
Mast cells in airway diseases and interstitial lung disease

Glenn Cruse1,* and Peter Bradding2

1Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National 
Institutes of Health, Bethesda, MD 20892, USA

2Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of 
Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK

Abstract

Mast cells are major effector cells of inflammation and there is strong evidence that mast cells 

play a significant role in asthma pathophysiology. There is also a growing body of evidence that 

mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive 

pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast 

cells play in airway diseases and highlights how mast cell microlocalisation within specific lung 

compartments and their cellular interactions are likely to be critical for their effector function in 

disease.
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1. Introduction

Mast cells are highly specialised granulocytes that contribute towards innate and adaptive 

immunity (Echtenacher et al., 1996) as well as tissue repair and revascularisation (Heissig et 

al., 2005; Iba et al., 2004; Weller et al., 2006). Mast cells perform the majority of their 

functions by releasing preformed and/or newly generated pleiotropic mediators in response 

to diverse activation signals to trigger a programmed inflammatory response. Mast cells are 

present in all vascularised tissues and are particularly abundant at sites of the environmental 

interface, such as the skin, gastrointestinal tract and the pulmonary epithelia. Thus mast cells 

are well equipped to respond to their environment where they can trigger an inflammatory 

response against a perceived tissue insult. Indeed, mast cells appear to be able to “sense” 

their environment by extending membranous projections into the lumen of blood vessels, 

which can sensitise the cells to respond to antigen (Cheng et al., 2013). However, in many 

disease states such as asthma, chronic inflammation may be due to inappropriate mast cell 
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activation and/or redistribution of mast cells to specific structures that could drive 

detrimental tissue remodelling processes contributing to disease progression. In fact, mast 

cells are found to be in an “activated” state in asthmatic airways (for review see (Bradding et 

al., 2006)) suggesting that either the tissue microenvironment is supporting chronic mast cell 

activation or mast cells in asthmatic airways are intrinsically hyper-secretory. Despite 

asthma being associated with atopy, the role of allergen exposure in chronic asthma may be 

overstated and the disease can become self-perpetuating once established. Indeed, mast cells 

may also play roles in other respiratory diseases that are not associated with atopy, such as 

chronic obstructive pulmonary disease (COPD) and interstitial lung diseases, where the 

drivers of mast cell involvement are often idiopathic, but unlikely to be allergens. In this 

review, we will discuss current opinion on the role that mast cells play in airway diseases 

with particular emphasis on asthma where the role of mast cells is more understood.

2. Mast cell heterogeneity

Mast cells are long-lived tissue-resident cells derived from haematopoietic stem cells that 

leave the bone marrow as mast cell-committed, but undifferentiated CD34+ progenitor cells. 

Mast cell precursors are recruited into tissues where they become resident and then mature 

and differentiate under the influence of the local cytokine milieu (for review see (Gurish and 

Boyce, 2006)). Therefore, mast cells represent heterogeneous populations depending upon 

the tissue where they reside and the local cytokine environment. For example, human lung 

mast cells can be discriminated from mast cells isolated from other tissues based on their 

profile of released mediators and surface expression of chemokine receptors (Bradding et al., 

1995; Brightling et al., 2005b; Irani et al., 1991; Oskeritzian et al., 2005; Saito et al., 2006; 

Weidner and Austen, 1993). This heterogeneity also extends to the microlocalisation of mast 

cells within distinct tissue compartments (Bradding, 2009). Thus, human mast cells from 

different lung compartments contain granules with distinct protease content, which can be 

classified as mast cells containing either tryptase only (MCT), chymase only (MCC) or both 

tryptase and chymase (MCTC) in their granules (Balzar et al., 2005; Bradding et al., 1995; 

Weidner and Austen, 1993).

The MCT subtype is smaller and contains less histamine than the MCTC subtype 

(Oskeritzian et al., 2005; Schulman et al., 1983; Schulman et al., 1990) and it is possible that 

MCTC development from MCT cells may be a step in maturation. However, it is clear that 

mast cells can change subtype in response to their environment and that changes in subtype 

can occur in both directions. For example, MCTC cells cultured with human airway 

epithelial cells convert to an MCT phenotype in vitro (Hsieh et al., 2005), whereas MCT cells 

cultured with endothelial cells transform into an MCTC phenotype (Mierke et al., 2000). 

This phenomenon most likely also occurs in vivo since the MCT subtype predominates in 

the lung parenchyma, bronchial lamina propria and bronchial epithelium, while the MCTC 

subtype surrounds pulmonary blood vessels with close proximity to the vascular endothelial 

cells (Andersson et al., 2009; Bradding et al., 1995; Irani et al., 1989; Irani et al., 1991). The 

significance and consequences of microlocalisation of mast cell subtypes is not yet clear and 

the factors that drive the development of each subtype are largely unknown and most likely 

multifactorial. However, these observations demonstrate the complexity of the mast cell 
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compartment and the heterogeneity of mast cell populations that can adapt to a changing 

environment.

