proliferation of normal human adult lung fibroblasts. *Thorax.* 1988; 43:552–558. [PubMed: 3212752]

Kalesnikoff J, Huber M, Lam V, Damen JE, Zhang J, Siraganian RP, Krystal G. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. *Immunity.* 2001; 14:801–811. [PubMed: 11420049]

Kaur D, Hollins F, Saunders R, Woodman L, Sutcliffe A, Cruse G, Bradding P, Brightling C. Airway smooth muscle proliferation and survival is not modulated by mast cells. *Clin Exp Allergy.* 2010; 40:279–288. [PubMed: 20030664]

Kawanami O, Ferrans VJ, Fulmer JD, Crystal RG. Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders. *Lab Invest.* 1979; 40:717–734. [PubMed: 449278]

Kim JH, Jain D, Tliba O, Yang B, Jester WF Jr, Panettieri RA Jr, Amrani Y, Puré E. TGF-beta potentiates airway smooth muscle responsiveness to bradykinin. *Am J Physiol Lung Cell Mol Physiol.* 2005; 289:L511–520. [PubMed: 15923209]

Kirby JG, Hargreave FE, Gleich GJ, O'Byrne PM. Bronchoalveolar cell profiles of asthmatic and nonasthmatic subjects. *Am Rev Respir Dis.* 1987; 136:379–383. [PubMed: 3304046]

Kitaura J, Song J, Tsai M, Asai K, Maeda-Yamamoto M, Mocsai A, Kawakami Y, Liu FT, Lowell CA, Barisas BG, et al. Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the Fc ϵ RI. *Proc Natl Acad Sci U S A.* 2003; 100:12911–12916. [PubMed: 14569021]

Koma Y, Ito A, Watabe K, Hirata T, Mizuki M, Yokozaki H, Kitamura T, Kanakura Y, Kitamura Y. Distinct role for c-kit receptor tyrosine kinase and SgIGSF adhesion molecule in attachment of mast cells to fibroblasts. *Lab Invest.* 2005; 85:426–435. [PubMed: 15654360]

Kozik A, Moore RB, Potempa J, Imamura T, Rapala-Kozik M, Travis J. A novel mechanism for bradykinin production at inflammatory sites. Diverse effects of a mixture of neutrophil elastase and mast cell tryptase versus tissue and plasma kallikreins on native and oxidized kininogens. *J Biol Chem.* 1998; 273:33224–33229. [PubMed: 9837892]

Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD. Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. *J Allergy Clin Immunol.* 2004; 114:174–182. [PubMed: 15241362]

Kulka M, Metcalfe DD. TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin. *Mol Immunol.* 2006; 43:1579–1586. [PubMed: 16280166]

Laitinen LA, Laitinen A, Haahela T. Airway mucosal inflammation even in patients with newly diagnosed asthma. *Am Rev Respir Dis.* 1993; 147:697–704. [PubMed: 8442607]

Laprise C, Boulet LP, Morissette J, Winstall E, Raymond V. Evidence for association and linkage between atopy, airway hyper-responsiveness, and the beta subunit Glu237Gly variant of the high-affinity receptor for immunoglobulin E in the French-Canadian population. *Immunogenetics.* 2000; 51:695–702. [PubMed: 10941841]

Lee CW, Lin CC, Luo SF, Lee HC, Lee IT, Aird WC, Hwang TL, Yang CM. Tumor necrosis factor-alpha enhances neutrophil adhesiveness: induction of vascular cell adhesion molecule-1 via activation of Akt and CaM kinase II and modifications of histone acetyltransferase and histone deacetylase 4 in human tracheal smooth muscle cells. *Mol Pharmacol.* 2008; 73:1454–1464. [PubMed: 18227124]

Lefrançais E, Duval A, Mirey E, Roga S, Espinosa E, Cayrol C, Girard JP. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. *Proc Natl Acad Sci USA.* 2014; 111:15502–15507. [PubMed: 25313073]

Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. *Physiol Rev.* 2012; 92:1619–1649. [PubMed: 23073628]

Lesourne R, Fridman WH, Daeron M. Dynamic interactions of Fc gamma receptor IIB with filamin-bound SHIP1 amplify filamentous actin-dependent negative regulation of Fc epsilon receptor I signaling. *J Immunol.* 2005; 174:1365–1373. [PubMed: 15661894]

Lewis CC, Aronow B, Hutton J, Santeliz J, Dienger K, Herman N, Finkelman FD, Wills-Karp M. Unique and overlapping gene expression patterns driven by IL-4 and IL-13 in the mouse lung. *J Allergy Clin Immunol.* 2009; 123:795–804. [PubMed: 19249085]

Liang Y, Buckley TR, Tu L, Langdon SD, Tedder TF. Structural organization of the human MS4A gene cluster on Chromosome 11q12. *Immunogenetics.* 2001; 53:357–368. [PubMed: 11486273]

Liang Y, Tedder TF. Identification of a CD20-, FcepsilonRIbeta-, and HTm4-related gene family: sixteen new MS4A family members expressed in human and mouse. *Genomics.* 2001; 72:119–127. [PubMed: 11401424]

Liu MC, Hubbard WC, Proud D, Stealey BA, Galli SJ, Kagey-Sobotka A, Bleeker ER, Lichtenstein LM. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics. *Cellular, mediator, and permeability changes.* *Am Rev Respir Dis.* 1991; 144:51–58. [PubMed: 2064141]

Lloyd AD, Bloom GD, Balazs EA. Evidence for the covalent association of heparin and protein in mast-cell granules. *Biochem J.* 1967; 103:76P–77P.

