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Abstract

Mast cells are major effector cells of inflammation and there is strong evidence that mast cells
play a significant role in asthma pathophysiology. There is also a growing body of evidence that
mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive
pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast
cells play in airway diseases and highlights how mast cell microlocalisation within specific lung
compartments and their cellular interactions are likely to be critical for their effector function in
disease.
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1. Introduction

Mast cells are highly specialised granulocytes that contribute towards innate and adaptive
immunity (Echtenacher et al., 1996) as well as tissue repair and revascularisation (Heissig et
al., 2005; Iba et al., 2004; Weller et al., 2006). Mast cells perform the majority of their
functions by releasing preformed and/or newly generated pleiotropic mediators in response
to diverse activation signals to trigger a programmed inflammatory response. Mast cells are
present in all vascularised tissues and are particularly abundant at sites of the environmental
interface, such as the skin, gastrointestinal tract and the pulmonary epithelia. Thus mast cells
are well equipped to respond to their environment where they can trigger an inflammatory
response against a perceived tissue insult. Indeed, mast cells appear to be able to “sense”
their environment by extending membranous projections into the lumen of blood vessels,
which can sensitise the cells to respond to antigen (Cheng et al., 2013). However, in many
disease states such as asthma, chronic inflammation may be due to inappropriate mast cell
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activation and/or redistribution of mast cells to specific structures that could drive
detrimental tissue remodelling processes contributing to disease progression. In fact, mast
cells are found to be in an “activated” state in asthmatic airways (for review see (Bradding et
al., 2006)) suggesting that either the tissue microenvironment is supporting chronic mast cell
activation or mast cells in asthmatic airways are intrinsically hyper-secretory. Despite
asthma being associated with atopy, the role of allergen exposure in chronic asthma may be
overstated and the disease can become self-perpetuating once established. Indeed, mast cells
may also play roles in other respiratory diseases that are not associated with atopy, such as
chronic obstructive pulmonary disease (COPD) and interstitial lung diseases, where the
drivers of mast cell involvement are often idiopathic, but unlikely to be allergens. In this
review, we will discuss current opinion on the role that mast cells play in airway diseases
with particular emphasis on asthma where the role of mast cells is more understood.

2. Mast cell heterogeneity

Mast cells are long-lived tissue-resident cells derived from haematopoietic stem cells that
leave the bone marrow as mast cell-committed, but undifferentiated CD34* progenitor cells.
Mast cell precursors are recruited into tissues where they become resident and then mature
and differentiate under the influence of the local cytokine milieu (for review see (Gurish and
Boyce, 2006)). Therefore, mast cells represent heterogeneous populations depending upon
the tissue where they reside and the local cytokine environment. For example, human lung
mast cells can be discriminated from mast cells isolated from other tissues based on their
profile of released mediators and surface expression of chemokine receptors (Bradding et al.,
1995; Brightling et al., 2005b; Irani et al., 1991; Oskeritzian et al., 2005; Saito et al., 2006;
Weidner and Austen, 1993). This heterogeneity also extends to the microlocalisation of mast
cells within distinct tissue compartments (Bradding, 2009). Thus, human mast cells from
different lung compartments contain granules with distinct protease content, which can be
classified as mast cells containing either tryptase only (MC+), chymase only (MC¢) or both
tryptase and chymase (MCr¢) in their granules (Balzar et al., 2005; Bradding et al., 1995;
Weidner and Austen, 1993).

The MC+ subtype is smaller and contains less histamine than the MCt¢ subtype
(Oskeritzian et al., 2005; Schulman et al., 1983; Schulman et al., 1990) and it is possible that
MCr+c development from MCr+ cells may be a step in maturation. However, it is clear that
mast cells can change subtype in response to their environment and that changes in subtype
can occur in both directions. For example, MCyc cells cultured with human airway
epithelial cells convert to an MC+ phenotype /n vitro (Hsieh et al., 2005), whereas MCr cells
cultured with endothelial cells transform into an MC+¢ phenotype (Mierke et al., 2000).
This phenomenon most likely also occurs in vivo since the MCy subtype predominates in
the lung parenchyma, bronchial lamina propria and bronchial epithelium, while the MC¢
subtype surrounds pulmonary blood vessels with close proximity to the vascular endothelial
cells (Andersson et al., 2009; Bradding et al., 1995; Irani et al., 1989; Irani et al., 1991). The
significance and consequences of microlocalisation of mast cell subtypes is not yet clear and
the factors that drive the development of each subtype are largely unknown and most likely
multifactorial. However, these observations demonstrate the complexity of the mast cell
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compartment and the heterogeneity of mast cell populations that can adapt to a changing
environment.

3. Mechanisms that support mast cell growth and function

Many canonical mast cell functions are regulated by two distinct, but interconnected
receptor-mediated signalling pathways. Mast cells regulate adaptive immune responses when
they encounter antigen that crosslinks immunoglobulin E (IgE) bound to the high affinity
IgE receptor, FceRI (for review see (Rivera and Gilfillan, 2006)). Aggregation of FceRl
triggers a number of signalling pathways that lead to the release of Ca2* from intracellular
stores, influx of extracellular Ca2* and reorganization of the cytoskeleton that are all critical
processes for the release of pre-stored and newly generated mediators (Allen et al., 2009;
Cruse et al., 2013; Draber et al., 2012; Gilfillan and Beaven, 2011; Gilfillan and Tkaczyk,
2006; Hajkova et al., 2011; Rivera and Gilfillan, 2006). Mast cells can also respond to a
variety of alternative stimuli that may inhibit or augment FceRI-dependent responses. One of
the most important crosstalk interactions between receptors may be the synergism between
FceRI and KIT, the receptor tyrosine kinase for stem cell factor (SCF) encoded by the proto-
oncogene ¢-KIT (for reviews see (Cruse et al., 2014; Gilfillan and Tkaczyk, 2006;
Lennartsson and Ronnstrand, 2012)). SCF is the major growth and survival factor for mast
cells and is absolutely required for mast cell survival (Jensen et al., 2007; Okayama and
Kawakami, 2006). In addition, SCF is a chemoattractant for mast cells (Halova et al., 2012;
Okayama and Kawakami, 2006) and synergistically enhances antigen-induced
degranulation, cytokine production and migration (reviewed in (Gilfillan and Tkaczyk,
2006)). Therefore, increased concentrations of SCF in tissues may not only promote mast
cell recruitment, survival and differentiation, but could also result in increased mast cell
responsiveness. As will be discussed below, SCF expression in the airways of patients with
asthma has been reported to be increased compared to control subjects (Al-Muhsen et al.,
2004; Da Silva et al., 2006) and therefore may play an important role in asthma pathogenesis
and contribute to low-level chronic activation of mast cells. Indeed, under certain
circumstances where either the actin cytoskeleton (Smrz et al., 2013) or inhibitory molecules
such as SH2 domain containing inositol-5-phosphatase-1 (SHIP-1) that interact with the
actin cytoskeleton (Gimborn et al., 2005; Lesourne et al., 2005) are perturbed, SCF does not
simply potentiate mast cell degranulation, but can directly induce degranulation (Huber et
al., 1998; Smrz et al., 2013).