3. Mechanisms that support mast cell growth and function

Many canonical mast cell functions are regulated by two distinct, but interconnected 

receptor-mediated signalling pathways. Mast cells regulate adaptive immune responses when 

they encounter antigen that crosslinks immunoglobulin E (IgE) bound to the high affinity 

IgE receptor, FcεRI (for review see (Rivera and Gilfillan, 2006)). Aggregation of FcεRI 

triggers a number of signalling pathways that lead to the release of Ca2+ from intracellular 

stores, influx of extracellular Ca2+ and reorganization of the cytoskeleton that are all critical 

processes for the release of pre-stored and newly generated mediators (Allen et al., 2009; 

Cruse et al., 2013; Draber et al., 2012; Gilfillan and Beaven, 2011; Gilfillan and Tkaczyk, 

2006; Hajkova et al., 2011; Rivera and Gilfillan, 2006). Mast cells can also respond to a 

variety of alternative stimuli that may inhibit or augment FcεRI-dependent responses. One of 

the most important crosstalk interactions between receptors may be the synergism between 

FcεRI and KIT, the receptor tyrosine kinase for stem cell factor (SCF) encoded by the proto-

oncogene c-KIT (for reviews see (Cruse et al., 2014; Gilfillan and Tkaczyk, 2006; 

Lennartsson and Ronnstrand, 2012)). SCF is the major growth and survival factor for mast 

cells and is absolutely required for mast cell survival (Jensen et al., 2007; Okayama and 

Kawakami, 2006). In addition, SCF is a chemoattractant for mast cells (Halova et al., 2012; 

Okayama and Kawakami, 2006) and synergistically enhances antigen-induced 

degranulation, cytokine production and migration (reviewed in (Gilfillan and Tkaczyk, 

2006)). Therefore, increased concentrations of SCF in tissues may not only promote mast 

cell recruitment, survival and differentiation, but could also result in increased mast cell 

responsiveness. As will be discussed below, SCF expression in the airways of patients with 

asthma has been reported to be increased compared to control subjects (Al-Muhsen et al., 

2004; Da Silva et al., 2006) and therefore may play an important role in asthma pathogenesis 

and contribute to low-level chronic activation of mast cells. Indeed, under certain 

circumstances where either the actin cytoskeleton (Smrz et al., 2013) or inhibitory molecules 

such as SH2 domain containing inositol-5-phosphatase-1 (SHIP-1) that interact with the 

actin cytoskeleton (Gimborn et al., 2005; Lesourne et al., 2005) are perturbed, SCF does not 

simply potentiate mast cell degranulation, but can directly induce degranulation (Huber et 

al., 1998; Smrz et al., 2013).

It is clear that SCF has the capacity to regulate most mast cell functions, which highlights 

the importance of understanding the signalling mechanisms that control specific functional 

responses to SCF. The mechanisms that regulate whether mast cells will differentiate or 

proliferate in response to SCF, for example, are not well understood. It is possible that the 

concentration of SCF and/or differential phosphorylation of specific tyrosine residues in KIT 

may play roles in dictating responses, although studies to specifically address these 

possibilities are needed. SCF also plays important roles in mast cell adhesion to structural 

cells where SCF exists as a membrane bound form (Hollins et al., 2008; Koma et al., 2005; 

Wygrecka et al., 2013). Most studies of SCF function in mast cells have been performed 

with the soluble form of SCF, which would be expected to undergo endocytosis more rapidly 

than a membrane tethered ligand. While studies on the membrane form of SCF have been 
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limited by technical difficulties, it has been suggested that transmembrane SCF on 

fibroblasts, or SCF immobilised onto culture plates increases histamine release and eotaxin 

production in mast cells, but the soluble SCF induced little or no eotaxin production 

(Hogaboam et al., 1998). In addition, the mechanism of KIT endocytosis and trafficking 

affects signaling and functional responses in human mast cells, which may be due to altered 

signaling at the plasma membrane or within intracellular compartments (Cruse et al., 2015). 

Therefore, it is attractive to hypothesise that a soluble version of SCF would result in 

different signals than a membrane tethered version of SCF that would act to tether mast cells 

in tissues and presumably sustain signalling events at the plasma membrane.