Longley BJ, Tyrrell L, Ma Y, Williams DA, Halaban R, Langley K, Lu HS, Schechter NM. Chymase cleavage of stem cell factor yields a bioactive, soluble product. *Proc Natl Acad Sci USA.* 1997; 94:9017–9021.

Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA. Recombinant human interleukin 5 is a selective activator of human eosinophil function. *J Exp Med.* 1988; 167:219–224. [PubMed: 2826636]

Maes T, Joos GF, Brusselle GG. Targeting IL-4 in asthma: lost in translation? *Am J Respir Cell Mol Biol.* 2012; 47:261–270. [PubMed: 22538865]

Makinde T, Murphy RF, Agrawal DK. The regulatory role of TGF-beta in airway remodeling in asthma. *Immunol Cell Biol.* 2007; 85:348–356. [PubMed: 17325694]

Marc MM, Korosec P, Kosnik M, Kern I, Flezar M, Suskovic S, Sorli J. Complement factors c3a, c4a, and c5a in chronic obstructive pulmonary disease and asthma. *Am J Respir Cell Mol Biol.* 2004; 31:216–219. [PubMed: 15039137]

Marks RM, Roche WR, Czerniecki M, Penny R, Nelson DS. Mast cell granules cause proliferation of human microvascular endothelial cells. *Lab Invest.* 1986; 55:289–294. [PubMed: 2427796]

Marom Z, Shelhamer JH, Bach MK, Morton DR, Kaliner M. Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. *Am Rev Respir Dis.* 1982; 126:449–451. [PubMed: 7125334]

Martin N, Ruddick A, Arthur GK, Wan H, Woodman L, Brightling CE, Jones DJ, Pavord ID, Bradding P. Primary human airway epithelial cell-dependent inhibition of human lung mast cell degranulation. *PLoS One*. 2012; 7:e43545. [PubMed: 22970103]

Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, Sugimoto Y, Kobayashi T, Ushikubi F, Aze Y, et al. Prostaglandin D2 as a mediator of allergic asthma. *Science*. 2000; 287:2013–2017. [PubMed: 10720327]

Mellor EA, Austen KF, Boyce JA. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. *J Exp Med*. 2002; 195:583–592. [PubMed: 11877481]

Metcalfe DD, Austen KF. Structure and function of intracellular proteoglycans. *Monogr Allergy*. 1979; 14:236–248. [PubMed: 388198]

Metzger WJ, Zavala D, Richerson HB, Moseley P, Iwamoto P, Monick M, Sjoerdsma K, Hunninghake GW. Local allergen challenge and bronchoalveolar lavage of allergic asthmatic lungs. Description of the model and local airway inflammation. *Am Rev Respir Dis*. 1987; 135:433–440. [PubMed: 2433975]

Mierke CT, Ballmaier M, Werner U, Manns MP, Welte K, Bischoff SC. Human endothelial cells regulate survival and proliferation of human mast cells. *J Exp Med*. 2000; 192:801–811. [PubMed: 10993911]

Mizutani H, Schechter N, Lazarus G, Black RA, Kupper TS. Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase. *J Exp Med*. 1991; 174:821–825. [PubMed: 1919436]

Moiseeva EP, Bradding P. Mast cells in lung inflammation. *Adv Exp Med Biol*. 2011; 716:235–269. [PubMed: 21713660]

Moiseeva EP, Leyland ML, Bradding P. CADM1 isoforms differentially regulate human mast cell survival and homotypic adhesion. *Cell Mol Life Sci*. 2012; 69:2751–2764. [PubMed: 22438059]

Moiseeva EP, Leyland ML, Bradding P. CADM1 is expressed as multiple alternatively spliced functional and dysfunctional isoforms in human mast cells. *Mol Immunol*. 2013a; 53:345–354. [PubMed: 23063768]

Moiseeva EP, Roach KM, Leyland ML, Bradding P. CADM1 is a key receptor mediating human mast cell adhesion to human lung fibroblasts and airway smooth muscle cells. *PLoS One*. 2013b; 8:e61579. [PubMed: 23620770]

Moiseeva EP, Straatman KR, Leyland ML, Bradding P. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells. *PLoS One*. 2014; 9:e85980. [PubMed: 24465823]

Molinari JF, Scuri M, Moore WR, Clark J, Tanaka R, Abraham WM. Inhaled tryptase causes bronchoconstriction in sheep via histamine release. *Am J Respir Crit Care Med*. 1996; 154:649–653. [PubMed: 8810600]

Montefort S, Gratiou C, Goulding D, Polosa R, Haskard DO, Howarth PH, Holgate ST, Carroll MP. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. *J Clin Invest*. 1994; 93:1411–1421. [PubMed: 7512980]