It is clear that SCF has the capacity to regulate most mast cell functions, which highlights
the importance of understanding the signalling mechanisms that control specific functional
responses to SCF. The mechanisms that regulate whether mast cells will differentiate or
proliferate in response to SCF, for example, are not well understood. It is possible that the
concentration of SCF and/or differential phosphorylation of specific tyrosine residues in KIT
may play roles in dictating responses, although studies to specifically address these
possibilities are needed. SCF also plays important roles in mast cell adhesion to structural
cells where SCF exists as a membrane bound form (Hollins et al., 2008; Koma et al., 2005;
Wygrecka et al., 2013). Most studies of SCF function in mast cells have been performed
with the soluble form of SCF, which would be expected to undergo endocytosis more rapidly
than a membrane tethered ligand. While studies on the membrane form of SCF have been
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limited by technical difficulties, it has been suggested that transmembrane SCF on
fibroblasts, or SCF immobilised onto culture plates increases histamine release and eotaxin
production in mast cells, but the soluble SCF induced little or no eotaxin production
(Hogaboam et al., 1998). In addition, the mechanism of KIT endocytosis and trafficking
affects signaling and functional responses in human mast cells, which may be due to altered
signaling at the plasma membrane or within intracellular compartments (Cruse et al., 2015).
Therefore, it is attractive to hypothesise that a soluble version of SCF would result in
different signals than a membrane tethered version of SCF that would act to tether mast cells
in tissues and presumably sustain signalling events at the plasma membrane.

4. Mast cells in asthma

Asthma is characterised by the presence of airway obstruction that is reversible, at least in
part, either with pharmacological intervention or spontaneously. Asthma usually presents
with symptoms of wheeze, dyspnoea, cough and tightness in the chest. Asthma symptoms
can be triggered by many different stimuli depending in part upon whether the disease is
atopic, non-atopic (intrinsic), or occupational. Common triggers for symptoms include
allergen exposure, viral infection, inhaled irritants, exercise and drugs. With respect to acute
allergen exposure, the immediate effects are classified as the early asthmatic reaction and
include airflow obstruction caused by bronchoconstriction, mucosal oedema due to
increased vascular permeability and mucus hypersecretion. This early asthmatic reaction is
then followed by the late asthmatic reaction in about 50% of subjects, which includes
aggravation of underlying airway inflammation due to an influx of activated inflammatory
cells and increased airway hyperresponsiveness. The mechanisms driving the late asthmatic
reaction were thought for many years to be representative of the factors promoting chronic
inflammatory changes in the airways in day-to-day asthma. In addition, it has been proposed
that these events may lead to tissue damage and if the inflammation is chronic, airway
remodelling can ensue. However, this is an over simplification, and there is increasing
evidence that airway inflammation and airway remodelling may occur independently.

There is strong evidence that mast cells play an important role in the early asthmatic reaction
following allergen exposure. Mast cell-derived mediators induce the classical features of the
early asthmatic reaction /n vivo, inducing bronchoconstriction, mucus secretion and mucosal
oedema (for reviews see (Bradding and Cruse, 2008; Bradding et al., 2006; Brightling et al.,
2003a; Moiseeva and Bradding, 2011)). For example, several studies have identified an
increase in histamine, prostaglandin D, (PGD5) and leukotriene C4 (LTC,) in the BAL fluid
of asthma subjects following bronchial allergen challenge (Casale et al., 1987; Liu et al.,
1991; Murray et al., 1986; Sedgwick et al., 1991; Wenzel et al., 1988; Wenzel et al., 1990;
Wenzel et al., 1991) and that the early asthmatic reaction is significantly alleviated with the
administration of potent selective inhibitors of histamine, LTC4 and to a lesser extent PGD,
(Beasley et al., 1987; Curzen et al., 1987; Findlay et al., 1992; Rafferty et al., 1987; Taylor et
al., 1991). These mediators are most likely derived from mast cells in the bronchial mucosa
because histamine, PGD, and LTC4 are all released from human lung mast cells /n vitro
with remarkably similar kinetics to the allergen challenge studies (Schleimer et al., 1986). In
addition, evidence for mast cell degranulation comes from the mast cell-specific protease
tryptase being recovered at increased levels from the BAL fluid after allergen challenge
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(Sedgwick et al., 1991; Wenzel et al., 1988). Furthermore, the early asthmatic reaction can
be significantly attenuated with neutralizing anti-IgE (Omalizumab) pretreatment
demonstrating that IgE-dependent signalling is required (Boulet et al., 1997; Fahy et al.,
1997).