4. Mast cells in asthma

Asthma is characterised by the presence of airway obstruction that is reversible, at least in 

part, either with pharmacological intervention or spontaneously. Asthma usually presents 

with symptoms of wheeze, dyspnoea, cough and tightness in the chest. Asthma symptoms 

can be triggered by many different stimuli depending in part upon whether the disease is 

atopic, non-atopic (intrinsic), or occupational. Common triggers for symptoms include 

allergen exposure, viral infection, inhaled irritants, exercise and drugs. With respect to acute 

allergen exposure, the immediate effects are classified as the early asthmatic reaction and 

include airflow obstruction caused by bronchoconstriction, mucosal oedema due to 

increased vascular permeability and mucus hypersecretion. This early asthmatic reaction is 

then followed by the late asthmatic reaction in about 50% of subjects, which includes 

aggravation of underlying airway inflammation due to an influx of activated inflammatory 

cells and increased airway hyperresponsiveness. The mechanisms driving the late asthmatic 

reaction were thought for many years to be representative of the factors promoting chronic 

inflammatory changes in the airways in day-to-day asthma. In addition, it has been proposed 

that these events may lead to tissue damage and if the inflammation is chronic, airway 

remodelling can ensue. However, this is an over simplification, and there is increasing 

evidence that airway inflammation and airway remodelling may occur independently.

There is strong evidence that mast cells play an important role in the early asthmatic reaction 

following allergen exposure. Mast cell-derived mediators induce the classical features of the 

early asthmatic reaction in vivo, inducing bronchoconstriction, mucus secretion and mucosal 

oedema (for reviews see (Bradding and Cruse, 2008; Bradding et al., 2006; Brightling et al., 

2003a; Moiseeva and Bradding, 2011)). For example, several studies have identified an 

increase in histamine, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4) in the BAL fluid 

of asthma subjects following bronchial allergen challenge (Casale et al., 1987; Liu et al., 

1991; Murray et al., 1986; Sedgwick et al., 1991; Wenzel et al., 1988; Wenzel et al., 1990; 

Wenzel et al., 1991) and that the early asthmatic reaction is significantly alleviated with the 

administration of potent selective inhibitors of histamine, LTC4 and to a lesser extent PGD2 

(Beasley et al., 1987; Curzen et al., 1987; Findlay et al., 1992; Rafferty et al., 1987; Taylor et 

al., 1991). These mediators are most likely derived from mast cells in the bronchial mucosa 

because histamine, PGD2 and LTC4 are all released from human lung mast cells in vitro 
with remarkably similar kinetics to the allergen challenge studies (Schleimer et al., 1986). In 

addition, evidence for mast cell degranulation comes from the mast cell-specific protease 

tryptase being recovered at increased levels from the BAL fluid after allergen challenge 
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(Sedgwick et al., 1991; Wenzel et al., 1988). Furthermore, the early asthmatic reaction can 

be significantly attenuated with neutralizing anti-IgE (Omalizumab) pretreatment 

demonstrating that IgE-dependent signalling is required (Boulet et al., 1997; Fahy et al., 

1997).

Mast cells also synthesise and release a vast array of proinflammatory cytokines and 

chemokines that act to recruit inflammatory cells such as eosinophils, activated macrophages 

and lymphocytes (Bentley et al., 1993; De Monchy et al., 1985; Diaz et al., 1989; Metzger et 

al., 1987; Montefort et al., 1994; Tonnel et al., 1983) that participate in the late asthmatic 

reaction (for reviews see (Bradding and Cruse, 2008; Bradding and Holgate, 1999; Moiseeva 

and Bradding, 2011)). The late asthmatic reaction is associated with the infiltration of 

inflammatory cells including eosinophils, which were believed to contribute to airway 

obstruction and the development of airway hyperresponsiveness. However, anti-IL-5 therapy 

effectively inhibits eosinophil recruitment after allergen challenge but has no effect on the 

allergen-induced increase in airflow obstruction or airway hyperresponsiveness suggesting 

that other factors mediate this (Haldar et al., 2009). Elucidating roles for mast cells in the 

late asthmatic reaction is more difficult than the early asthmatic reaction. Indeed, it has been 

suggested that many of the features of the late asthmatic reaction are likely to be driven by 

the infiltrating cells rather than mast cells because levels of tryptase are reduced in the late 

asthmatic reaction (Sedgwick et al., 1991). However, a decline in tryptase levels during the 

late asthmatic reaction may be an indicator that the initial release of preformed mast cell 

mediators has subsided, but it does not necessarily mean that there is no longer mast cell 

involvement. Development of the late asthmatic reaction can be alleviated with anti-IgE 

(Omalizumab) therapy (Fahy et al., 1997) providing strong evidence that mast cell-driven 

events are a pre-requisite for the development of the late asthmatic reaction.