Murakami D, Yamada H, Yajima T, Masuda A, Komune S, Yoshikai Y. Lipopolysaccharide inhalation exacerbates allergic airway inflammation by activating mast cells and promoting Th2 responses. *Clin Exp Allergy*. 2007; 37:339–347. [PubMed: 17359384]

Murray JJ, Tonnel AB, Brash AR, Roberts LJ 2nd, Gosset P, Workman R, Capron A, Oates JA. Release of prostaglandin D2 into human airways during acute antigen challenge. *N Engl J Med*. 1986; 315:800–804. [PubMed: 3462506]

Neveu WA, Allard JB, Dienz O, Wargo MJ, Ciliberto G, Whittaker LA, Rincon M. IL-6 is required for airway mucus production induced by inhaled fungal allergens. *J Immunol*. 2009; 183:1732–1738. [PubMed: 19592651]

Newson R, Strachan D, Archibald E, Emberlin J, Hardaker P, Collier C. Effect of thunderstorms and airborne grass pollen on the incidence of acute asthma in England, 1990–94. *Thorax*. 1997; 52:680–685. [PubMed: 9337825]

Newson R, Strachan D, Archibald E, Emberlin J, Hardaker P, Collier C. Acute asthma epidemics, weather and pollen in England, 1987–1994. *Eur Respir J.* 1998; 11:694–701. [PubMed: 9596123]

Nieto L, Canales Á, Fernández IS, Santillana E, González-Corrochano R, Redondo-Horcajo M, Cañada FJ, Nieto P, Martín-Lomas M, Giménez-Gallego G, et al. Heparin modulates the mitogenic activity of fibroblast growth factor by inducing dimerization of its receptor. a 3D view by using NMR. *Chembiochem.* 2013; 14:1732–1744.

Nigo YI, Yamashita M, Hirahara K, Shinnakasu R, Inami M, Kimura M, Hasegawa A, Kohno Y, Nakayama T. Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function. *Proc Natl Acad Sci U S A.* 2006; 103:2286–2291. [PubMed: 16461458]

Nocka K, Buck J, Levi E, Besmer P. Candidate ligand for the c-kit transmembrane kinase receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. *EMBO J.* 1990; 9:3287–3294. [PubMed: 1698611]

Ohno I, Ohkawara Y, Yamauchi K, Tanno Y, Takishima T. Production of tumor necrosis factor with IgE receptor triggering from sensitized lung tissue. *Am J Respir Cell Mol Biol.* 1990; 3:285–290. [PubMed: 1698398]

Oka T, Hori M, Tanaka A, Matsuda H, Karaki H, Ozaki H. IgE alone-induced actin assembly modifies calcium signaling and degranulation in RBL-2H3 mast cells. *Am J Physiol Cell Physiol.* 2004; 286:C256–263. [PubMed: 13679305]

Okayama Y, Kawakami T. Development, migration, and survival of mast cells. *Immunol Res.* 2006; 34:97–115. [PubMed: 16760571]

Okayama Y, Matsuda A, Kashiwakura JI, Sasaki-Sakamoto T, Nunomura S, Shimokawa T, Yamaguchi K, Takahashi S, Ra C. Highly expressed cytoplasmic Fc epsilon RI beta in human mast cells functions as a negative regulator of the Fc epsilon R gamma-mediated cell activation signal. *Clin Exp Allergy.* 2014; 44:238–249. [PubMed: 24118172]

On M, Billingsley JM, Jouvin MH, Kinet JP. Molecular dissection of the Fc epsilon R beta signaling amplifier. *J Biol Chem.* 2004; 279:45782–45790. [PubMed: 15339926]

Oskeritzian CA, Zhao W, Min HK, Xia HZ, Pozez A, Kiev J, Schwartz LB. Surface CD88 functionally distinguishes the MCTC from the MCT type of human lung mast cell. *J Allergy Clin Immunol.* 2005; 115:1162–1168. [PubMed: 15940129]

Pandey V, Mihara S, Fensome-Green A, Bolsover S, Cockcroft S. Monomeric IgE stimulates NFAT translocation into the nucleus, a rise in cytosol Ca²⁺, degranulation, and membrane ruffling in the cultured rat basophilic leukemia-2H3 mast cell line. *J Immunol.* 2004; 172:4048–4058. [PubMed: 15034016]

Perkins C, Wills-Karp M, Finkelman FD. IL-4 induces IL-13-independent allergic airway inflammation. *J Allergy Clin Immunol.* 2006; 118:410–419. [PubMed: 16890766]

Perng DW, Wu YC, Chang KT, Wu MT, Chiou YC, Su KC, Perng RP, Lee YC. Leukotriene C4 induces TGF-beta1 production in airway epithelium via p38 kinase pathway. *Am J Respir Cell Mol Biol.* 2006; 34:101–107. [PubMed: 16179583]

Pesci A, Bertorelli G, Gabrielli M, Olivieri D. Mast cells in fibrotic lung disorders. *Chest.* 1993a; 103:989–996. [PubMed: 8131513]