Mast cells also synthesise and release a vast array of proinflammatory cytokines and
chemokines that act to recruit inflammatory cells such as eosinophils, activated macrophages
and lymphocytes (Bentley et al., 1993; De Monchy et al., 1985; Diaz et al., 1989; Metzger et
al., 1987; Montefort et al., 1994; Tonnel et al., 1983) that participate in the late asthmatic
reaction (for reviews see (Bradding and Cruse, 2008; Bradding and Holgate, 1999; Moiseeva
and Bradding, 2011)). The late asthmatic reaction is associated with the infiltration of
inflammatory cells including eosinophils, which were believed to contribute to airway
obstruction and the development of airway hyperresponsiveness. However, anti-IL-5 therapy
effectively inhibits eosinophil recruitment after allergen challenge but has no effect on the
allergen-induced increase in airflow obstruction or airway hyperresponsiveness suggesting
that other factors mediate this (Haldar et al., 2009). Elucidating roles for mast cells in the
late asthmatic reaction is more difficult than the early asthmatic reaction. Indeed, it has been
suggested that many of the features of the late asthmatic reaction are likely to be driven by
the infiltrating cells rather than mast cells because levels of tryptase are reduced in the late
asthmatic reaction (Sedgwick et al., 1991). However, a decline in tryptase levels during the
late asthmatic reaction may be an indicator that the initial release of preformed mast cell
mediators has subsided, but it does not necessarily mean that there is no longer mast cell
involvement. Development of the late asthmatic reaction can be alleviated with anti-IgE
(Omalizumab) therapy (Fahy et al., 1997) providing strong evidence that mast cell-driven
events are a pre-requisite for the development of the late asthmatic reaction.

5. Chronic mast cell activation in asthma

The contribution of mast cells to the pathophysiology of asthma probably arises from the
maladaptation of their protective roles in wound healing, defence against bacterial and
parasitic infections and their important contribution to innate and adaptive immunity (for
reviews see (Bradding and Cruse, 2008; Bradding and Holgate, 1999; Moiseeva and
Bradding, 2011)). The role that mast cells play in these “healthy” responses is to elicit an
inflammatory and/or immune response by releasing a number of proinflammatory mediators.
In homeostatic mast cell responses, mast cells are usually protective and trigger
inflammatory reactions that quickly resolve. However, in diseases such as asthma, mast cells
within the asthmatic airways appear to be present in a chronically activated state with
evidence of ongoing mediator secretion. There are increased numbers of mast cells in the
bronchoalveolar lavage (BAL) fluid of patients with stable asthma when compared to control
volunteers (Broide et al., 1991; Flint et al., 1985; Kirby et al., 1987) and increased levels of
the mast cell mediators histamine and tryptase (Broide et al., 1991; Casale et al., 1987;
Wenzel et al., 1988) suggesting on-going degranulation. It could be that the increase in mast
cell mediators in BAL fluid of asthmatic subjects is due to an increase in mast cell numbers
rather than mast cell hypersecretion. However, mast cells from the BAL fluid of
symptomatic asthmatic subjects demonstrate an increase in both 1gE-dependent
degranulation and constitutive mediator release when compared to non-asthmatic controls
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(Broide et al., 1991; Flint et al., 1985). In addition, mast cell morphology assessed by
microscopy suggests that mast cells within key structures such as the airway smooth muscle
are present in an activated state in the airways in asthma (Beasley et al., 1989; Begueret et
al., 2007; Djukanovic et al., 1992; Laitinen et al., 1993). In addition, there is evidence of
increased Th2 cytokine mRNA expression in mast cells in the airway wall in asthma, again
providing evidence of activation (Ying et al., 1995). Bearing in mind the biological profile of
mast cell autacoids, proteases and cytokines summarized in (Tables 1 and 2), it is easy to
envisage how mast cell products could contribute to the development and propagation of
airway inflammation, remodeling, bronchoconstriction, bronchial hyperresponsiveness, and
mucus hypersecretion (Figure 1).

The studies discussed above provide strong evidence for mast cells in the airways of atopic
asthma patients being present in an activated secretory state. Given the high incidence of
atopy in asthmatic subjects under the age of 30, the role that pollen plays in exacerbating
asthma (Newson et al., 1997, 1998), and the therapeutic efficacy of Omalizumab, it appears
as though allergen-driven processes contribute to the pathophysiology of allergic asthma and
the associated hypersecretory phenotype of mast cells. However, the precise role that
allergens play in chronic asthma is not clear cut, and it is also evident that mast cells in both
non-atopic asthma, and occupational asthma are also present in an activated state (Chan-
Yeung et al., 1989; Di Stefano et al., 1993; Frew et al., 1993; Humbert et al., 1996; Saetta et
al., 1992; Ying et al., 1997). In addition, while anti-IgE therapy with Omalizumab markedly
reduces airway inflammation (Djukanovic et al., 2004), symptoms often persist at a lower
level. In established asthma, the disease may become self-perpetuating and the on-going
mast cell hypersecretion may arise from factors that activate mast cells independently of
IgE, or that synergistically amplify very low level IgE signals. As is discussed elsewhere in
this issue, mast cells can be activated by both IgE-dependent and IgE-independent
mechanisms to release a plethora of autacoid mediators, proteases and cytokines (for
additional reviews see (Gilfillan and Beaven, 2011; Gilfillan and Tkaczyk, 2006)). The
maximum degranulation with different stimuli /n vitro are often comparable and signalling
triggered by various receptors share common pathways with co-stimulation often having
synergistic effects (for reviews see (Gilfillan and Beaven, 2011; Gilfillan and Tkaczyk,
2006)).

6. Mast cell activation by microorganisms

Synergistic crosstalk between FceRI and other receptors may play an important role in
activation of mast cells by microorganisms such as bacteria and viruses that could
exacerbate chronic asthma. Human mast cells express toll-like receptors (TLR)-1, -2, -3, -4,
-5, -7 and -9 (Kulka et al., 2004; Kulka and Metcalfe, 2006), which can activate mast cells
following binding of the relevant ligand. Respiratory viruses are a common cause of asthma
exacerbations and thus TLR-3, which recognises double stranded RNA (viral RNA), is of
particular relevance. Activation of mast cells with a synthetic activator of TLR-3, Poly I:C,
induces the specific release of interferon a (IFNa), which reflects the responses to both
respiratory syncytial virus (RSV) and the influenza virus (Kulka et al., 2004) suggesting a
potential role for TLR-3 in virus-induced mast cell activation within the lung.
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Mast cells can also be activated by bacterial products such as lipopolysaccharide (LPS) that
acts through TLR-4. Addition of LPS to mast cell cultures /n vitro augments IL-5 and IL-13
production as well as mRNA levels for IL-4, IL-5 and IL-13 in mouse bone marrow-derived
mast cells activated with IgE/Ag (Nigo et al., 2006). These results were reinforced with /n
vivo studies that demonstrated a dramatic increase in ovalbumin-induced eosinophilia in the
lung with LPS treatment in wild-type mice, which was ablated in TLR-4-deficient mice
(Nigo et al., 2006). In addition, mast cell-deficient mice (Kit"W/WV) adoptively transferred
with wild-type bone marrow-derived mast cells restored the synergistic effect of LPS on
ovalbumin-induced airway eosinophilia, but TLR-47/~ bone marrow-derived mast cells did
not (Nigo et al., 2006). Furthermore, inhalation of LPS into the lungs of mice increased I1L-5
production by mast cells and exacerbated airway inflammation in a mouse model of asthma
(Murakami et al., 2007). Taken together, these studies demonstrate that mast cell
responsiveness and airway inflammation can be augmented by both viruses and bacteria and
thus could contribute to deteriorating lung physiology in asthma during asthma
exacerbations.