Pesci A, Foresi A, Bertorelli G, Chetta A, Olivieri D. Histochemical characteristics and degranulation of mast cells in epithelium and lamina propria of bronchial biopsies from asthmatic and normal subjects. *Am Rev Respir Dis.* 1993b; 147:684–689. [PubMed: 7680188]

Qu Z, Liebler JM, Powers MR, Galey T, Ahmadi P, Huang XN, Ansel JC, Butterfield JH, Planck SR, Rosenbaum JT. Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. *Am J Pathol.* 1995; 147:564–573. [PubMed: 7545872]

Rafferty P, Beasley R, Holgate ST. The contribution of histamine to immediate bronchoconstriction provoked by inhaled allergen and adenosine 5' monophosphate in atopic asthma. *Am Rev Respir Dis.* 1987; 136:369–373. [PubMed: 3619195]

Rankin JA, Kaliner M, Reynolds HY. Histamine levels in bronchoalveolar lavage from patients with asthma, sarcoidosis, and idiopathic pulmonary fibrosis. *J Allergy Clin Immunol.* 1987; 79:371–377. [PubMed: 2434547]

Rauter I, Krauth MT, Flicker S, Gieras A, Westritschnig K, Vrtala S, Balic N, Spitzauer S, Huss-Marp J, Brockow K, et al. Allergen cleavage by effector cell-derived proteases regulates allergic inflammation. *FASEB J.* 2006; 20:967–969. [PubMed: 16585063]

Rauter I, Krauth MT, Westritschnig K, Horak F, Flicker S, Gieras A, Repa A, Balic N, Spitzauer S, Huss-Marp J, et al. Mast cell-derived proteases control allergic inflammation through cleavage of IgE. *J Allergy Clin Immunol.* 2008; 121:197–202. [PubMed: 17904627]

Redington AE, Roche WR, Madden J, Frew AJ, Djukanovic R, Holgate ST, Howarth PH. Basic fibroblast growth factor in asthma: Measurement in bronchoalveolar lavage fluid basally and following allergen challenge. *J Allergy Clin Immunol.* 2001; 107:384–387. [PubMed: 11174209]

Rivera J, Gilfillan AM. Molecular regulation of mast cell activation. *J Allergy Clin Immunol.* 2006; 117:1214–1225. [PubMed: 16750977]

Roubin R, Elsas PP, Fiers W, Dessein AJ. Recombinant human tumour necrosis factor (rTNF)2 enhances leukotriene biosynthesis in neutrophils and eosinophils stimulated with the Ca^{2+} ionophore A23187. *Clin Exp Immunol.* 1987; 70:484–490. [PubMed: 2827923]

Ruoss SJ, Hartmann T, Caughey GH. Mast cell tryptase is a mitogen for cultured fibroblasts. *J Clin Invest.* 1991; 88:493–499. [PubMed: 1864960]

Saetta M, Maestrelli P, Di Stefano A, De Marzo N, Milani GF, Pivirotto F, Mapp CE, Fabbri LM. Effect of cessation of exposure to toluene diisocyanate (TDI) on bronchial mucosa of subjects with TDI-induced asthma. *Am Rev Respir Dis.* 1992; 145:169–174. [PubMed: 1309964]

Sagara H, Okada T, Okumura K, Ogawa H, Ra C, Fukuda T, Nakao A. Activation of TGF-beta/Smad2 signaling is associated with airway remodeling in asthma. *J Allergy Clin Immunol.* 2002; 110:249–254. [PubMed: 12170265]

Saito A, Okazaki H, Sugawara I, Yamamoto K, Takizawa H. Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro. *Int Arch Allergy Immunol.* 2003; 132:168–176. [PubMed: 14600429]

Saito H, Matsumoto K, Okumura S, Kashiwakura J, Oboki K, Yokoi H, Kambe N, Ohta K, Okayama Y. Gene expression profiling of human mast cell subtypes: an in silico study. *Allergol Int.* 2006; 55:173–179. [PubMed: 17075254]

Sandford AJ, Shirakawa T, Moffatt MF, Daniels SE, Ra C, Faux JA, Young RP, Nakamura Y, Lathrop GM, Cookson WO, et al. Localisation of atopy and beta subunit of high-affinity IgE receptor (Fc epsilon RI) on chromosome 11q. *Lancet.* 1993; 341:332–334. [PubMed: 8094113]

Sanmugalingam D, Wardlaw AJ, Bradding P. Adhesion of human lung mast cells to bronchial epithelium: evidence for a novel carbohydrate-mediated mechanism. *J Leukoc Biol.* 2000; 68:38–46. [PubMed: 10914488]

Schleimer RP, MacGlashan DW Jr, Peters SP, Pinckard RN, Adkinson NF Jr, Lichtenstein LM. Characterization of inflammatory mediator release from purified human lung mast cells. *Am Rev Respir Dis.* 1986; 133:614–617. [PubMed: 3485946]

Schulman ES, Kagey-Sobotka A, MacGlashan DW Jr, Adkinson NF Jr, Peters SP, Schleimer RP, Lichtenstein LM. Heterogeneity of human mast cells. *J Immunol.* 1983; 131:1936–1941. [PubMed: 6194221]

Schulman ES, Pollack RB, Post TJ, Peters SP. Histochemical heterogeneity of dispersed human lung mast cells. *J Immunol.* 1990; 144:4195–4201. [PubMed: 1692857]

Sears MR, Burrows B, Flannery EM, Herbison GP, Hewitt CJ, Holdaway MD. Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children. *N Engl J Med.* 1991; 325:1067–1071. [PubMed: 1891008]

Sedgwick JB, Calhoun WJ, Gleich GJ, Kita H, Abrams JS, Schwartz LB, Volovitz B, Ben-Yaakov M, Busse WW. Immediate and late airway response of allergic rhinitis patients to segmental antigen challenge. Characterization of eosinophil and mast cell mediators. *Am Rev Respir Dis.* 1991; 144:1274–1281. [PubMed: 1741538]

Sekizawa K, Caughey GH, Lazarus SC, Gold WM, Nadel JA. Mast cell tryptase causes airway smooth muscle hyperresponsiveness in dogs. *J Clin Invest.* 1989; 83:175–179. [PubMed: 2642918]

Shalaby MR, Aggarwal BB, Rinderknecht E, Svedersky LP, Finkle BS, Palladino MA Jr. Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. *J Immunol.* 1985; 135:2069–2073. [PubMed: 3926894]

Sharma S, Ghosh B. Promoter polymorphism in the MS4A2 gene and asthma in the Indian population. *Int Arch Allergy Immunol.* 2009; 149:208–218. [PubMed: 19218813]

Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B, Shelley M, Abbas AR, Austin CD, Jackman J, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. *J Allergy Clin Immunol.* 2012; 129:104–111. e101–109. [PubMed: 21975173]

Singleton TE, Platzer B, Dehlink E, Fiebiger E. The first transmembrane region of the beta-chain stabilizes the tetrameric Fc epsilon RI complex. *Mol Immunol.* 2009; 46:2333–2339. [PubMed: 19406478]

Smrz D, Bandara G, Beaven MA, Metcalfe DD, Gilfillan AM. Prevention of F-actin assembly switches the response to SCF from chemotaxis to degranulation in human mast cells. *Eur J Immunol.* 2013; 43:1873–1882. [PubMed: 23616175]

Spivak-Kroizman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, Jaye M, Crumley G, Schlessinger J, Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. *Cell.* 1994; 79:1015–1024. [PubMed: 7528103]

Stafford AN, Rider SH, Hopkin JM, Cookson WO, Monaco AP. A 2.8 Mb YAC contig in 11q12-q13 localizes candidate genes for atopy: Fc epsilon RI beta and CD20. *Hum Mol Genet.* 1994; 3:779–785. [PubMed: 7521709]

Stebbins KJ, Broadhead AR, Baccei CS, Scott JM, Truong YP, Coate H, Stock NS, Santini AM, Fagan P, Prodanovich P, et al. Pharmacological blockade of the DP2 receptor inhibits cigarette smoke-induced inflammation, mucus cell metaplasia, and epithelial hyperplasia in the mouse lung. *J Pharmacol Exp Ther.* 2010; 332:764–765. [PubMed: 19996299]

Strieter RM. Pathogenesis and natural history of usual interstitial pneumonia: the whole story or the last chapter of a long novel. *Chest.* 2005; 128:526S–532S. [PubMed: 16304243]

Sunyer J, Anto JM, Castellsague J, Soriano JB, Roca J. Total serum IgE is associated with asthma independently of specific IgE levels. The Spanish Group of the European Study of Asthma. *Eur Respir J.* 1996; 9:1880–1884. [PubMed: 8880106]

Sunyer J, Anto JM, Sabria J, Roca J, Morell F, Rodriguez-Roisin R, Rodrigo MJ. Relationship between serum IgE and airway responsiveness in adults with asthma. *J Allergy Clin Immunol.* 1995; 95:699–706. [PubMed: 7897153]

Schwartz LB, Kawahara MS, Hugli TE, Vik D, Fearon DT, Austen KF. Generation of C3a anaphylatoxin from human C3 by human mast cell tryptase. *J Immunol.* 1983; 130:1891–1895. [PubMed: 6339618]

Swystun VA, Gordon JR, Davis EB, Zhang X, Cockcroft DW. Mast cell tryptase release and asthmatic responses to allergen increase with regular use of salbutamol. *J Allergy Clin Immunol.* 2000; 106:57–64. [PubMed: 10887306]

Takatsu K, Nakajima H. IL-5 and eosinophilia. *Curr Opin Immunol.* 2008; 20:288–294. [PubMed: 18511250]

Tamaoki J, Nakata J, Takeyama K, Chiyoani A, Konno K. Histamine H2 receptor-mediated airway goblet cell secretion and its modulation by histamine degrading enzymes. *J Allergy Clin Immunol.* 1997; 99:233–238. [PubMed: 9042051]