7. Potential mechanisms of chronic mast cell activation

The mechanism(s) underlying chronic mast cell activation in asthma are not understood, but
in vitro studies highlight several possible candidates that are relevant to the asthmatic
airway. The first of these is IgE, which appears obvious because of the well-defined role of
the high affinity 1gE receptor, FceRlI, in mast cell degranulation. However, IgE may have
roles in mast cell activation and function beyond that of recognising antigen. Monomeric
IgE alone activates mouse mast cells leading to the release of cytokines but not
degranulation, and this production of cytokines can promote mast cell survival in an
autocrine or paracrine manner (Kalesnikoff et al., 2001; Kitaura et al., 2003; Oka et al.,
2004; Pandey et al., 2004). When IgE is added to human lung mast cells in the presence of
SCF, it induces a dose-dependent increase in the release of histamine, LTC,4 and 1L-8 (Cruse
et al., 2005). In addition, monomeric IgE in the absence of SCF promotes human lung mast
cell survival through the autocrine production of IL-6 (Cruse et al., 2008). Signalling from
monomeric IgE is maintained provided that there is free IgE in the medium suggesting that
binding of IgE to FceRIl may heighten mast cell responsiveness and could account for the
observation that there is a reproducible correlation between serum IgE levels, airway
hyperresponsiveness and asthma (Burrows et al., 1989; Sears et al., 1991; Sunyer et al.,
1996; Sunyer et al., 1995). Furthermore, IgE binding to FceRI increases surface FceRl
expression on mast cells by stabilising the FceRI complex at the plasma membrane
(Yamaguchi et al., 1997). Moreover, sensitisation of mast cells with IgE markedly increases
the expression of the FceRI receptor 3 subunit and a smaller splice variant of FceRIp
(Brenzovich et al., 2009).

FceRIp is encoded by the membrane spanning 4A gene family member 2 (MS4A2). This is
of interest because human linkage analyses identified that the gene loci 11q12-q13 are
linked to allergy and asthma susceptibility (Cookson and Hopkin, 1988; Cookson et al.,
1989; Sandford et al., 1993; Stafford et al., 1994) and the MS4A family are clustered in
these regions (Liang et al., 2001; Liang and Tedder, 2001). MS4A1 (CD20) and MS4A2
(FceRIP) are associated with the activation and proliferation of B cells (Tedder and Engel,
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1994) and mast cells (Cruse et al., 2013; Cruse et al., 2010a; Gilfillan and Tkaczyk, 2006)
respectively. FceRIB contributes to IgE-dependent mast cell signalling by trafficking FceRl
to the cell surface and amplifying FceRI-induced signalling. The first transmembrane
domain of FceRIp is required for trafficking the receptor complex (Singleton et al., 2009),
whilst the C-terminal immunoreceptor tyrosine-based activation motif (ITAM) amplifies
signalling (On et al., 2004). FceRlI signalling plays an important role in atopic asthma. Thus
a report that polymorphisms in MS4A2were associated with asthma gained interest (Laprise
et al., 2000). Studies into the functional consequence of mutations in FceRIp did not affect
the function of FceRIP (Donnadieu et al., 2000). However, we have identified expression of
a novel truncated isoform of FceRIp (t-FceRIP) in human mast cells with a naturally
occurring truncation of exon 3 that encodes the first two transmembrane domains of FceRIp
(Cruse et al., 2010a). Since the first transmembrane domain of full length FceRIp is
responsible for the formation of the FceRI complex (Singleton et al., 2009), t-FceRIf
consequently appears not to associate with the FceRIl complex. However, t-FceRIp retains
the signalling ITAM motif and thus has the capacity to signal. While full-length FceRIf
functions at the plasma membrane, t-FceRIp displays cytosolic and juxta-nuclear
localisation, where it appears to bind calmodulin and traffic adaptor molecules and kinases
to the peri-centrosome in response to Ca2* signals, triggering microtubule formation and
degranulation (Cruse et al., 2013). In addition, another truncation of full-length FceRIf has
been reported that contains an inclusion of intron 5 and as a result loses the signaling ITAM,
but retains the first two transmembrane domains and thus the ability to associate with the
FceRI complex (Donnadieu et al., 2003). This isoform of FceRIf acts to downregulate FceRI
expression by targeting the FceRI complex for proteasomal degradation (Donnadieu et al.,
2003).