Taylor DR, Sears MR, Herbison GP, Flannery EM, Print CG, Lake DC, Yates DM, Lucas MK, Li Q. Regular inhaled beta agonist in asthma: effects on exacerbations and lung function. *Thorax.* 1993; 48:134–138. [PubMed: 8493626]

Taylor DR, Town GI, Herbison GP, Boothman-Burrell D, Flannery EM, Hancox B, Harre E, Laubscher K, Linscott V, Ramsay CM, Richards G. Asthma control during long-term treatment with regular inhaled salbutamol and salmeterol. *Thorax.* 1998; 53:744–752. [PubMed: 10319056]

Taylor IK, O'Shaughnessy KM, Fuller RW, Dollery CT. Effect of cysteinyl-leukotriene receptor antagonist ICI 204.219 on allergen-induced bronchoconstriction and airway hyperreactivity in atopic subjects. *Lancet.* 1991; 337:690–694. [PubMed: 1672176]

Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. *Immunol Today.* 1994; 15:450–454. [PubMed: 7524522]

Terranova VP, DiFlorio R, Lyall RM, Hic S, Friesel R, Maciag T. Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. *J Cell Biol.* 1985; 101:2330–2340. [PubMed: 3905825]

Thomas PS, Heywood G. Effects of inhaled tumour necrosis factor alpha in subjects with mild asthma. *Thorax.* 2002; 57:774–778. [PubMed: 12200521]

Thomas PS, Yates DH, Barnes PJ. Tumor necrosis factor-alpha increases airway responsiveness and sputum neutrophilia in normal human subjects. *Am J Respir Crit Care Med.* 1995; 152:76–80. [PubMed: 7599866]

Tonnel AB, Joseph M, Gosset P, Fournier E, Capron A. Stimulation of alveolar macrophages in asthmatic patients after local provocation test. *Lancet.* 1983; 1:1406–1408. [PubMed: 6134181]

Trautmann A, Feuerstein B, Ernst N, Brocker EB, Klein CE. Heterotypic cell-cell adhesion of human mast cells to fibroblasts. *Arch Dermatol Res.* 1997; 289:194–203. [PubMed: 9143735]

Weidner N, Austen KF. Heterogeneity of mast cells at multiple body sites. Fluorescent determination of avidin binding and immunofluorescent determination of chymase, tryptase, and carboxypeptidase content. *Pathol Res Pract.* 1993; 189:156–162. [PubMed: 8321743]

Weller K, Foitzik K, Paus R, Syska W, Maurer M. Mast cells are required for normal healing of skin wounds in mice. *FASEB J.* 2006; 20:2366–2368. [PubMed: 16966487]

Wenzel SE, Fowler AA 3rd, Schwartz LB. Activation of pulmonary mast cells by bronchoalveolar allergen challenge. In vivo release of histamine and tryptase in atopic subjects with and without asthma. *Am Rev Respir Dis.* 1988; 137:1002–1008. [PubMed: 2461667]

Wenzel SE, Larsen GL, Johnston K, Voelkel NF, Westcott JY. Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. *Am Rev Respir Dis.* 1990; 142:112–119. [PubMed: 2195930]

Wenzel SE, Westcott JY, Larsen GL. Bronchoalveolar lavage fluid mediator levels 5 minutes after allergen challenge in atopic subjects with asthma: relationship to the development of late asthmatic responses. *J Allergy Clin Immunol.* 1991; 87:540–548. [PubMed: 1993813]

Wessler I, Holper B, Kortsik C, Buhl R, Kilbinger H, Kirkpatrick CJ. Dysfunctional inhibitory muscarinic receptors mediate enhanced histamine release in isolated human bronchi. *Life Sci.* 2007; 80:2294–2297. [PubMed: 17320912]

Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ, Park LS, Martin U, Mochizuki DY, Boswell HS, et al. Identification of a ligand for the c-kit proto-oncogene. *Cell.* 1990; 63:167–174. [PubMed: 1698553]

Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD. Interleukin-13: central mediator of allergic asthma. *Science.* 1998; 282:2258–2261. [PubMed: 9856949]

Woodman L, Siddiqui S, Cruse G, Sutcliffe A, Saunders R, Kaur D, Bradding P, Brightling C. Mast cells promote airway smooth muscle cell differentiation via autocrine up-regulation of TGF-beta 1. *J Immunol.* 2008; 181:5001–5007. [PubMed: 18802103]

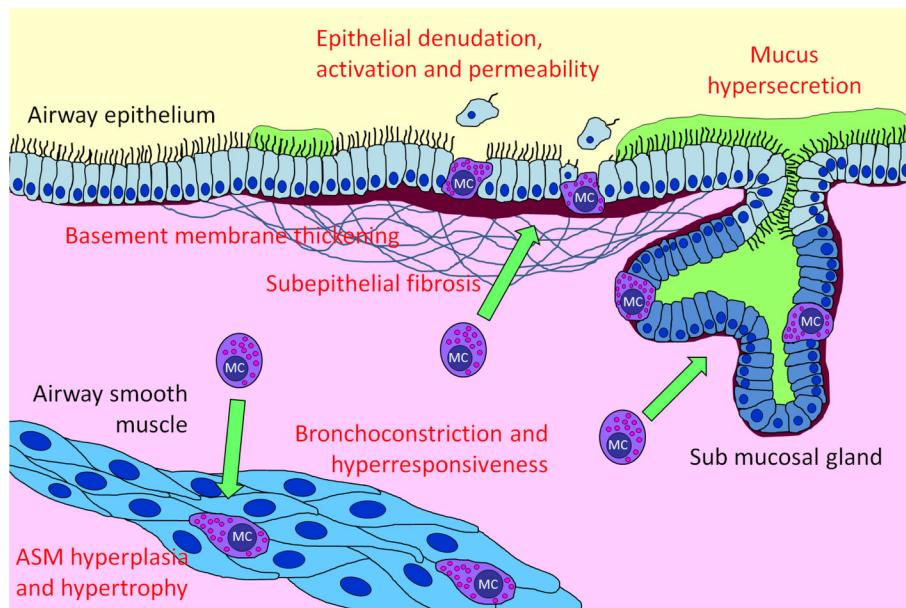
Wygrecka M, Dahal BK, Kosanovic D, Petersen F, Taborski B, von Gerlach S, Didiasova M, Zakrzewicz D, Preissner KT, Schermuly RT, Markart P. Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-alpha/Raf-1/p44/42 signaling pathway. *Am J Pathol.* 2013; 182:2094–2108. [PubMed: 23562441]

Xia HZ, Du Z, Craig S, Klisch G, Noben-Trauth N, Kochan JP, Huff TH, Irani AM, Schwartz LB. Effect of recombinant human IL-4 on tryptase, chymase, and Fc epsilon receptor type I expression in recombinant human stem cell factor-dependent fetal liver-derived human mast cells. *J Immunol.* 1997; 159:2911–2921. [PubMed: 9300715]

Yamaguchi M, Lantz CS, Oetgen HC, Katona IM, Fleming T, Miyajima I, Kinet JP, Galli SJ. IgE enhances mouse mast cell Fc(epsilon)RI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. *J Exp Med.* 1997; 185:663–672. [PubMed: 9034145]

Yanagida M, Fukamachi H, Ohgami K, Kuwaki T, Ishii H, Uzumaki H, Amano K, Tokiwa T, Mitsui H, Saito H, et al. Effects of T-helper 2-type cytokines, interleukin-3 (IL-3), IL-4, IL-5, and IL-6 on the survival of cultured human mast cells. *Blood.* 1995; 86:3705–3714. [PubMed: 7579337]

Yang W, Wardlaw AJ, Bradding P. Attenuation of human lung mast cell degranulation by bronchial epithelium. *Allergy.* 2006; 61:569–575. [PubMed: 16629786]


Yang YC, Zhang N, Van Crombruggen K, Hu GH, Hong SL, Bachert C. Transforming growth factor-beta1 in inflammatory airway disease: a key for understanding inflammation and remodeling. *Allergy*. 2012; 67:1193–1202. [PubMed: 22913656]

Ying S, Durham SR, Corrigan CJ, Hamid Q, Kay AB. Phenotype of cells expressing mRNA for TH2-type (interleukin 4 and interleukin 5) and TH1-type (interleukin 2 and interferon gamma) cytokines in bronchoalveolar lavage and bronchial biopsies from atopic asthmatic and normal control subjects. *Am J Respir Cell Mol Biol*. 1995; 12:477–487. [PubMed: 7742012]

Ying S, Humbert M, Barkans J, Corrigan CJ, Pfister R, Menz G, Larche M, Robinson DS, Durham SR, Kay AB. Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. *J Immunol*. 1997; 158:3539–3544. [PubMed: 9120316]

Zhang K, Gharaee-Kermani M, McGarry B, Remick D, Phan SH. TNF-alpha-mediated lung cytokine networking and eosinophil recruitment in pulmonary fibrosis. *J Immunol*. 1997; 158:954–959. [PubMed: 8993016]

Zhang K, Rekhter MD, Gordon D, Phan SH. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. *Am J Pathol*. 1994; 145:114–125. [PubMed: 7518191]

Figure 1.

Schematic representation of mast cell infiltration into important structures of the airways in asthma and the functional consequences. For information on key mediators of these events see Tables 1 and 2.

Table 1

Human mast cell mediators and their effects in airways.