These observations could be particularly important because the linkage of MS4A2with
asthma susceptibility could be much more complex than the function of a single FceRIf
isoform and may be related to differences in expression levels of alternative splice forms.
Indeed, polymorphisms have been reported to be linked to asthma susceptibility in the
promoter region of MS4AZ, which could affect expression levels of FceRIp (Sharma et al.,
2009). In addition, mutations within regions recognised by the spliceosome could
differentially affect isoform expression. However, reports of linkage of MS4A2 with asthma
are conflicting and require more in-depth study before any conclusions can be drawn. With
these caveats in mind, overexpression of full-length FceRIp actually inhibits mast cell
degranulation (Cruse et al., 2013; Okayama et al., 2014), while overexpression of t-FceRIf
potentiates degranulation (Cruse et al., 2013). One possible mechanism for inhibition of
mast cell degranulation is that incorporation of FceRIp into the FceRI complex is limited by
the availability of the FceRIp and FceRIp subunits. Therefore, full-length FceRI that is not
incorporated into FceRI could compete with either full-length FceRIp that is in complex
with FceRI for binding to Lyn kinase (Okayama et al., 2014) restricting the availability of
the kinase for recruitment into lipid rafts, or possibly competition with t-FceRIf for binding
Fyn or Gab2 (Cruse et al., 2013). Either way, it is likely that FceRIp isoforms have
competitive actions that sequester kinases and adaptor proteins to distinct subcellular
localisations that can alter spatio-temporal signalling dynamics.
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SCF may also play a major role in asthma as the expression of SCF is markedly increased in
asthmatic airways (Al-Muhsen et al., 2004; Da Silva et al., 2006) and this expression is
suppressed by glucocorticosteroids (Da Silva et al., 2006). Neutralising SCF in an animal
model of asthma attenuates airway hyperresponsiveness, goblet cell hyperplasia and
eosinophilia, which were accompanied by reduced IL-5 and TNFa production (Berlin et al.,
2006; Berlin et al., 2004). This is particularly interesting because TNFa is strongly
implicated in asthma pathophysiology. TNFa is expressed at higher levels in the asthmatic
lung, particularly in mast cells, (Berry et al., 2006; Bradding et al., 1994; Howarth et al.,
2005) and inhalation of TNFa induces airway hyperresponsiveness (Thomas and Heywood,
2002; Thomas et al., 1995). However, in spite of early promise, recent studies of anti-TNFa
therapy in asthma have been disappointing (Brightling et al., 2008; Holgate et al., 2011).
Another interesting aspect is that both SCF and IgE impact on the efficacy of -
adrenoceptor agonists, which are widely used as reliever medication in asthma.
Administration of ,-adrenoceptor agonists acutely /n vitro inhibits IgE-dependent human
lung mast cell degranulation in the absence of SCF. However, this inhibition is lost in the
presence of SCF and furthermore, when IgE is also present, the [3,-adrenoceptor agonist
salbutamol increases degranulation (Cruse et al., 2010b). This phenomenon may help to
explain clinical observations where regular administration of the long acting p,-adrenoceptor
agonist salmeterol increases the magnitude of the early asthmatic reaction and accompanied
mast cell mediator release is enhanced (Giannini et al., 1996; Swystun et al., 2000). It might
also explain why the regular administration of short acting f,-adrenoceptor agonists to
asthmatic subjects has been associated with loss of asthma control (Taylor et al., 1993;
Taylor et al., 1998).

8. Integration and crosstalk of adhesion and signalling

The involvement of SCF in mast cell responsiveness could also extend to roles in adhesion
and related pathways. For example, mast cell progenitors in the blood would be likely to
encounter soluble SCF, whereas mast cells in tissue would be exposed to membrane bound
SCF expressed on structural cells. Recent evidence suggests that membrane bound SCF
expressed on airway smooth muscle cells plays a critical role in the functional consequences
of mast cell adhesion to airway smooth muscle cells. In collaboration with the mast cell-
expressed cell adhesion molecule 1 (CADMZ1) and soluble IL-6, SCF promotes mast cell
survival, proliferation and secretion (Hollins et al., 2008). The cooperative actions of SCF
and CADM1 could be due to direct interactions between CADM1 and KIT in mast cells
facilitating stable interactions between KIT and membrane bound SCF on airway smooth
muscle cells (Hollins et al., 2008) and lung fibroblasts (Moiseeva et al., 2013b). CADM1
exists as several isoforms (Moiseeva et al., 2012, 2013a). The SP6 isoform is encoded by the
full-length splice variant containing 12 exons. SP1 contains an internal in-frame truncation
of exon 10. SP4 has exons 9 and 10 truncated in-frame, while SP3 is the shorter variant with
truncations of exons 8, 9 and 10 (Moiseeva et al., 2013a). Differential expression of CADM1
splice variants affects both the adhesion of mast cells and their survival (Moiseeva et al.,
2012, 2013a).

Downregulation of CADM1 expression reduced mast cell adhesion to airway smooth muscle
and lung fibroblasts /n vitro (Moiseeva et al., 2013b) and reduced mast cell viability
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(Moiseeva et al., 2012). However, overexpression of the CADM1 SP4 splice variant, which
is the dominantly expressed isoform in human mast cells, increased mast cell adhesion to
human lung fibroblasts without affecting adhesion of mast cells to human airway smooth
muscle cells (Moiseeva et al., 2013b). Conversely, overexpression of either SP1 or SP6
reduced adhesion of mast cells to lung fibroblasts and not airway smooth muscle cells
(Moiseeva et al., 2013a). These results are intriguing since they provide potential
mechanisms for targeted adhesion of mast cells to specific cell types, which could be
regulated by alternative splicing of CADML in the spliceosome, possibly in response to
environmental cues.

9. Mast cell microlocalisation in the asthmatic lung

In addition to the microenvironment affecting mast cell function, it also contributes to mast
cell microlocalisation within the lung, which itself may regulate mast cell function through
cell-cell contact and adhesion signals. Mast cells are present near blood vessels and
throughout the lamina propria of healthy airways (Carroll et al., 2002a; de Magalhaes
Simoes et al., 2005; Pesci et al., 1993b). Mast cells infiltrate three key sites in asthmatic
airways that may be critical for the development and propagation of the pathophysiology.
The first of these sites is the airway smooth muscle where mast cell infiltration is a
characteristic and reproducible feature of asthma (Amin et al., 2005; Begueret et al., 2007;
Berger et al., 2003; Brightling et al., 2005a; Brightling et al., 2002a; Chen et al., 2004; EI-
Shazly et al., 2006; Shikotra et al., 2012). It has long been considered that the disordered
airway physiology and airway wall remodelling in asthma are a culmination of the effects of
infiltrating eosinophils recruited to the lung by activated Th2 lymphocytes. However, the
relationship between airway inflammation and airflow obstruction is weak.

A good example of this weak relationship was demonstrated by the study of eosinophilic
bronchitis, which accounts for approximately 15% of patients referred to respiratory
specialists for chronic cough (Brightling et al., 1999). Eosinophilic bronchitis is
characterised by the presence of sputum eosinophilia without variable airflow obstruction or
airway hyperresponsiveness (Brightling et al., 1999). Detailed comparisons between asthma
and eosinophilic bronchitis reveal remarkable similarities between the two conditions. In
terms of immunopathology, both asthma and eosinophilic bronchitis have identical mucosal
inflammatory infiltration, subbasement membrane thickening and collagen deposition as
well as comparable mucosal IL-4 and IL-5 expression (Berry et al., 2004; Brightling et al.,
2002b; Brightling et al., 2003b; Brightling et al., 2000). In addition to the histological
similarities of the lungs in these two diseases, the inflammation patterns also appear similar
with comparable levels of the inflammatory mediators histamine and PGD,, in induced
sputum and BAL fluid as well as almost identical numbers of IL-4-expressing T cells
(Brightling et al., 2002b; Brightling et al., 2000). Therefore, in eosinophilic bronchitis, it
appears as though a seemingly identical pattern of inflammation as asthma exists without
accompanied disordered airway physiology and airway hyperresponsiveness. This indicates
that the Th2-related inflammation of the airways in asthma may not be fundamental to the
pathogenesis of asthma. Instead, the picture that emerged was that the striking difference
between asthma and eosinophilic bronchitis lay within the airway smooth muscle bundles.
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10. Mast cell infiltration into airway smooth muscle

Several studies have now demonstrated that mast cells infiltrate the airway smooth muscle
bundles in asthma, but not in control subjects (Amin et al., 2005; Begueret et al., 2007;
Berger et al., 2003; Brightling et al., 2005a; Brightling et al., 2002a; El-Shazly et al., 2006;
Shikotra et al., 2012) or eosinophilic bronchitis patients (Brightling et al., 2002a). In
addition, there is good correlation between the number of mast cells in the airway smooth
muscle bundles and the severity of airway hyperresponsiveness (Brightling et al., 2002a). In
contrast, we could not find T cells or eosinophils in the airway smooth muscle bundles of
any of the subjects. Taken together, these studies suggest that mast cell infiltration into the
airway smooth muscle bundles could be important for the development of airway
hyperresponsiveness where direct interactions between mast cells and airway smooth muscle
cells could be critical. Indeed, co-culture of human lung mast cells with human airway
smooth muscle cells demonstrates that human airway smooth muscle promotes survival and
proliferation of human lung mast cells and induces constitutive mast cell degranulation
(Hollins et al., 2008). It is likely that the promotion of mast cell functional responses by
interactions with airway smooth muscle cells is due to interactions with membrane bound
SCF, possibly facilitated by the adhesion molecule CADM1 (Hollins et al., 2008). As
described above, SCF primes mast cells for degranulation and under conditions that
modulate the actin cytoskeleton, SCF can directly induce degranulation (Smrz et al., 2013).
Reorganisation of the actin cytoskeleton would be expected to occur during adhesion and
migration processes where low-level secretion of mediators would aid migration. Indeed,
downregulation of CADML1 that plays an important role in mast cell adhesion to airway
smooth muscle, alters filamentous actin dynamics (Moiseeva et al., 2014) and ultrastructural
analysis of mast cells within the airway smooth muscle bundles of asthma patients show
evidence of ongoing activation (Begueret et al., 2007).

The ability of airway smooth muscle cells to modulate human lung mast cell function is not
one-directional, because mast cells can also alter airway smooth muscle responses. For
example, the mast cell autacoid mediators histamine, PGD, and LTC, all potently induce
bronchoconstriction and as discussed above, are all released during allergen provocation
challenge. However, the effects of mast cells on airway smooth muscle may be more
complex than this suggests. For example, mast cell-derived tryptase induces the production
and release of transforming growth factor p (TGFf) from human airway smooth muscle cells
(Woodman et al., 2008). TGFp then upregulates a-smooth muscle actin expression
promoting differentiation of airway smooth muscle cells in an autocrine manner rendering
the cells more responsive to histamine-induced contraction, thus acting as a positive
feedback loop (Woodman et al., 2008). In addition, administration of tryptase to either dogs
or sheep induces bronchoconstriction and airway hyperresponsiveness (Molinari et al., 1996;
Sekizawa et al., 1989). Tryptase also increases the contractile response of sensitised bronchi
to histamine /n vitro and induces proliferation of human airway smooth muscle cells (Berger
et al., 2001; Brown et al., 2002). However, co-culture of human lung mast cells with airway
smooth muscle cells did not affect either proliferation or survival of airway smooth muscle
cells even if they were activated with IgE and anti-IgE (Kaur et al., 2010) indicating that
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other mechanisms are involved when mast cells are activated that may counteract the
mitogenic actions of tryptase on airway smooth muscle cells.

11. Mast cell infiltration into airway epithelium and submucosal glands

Mast cells also infiltrate epithelial structures in asthmatic airways (Bradding et al., 1994;
Laitinen et al., 1993; Pesci et al., 1993b). The microlocalisation of mast cells within the
airway epithelium places them in an ideal environment to respond to stimuli such as
aeroallergens and other noxious stimuli where mast cell-driven inflammatory and effector
cell responses may be on-going. However, mast cells in the epithelium also have the capacity
to suppress allergic inflammation. For example, mast cell activation by allergens and
subsequent release of tryptase could act as a negative feedback signal since tryptase
degrades respiratory allergens and IgE (Rauter et al., 2006; Rauter et al., 2008). Tryptase
also stimulates epithelial proliferation as well as upregulation of IL-8 and intercellular
adhesion molecule (ICAM1) expression (Cairns and Walls, 1996), thus promoting
recruitment and adhesion of inflammatory cells. Indeed, mast cells adhere strongly to
bronchial epithelial cells (Sanmugalingam et al., 2000). However, the interaction between
mast cells and epithelial cells in health may actually keep mast cells “in check” since
coculture experiments reveal that IgE-dependent degranulation of human lung mast cells is
suppressed when cocultured with the bronchial epithelial cell line BEAS-2B or primary
human epithelial cells (Martin et al., 2012; Yang et al., 2006). Therefore in healthy airways,
mast cells adjacent to the epithelium may be suppressed by factors released by the epithelial
cells, but in asthma where there is airway epithelial denudation and injury, this suppressive
effect could be lost.