Mediator	Biological effects in airways	References
Preformed (stored) mediators		
Histamine	Bronchoconstriction Mucus hypersecretion Collagen synthesis Promotes tissue oedema Fibroblast and endothelial cell proliferation Dendritic cell activation	Caron, et al., 2001; Dunford & Holgate, 2010; Garbuzenko, et al., 2002; Hargreave, et al., 1981; Hirota, et al., 2012; Jordana, et al., 1988; Marks, et al., 1986; Tamaoki, et al., 1997
Heparin	Anticoagulant Storage matrix for mast cell mediators Protects growth factors from degradation Potentiates growth factors action Fibroblast activation Endothelial cell migration	Caughey, 1989; Gao & Goldfarb, 1995; Lloyd, et al., 1967; Metcalfe & Austen, 1979; Moiseeva & Bradding, 2011; Nieto, et al., 2013; Spivak- Kroizman, et al., 1994; Terranova, et al., 1985
Tryptase	Potentiates MC histamine release Increases airway hyperresponsiveness Generates C3a and bradykinin Activates epithelial cells Promotes fibroblast growth and collagen synthesis Indirectly activates collagenase	Cairns & Walls, 1996; Cairns & Walls, 1997; Caughey, 1989; Garbuzenko, et al., 2002; He & Walls, 1997; Johnson, et al., 1997; Kozik, et al., 1998; Moiseeva & Bradding, 2011; Ruoss, et al., 1991; Schwartz, et al., 1983
Chymase	Mucus secretion Extracellular matrix degradation Converts angiotensin I to angiotensin II Activates IL-1 β Releases membrane bound SCF Cleaves IL-33 to a more active form	Caughey, 1989; Fukami, et al., 1998; He & Zheng, 2004; Lefrançais, et al., 2014; Longley, et al., 1997; Mizutani, et al., 1991; Moiseeva & Bradding, 2011
Newly generated mediators		
Prostaglandin D ₂	Bronchoconstriction Mucus secretion Promotes tissue oedema Dendritic cell activation Chemotaxis of eosinophils Chemotaxis of Th2 T cells and basophils	Gosset, et al., 2003; Hardy, et al., 1984; Hirai, et al., 2001; Matsuoka, et al., 2000; Moiseeva & Bradding, 2011; Stebbins, et al., 2010
Cysteinyl leukotrienes (LTC ₄ /LTD ₄)	Bronchoconstriction Mucus secretion Promotes tissue oedema Dendritic cell maturation and migration Tissue fibrosis Enhances IL-13-dependent ASM proliferation Promotes IL-4 secretion from eosinophils Promotes IL-5, IL-8 and TNF α release from MC	Bandeira-Melo, et al., 2002; Busse, 1998; Dahlén et al., 1980; Dannull, et al., 2012; Espinosa, et al., 2003; Marom, et al., 1982; Mellor, et al., 2002; Moiseeva & Bradding, 2011; Perng, et al., 2006

Table 2

Mast cell cytokines and their effects in airways.

Cytokine	Biological effects in airways	References
IL-4	Allergic sensitisation Eosinophilic inflammation Allergen-specific IgE production Upregulation of IgE receptor expression Airway inflammation Airway hyperresponsiveness Airway remodelling Th2 cell polarisation	Brusselle, et al., 1994; Brusselle, et al., 1995; Chatila, et al., 2004; Lewis, et al., 2009; Maes, et al., 2012; Moiseeva & Bradding, 2011; Perkins, et al., 2006; Saito, et al., 2003; Xia, et al., 1997
IL-3/IL-5	Eosinophilic inflammation Eosinophil activation Airway inflammation Airway remodelling	Cho, et al., 2004; Lopez, et al., 1988; Moiseeva & Bradding, 2011; Takatsu & Nakajima, 2008
IL-6	Mast cell survival Mucus secretion T cell activation Airway inflammation	Cruse, et al., 2008; Moiseeva & Bradding, 2011; Neveu, et al., 2009; Yanagida, et al., 1996
IL-13	Goblet cell hyperplasia Mucus hypersecretion Airway remodelling Airway hyperresponsiveness Promotes eosinophilia IgE synthesis Airway inflammation	Chatila, et al., 2004; Grunig, et al., 1998; Lewis, et al., 2009; Maes, et al., 2012; Moiseeva & Bradding, 2011; Saito, et al., 2003; Wills-Karp, et al., 1998
TNF α	Mucus production Enhanced eosinophil activity Promotes eosinophil adhesion to airway epithelium Enhanced neutrophil activity Enhanced mast cell activity Airway inflammation	Chen, et al., 2003; Godding, et al., 1995; Lee, et al., 2008; Moiseeva & Bradding, 2011; Ohno, et al., 1990; Roubin, et al., 1987; Shalaby, et al., 1985; Zhang, et al., 1997
SCF	Enhances mast cell growth, survival and differentiation Promotes mast cell recruitment Enhances mast cell degranulation	Cruse, et al., 2014; Galli, et al., 1993; Gilfillan and Tkaczyk, 2006; Halova et al., 2012; Jensen et al., 2007; Moiseeva & Bradding, 2011; Nocka, et al., 1990; Okayama and Kawakami, 2006; Williams, et al., 1990
NGF	Enhances mast cell activation Promotes proliferation of inflammatory cells Airway inflammation Airway hyperresponsiveness	Braun, et al., 1998; De Vries, et al., 1999; Friberg, et al., 2001; Frossard, et al., 2005; Frossard, et al., 2004
TGF β	Airway remodelling Tissue fibrosis Angiogenesis Airway hyperresponsiveness Airway inflammation	Bossé, et al., 2006; Kim, et al., 2005; Makinde, et al., 2007; Sagara, et al., 2002; Yang, et al., 2012
bFGF	Airway remodelling Airway smooth muscle proliferation	Bossé, et al., 2006; Moiseeva & Bradding, 2011; Redington, et al., 2001