Mucus plugging is a feature of fatal asthma, but mucus hypersecretion is also present in
milder disease (Cutz et al., 1978). Mast cells appear abundant in airway mucosal glands
(Bradding et al., 1994). When comparing lung sections post-mortem from patients with fatal
asthma, patients with asthma who died of unrelated causes (non-fatal asthma) and subjects
without asthma, there was a significant increase in the number of mast cells within the
mucosal gland stroma of fatal asthma and non-fatal asthma compared to control subjects,
and there was evidence of mast cell degranulation in both non-fatal and fatal asthma (Carroll
et al., 2002b). However, what was perhaps more striking was that the number of
degranulated and intact mast cells within the mucous glands correlated strongly with the
degree of mucus obstruction, suggesting that mast cells could be involved in the
pathogenesis of fatal asthma.

12. Mast cells in chronic obstructive pulmonary disease (COPD)

In addition to the strong evidence presented for a role of mast cells in the pathophysiology of
asthma, there is growing evidence that mast cells may also play roles in other diseases of the
airways. COPD is characterised by fixed airflow obstruction that is usually progressive. The
disease is strongly associated with noxious inhaled particles or smoke such as tobacco
smoke and is the result of chronic inflammation that leads the development of emphysema,
chronic airway inflammation, mucus gland hyperplasia and small airway wall fibrosis.
Although the density of mast cells in the lung decreases in COPD, mast cell activation and
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degranulation are increased with evidence of enhanced histamine release in advanced COPD
(Andersson et al., 2010; Wessler et al., 2007). An increase in the density of mast cells of the
MC+¢ subtype has been reported in the alveolar parenchyma and airway smooth muscle in
COPD (Andersson et al., 2010; Gosman et al., 2008). This could be important as CD88 (the
receptor for the anaphylatoxin C5a) is expressed in the MC+¢ subtype of human lung mast
cells (Oskeritzian et al., 2005) and C5a expression is increased in COPD patients (Marc et
al., 2004). In addition, CD88 expression is increased in both MC+¢ and MC+ cells in COPD
(Andersson et al., 2010) and thus may be a cause for chronic mast cell activation in the
disease.

13. Mast cells in interstitial lung disease

Interstitial lung diseases are a group of diseases characterised by the presence of pulmonary
fibrosis. The most commonly encountered interstitial lung disease is idiopathic pulmonary
fibrosis (IPF) with a histological pattern of usual interstitial pneumonia. The development of
IPF is not well understood, but most likely driven by on-going damage to the alveolar
epithelium, basement membrane and capillary endothelium (for review see (Strieter, 2005)).
Chronic tissue damage leads to dysregulated repair mechanisms and generation of
fibroblastic foci with the production of profibrotic mediators such as transforming growth
factor p (TGFB), platelet-derived growth factor (PDGF) and basic fibroblast growth factor
(bFGF). The key cell type in IPF is an intermediary between fibroblasts and smooth muscle,
termed the myofibroblast, that expresses a-smooth muscle actin (aSMA) and exhibits
contractility, but has the capability of producing and depositing a fibrotic matrix (Zhang et
al., 1994). Extensive literature indicates that there are important bidirectional interactions
between mast cells and myofibroblasts in fibrotic tissues that are also of likely relevance to
airway wall matrix deposition in COPD and asthma.

Mast cell numbers in the lung of patients with fibrotic lung disease are increased compared
to control subjects and correlate with the severity of fibrosis (Pesci et al., 1993a). In
addition, histamine concentrations in the BAL fluid of patients with IPF are elevated about
10-fold that of control subjects (Casale et al., 1988; Rankin et al., 1987), and tryptase levels
are increased in the lung tissue of IPF patients (Wygrecka et al., 2013). Mast cells present in
pulmonary fibrosis show signs of on-going degranulation (Hunt et al., 1992; Kawanami et
al., 1979) and coculture of human lung mast cells with human lung fibroblasts from IPF
patients activates the mast cells to release tryptase (Wygrecka et al., 2013). Furthermore,
infiltrating bFGF expressing cells are abundant in IPF and these cells have been identified as
mast cells (Inoue et al., 2002; Inoue et al., 1996; Qu et al., 1995), which are surrounded by
collagen, elastic fibres and smooth muscle cell/myofibroblast-like cells (Inoue et al., 2002;
Wygrecka et al., 2013). SCF may again play an important role in interstitial lung disease
since secretion of SCF by alveolar fibroblasts is increased in patients with diffuse interstitial
fibrosis (Fireman et al., 1999). In addition, membrane bound SCF, but not soluble SCF,
expression is increased in both lung tissue and in isolated lung fibroblasts in patients with
IPF compared to control subjects (Wygrecka et al., 2013). Furthermore, coculture of isolated
lung fibroblasts from IPF patients with mast cells enhanced SCF-driven survival and
proliferation (Wygrecka et al., 2013) in a similar manner to human airway smooth muscle
cells (Hollins et al., 2008). These observations suggest that interactions between mast cells
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and smooth muscle and/or myofibroblasts may play a role in matrix deposition and fibrosis
in interstitial lung diseases. Indeed, mast cell mediators such as histamine, bFGF and TGF
promote fibroblast proliferation in humans (Boucek and Noble, 1973; Feghali et al., 1992;
Hetzel et al., 2005; Jordana et al., 1988) and mast cells adhere strongly to fibroblasts in
coculture (Moiseeva et al., 2013b; Trautmann et al., 1997; Wygrecka et al., 2013).

14. Concluding remarks

Mast cells play an important role in the pathogenesis of asthma and this role most likely
depends upon the microlocalisation of mast cells, providing a niche to support mast cell
growth, survival and activation through cell-to-cell contact. There is growing evidence that
this may also be true for other airway diseases where direct interactions may also be critical
for chronic mast cell activation. The factors that regulate the functional responses of mast
cells and structural cells that interact with mast cells are not yet understood, but we are
beginning to identify important mediators. One of the critical aspects may be that studying
functional responses of soluble mediators in suspension cultures might not represent what is
happening /n vivo where cell-to-cell contact, formation of co-stimulatory and adhesion
complexes and ligands tethered at the surface may drastically alter the signalling from
receptors. This aspect could be critical for mast cells that mature within tissues where a
complex milieu of soluble and membrane bound growth factors appear to be able to drive
differentiation of the cells with a great deal of plasticity. Understanding the mechanisms that
regulate mast cell activation by cellular crosstalk both in health and disease could lead to the
identification of novel therapies that might be effective when administered chronically /n
Vivo.
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Figure 1.

Schematic representation of mast cell infiltration into important structures of the airways in
asthma and the functional consequences. For information on key mediators of these events
see Tables 1 and 2.
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Table 1

Human mast cell mediators and their effects in airways.

Mediator

Biological effects in airways

Page 30

References

Preformed (stored) mediators

Histamine Bronchoconstriction Caron, et al., 2001; Dunford & Holgate, 2010;
Mucus hypersecretion Garbuzenko, et al., 2002; Hargreave, et al., 1981;
Collagen synthesis Hirota, et al., 2012; Jordana, et al., 1988; Marks, et
Promotes tissue oedema al., 1986; Tamaoki, et al., 1997
Fibroblast and endothelial cell proliferation
Dendritic cell activation

Heparin Anticoagulant Caughey, 1989; Gao & Goldfarb, 1995; Lloyd, et
Storage matrix for mast cell mediators al., 1967; Metcalfe & Austen, 1979; Moiseeva &
Protects growth factors from degradation Bradding, 2011; Nieto, et al., 2013; Spivak-
Potentiates growth factors action Kroizman, et al., 1994; Terranova, et al., 1985
Fibroblast activation
Endothelial cell migration

Tryptase Potentiates MC histamine release Cairns & Walls, 1996; Cairns & Walls, 1997;
Increases airway hyperresponsiveness Caughey, 1989; Garbuzenko, et al., 2002; He &
Generates C3a and bradykinin Walls, 1997; Johnson, et al., 1997; Kozik, et al.,
Activates epithelial cells 1998; Moiseeva & Bradding, 2011; Ruoss, et al.,
Promotes fibroblast growth and collagen 1991; Schwartz, et al., 1983
synthesis
Indirectly activates collagenase

Chymase Mucus secretion Caughey, 1989; Fukami, et al., 1998; He & Zheng,

Extracellular matrix degradation
Converts angiotensin | to angiotensin 11
Activates IL-1f

Releases membrane bound SCF
Cleaves IL-33 to a more active form

2004; Lefrangais, et al., 2014; Longley, et al., 1997;
Mizutani, et al., 1991; Moiseeva & Bradding, 2011

Newly generated mediators

Prostaglandin D,

Bronchoconstriction

Mucus secretion

Promotes tissue oedema

Dendritic cell activation

Chemotaxis of eosinophils

Chemotaxis of Th2 T cells and basophils

Gosset, et al., 2003; Hardy, et al., 1984; Hirai, et
al., 2001; Matsuoka, et al., 2000; Moiseeva &
Bradding, 2011; Stebbins, et al., 2010

Cysteinyl leukotrienes (LTC4/LTD,)

Bronchoconstriction

Mucus secretion

Promotes tissue oedema

Dendritic cell maturation and migration

Tissue fibrosis

Enhances IL-13-dependent ASM proliferation
Promotes IL-4 secretion from eosinophils
Promotes IL-5, IL-8 and TNFa release from MC

Bandeira-Melo, et al., 2002; Busse, 1998; Dahlén et
al., 1980; Dannull, et al., 2012; Espinosa, et al.,
2003; Marom, et al., 1982; Mellor, et al., 2002;
Moiseeva & Bradding, 2011; Perng, et al., 2006
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Table 2
Mast cell cytokines and their effects in airways.

Cytokine Biological effects in airways References

IL-4 Allergic sensitisation Brusselle, et al., 1994; Brusselle, et al., 1995; Chatila, et al., 2004;
Eosinophilic inflammation Lewis, et al., 2009; Maes, et al., 2012; Moiseeva & Bradding, 2011;
Allergen-specific IgE production Perkins, et al., 2006; Saito, et al., 2003; Xia, et al., 1997
Upregulation of IgE receptor expression
Airway inflammation
Airway hyperresponsiveness
Airway remodelling
Th2 cell polarisation

IL-3/IL-5  Eosinophilic inflammation Cho, et al., 2004; Lopez, et al., 1988; Moiseeva & Bradding, 2011;
Eosinophil activation Takatsu & Nakajima, 2008
Airway inflammation
Airway remodelling

IL-6 Mast cell survival Cruse, et al., 2008; Moiseeva & Bradding, 2011; Neveu, et al., 2009;
Mucus secretion Yanagida, et al., 1996
T cell activation
Airway inflammation

1L-13 Goblet cell hyperplasia Chatila, et al., 2004; Grunig, et al., 1998; Lewis, et al., 2009; Maes, et
Mucus hypersecretion al., 2012; Moiseeva & Bradding, 2011; Saito, et al., 2003; Wills-Karp, et
Airway remodelling al., 1998
Airway hyperresponsiveness
Promotes eosinophilia
IgE synthesis
Airway inflammation

TNFa Mucus production Chen, et al., 2003; Godding, et al., 1995; Lee, et al., 2008; Moiseeva &
Enhanced eosinophil activity Bradding, 2011; Ohno, et al., 1990; Roubin, et al., 1987; Shalaby, et al.,
Promotes eosinophil adhesion to airway epithelium 1985; Zhang, et al., 1997
Enhanced neutrophil activity
Enhanced mast cell activity
Airway inflammation

SCF Enhances mast cell growth, survival and Cruse, et al., 2014; Galli, et al., 1993; Gilfillan and Tkaczyk, 2006;
differentiation Halova et al., 2012; Jensen et al., 2007; Moiseeva & Bradding, 2011;
Promotes mast cell recruitment Nocka, et al., 1990; Okayama and Kawakami, 2006; Williams, et al.,
Enhances mast cell degranulation 1990

NGF Enhances mast cell activation Braun, et al., 1998; De Vries, et al., 1999; Friberg, et al., 2001; Frossard,
Promotes proliferation of inflammatory cells et al., 2005; Frossard, et al., 2004
Airway inflammation
Airway hyperresponsiveness

TGFB Airway remodelling Bossé, et al., 2006; Kim, et al., 2005; Makinde, et al., 2007; Sagara, et
Tissue fibrosis al., 2002; Yang, et al., 2012
Angiogenesis
Airway hyperresponsiveness
Airway inflammation

bFGF Airway remodelling Bossé, et al., 2006; Moiseeva & Bradding, 2011; Redington, et al., 2001

Airway smooth muscle proliferation
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