5. Chronic mast cell activation in asthma

The contribution of mast cells to the pathophysiology of asthma probably arises from the 

maladaptation of their protective roles in wound healing, defence against bacterial and 

parasitic infections and their important contribution to innate and adaptive immunity (for 

reviews see (Bradding and Cruse, 2008; Bradding and Holgate, 1999; Moiseeva and 

Bradding, 2011)). The role that mast cells play in these “healthy” responses is to elicit an 

inflammatory and/or immune response by releasing a number of proinflammatory mediators. 

In homeostatic mast cell responses, mast cells are usually protective and trigger 

inflammatory reactions that quickly resolve. However, in diseases such as asthma, mast cells 

within the asthmatic airways appear to be present in a chronically activated state with 

evidence of ongoing mediator secretion. There are increased numbers of mast cells in the 

bronchoalveolar lavage (BAL) fluid of patients with stable asthma when compared to control 

volunteers (Broide et al., 1991; Flint et al., 1985; Kirby et al., 1987) and increased levels of 

the mast cell mediators histamine and tryptase (Broide et al., 1991; Casale et al., 1987; 

Wenzel et al., 1988) suggesting on-going degranulation. It could be that the increase in mast 

cell mediators in BAL fluid of asthmatic subjects is due to an increase in mast cell numbers 

rather than mast cell hypersecretion. However, mast cells from the BAL fluid of 

symptomatic asthmatic subjects demonstrate an increase in both IgE-dependent 

degranulation and constitutive mediator release when compared to non-asthmatic controls 
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(Broide et al., 1991; Flint et al., 1985). In addition, mast cell morphology assessed by 

microscopy suggests that mast cells within key structures such as the airway smooth muscle 

are present in an activated state in the airways in asthma (Beasley et al., 1989; Begueret et 

al., 2007; Djukanovic et al., 1992; Laitinen et al., 1993). In addition, there is evidence of 

increased Th2 cytokine mRNA expression in mast cells in the airway wall in asthma, again 

providing evidence of activation (Ying et al., 1995). Bearing in mind the biological profile of 

mast cell autacoids, proteases and cytokines summarized in (Tables 1 and 2), it is easy to 

envisage how mast cell products could contribute to the development and propagation of 

airway inflammation, remodeling, bronchoconstriction, bronchial hyperresponsiveness, and 

mucus hypersecretion (Figure 1).

The studies discussed above provide strong evidence for mast cells in the airways of atopic 

asthma patients being present in an activated secretory state. Given the high incidence of 

atopy in asthmatic subjects under the age of 30, the role that pollen plays in exacerbating 

asthma (Newson et al., 1997, 1998), and the therapeutic efficacy of Omalizumab, it appears 

as though allergen-driven processes contribute to the pathophysiology of allergic asthma and 

the associated hypersecretory phenotype of mast cells. However, the precise role that 

allergens play in chronic asthma is not clear cut, and it is also evident that mast cells in both 

non-atopic asthma, and occupational asthma are also present in an activated state (Chan-

Yeung et al., 1989; Di Stefano et al., 1993; Frew et al., 1993; Humbert et al., 1996; Saetta et 

al., 1992; Ying et al., 1997). In addition, while anti-IgE therapy with Omalizumab markedly 

reduces airway inflammation (Djukanovic et al., 2004), symptoms often persist at a lower 

level. In established asthma, the disease may become self-perpetuating and the on-going 

mast cell hypersecretion may arise from factors that activate mast cells independently of 

IgE, or that synergistically amplify very low level IgE signals. As is discussed elsewhere in 

this issue, mast cells can be activated by both IgE-dependent and IgE-independent 

mechanisms to release a plethora of autacoid mediators, proteases and cytokines (for 

additional reviews see (Gilfillan and Beaven, 2011; Gilfillan and Tkaczyk, 2006)). The 

maximum degranulation with different stimuli in vitro are often comparable and signalling 

triggered by various receptors share common pathways with co-stimulation often having 

synergistic effects (for reviews see (Gilfillan and Beaven, 2011; Gilfillan and Tkaczyk, 

2006)).

6. Mast cell activation by microorganisms

Synergistic crosstalk between FcεRI and other receptors may play an important role in 

activation of mast cells by microorganisms such as bacteria and viruses that could 

exacerbate chronic asthma. Human mast cells express toll-like receptors (TLR)-1, -2, -3, -4, 

-5, -7 and -9 (Kulka et al., 2004; Kulka and Metcalfe, 2006), which can activate mast cells 

following binding of the relevant ligand. Respiratory viruses are a common cause of asthma 

exacerbations and thus TLR-3, which recognises double stranded RNA (viral RNA), is of 

particular relevance. Activation of mast cells with a synthetic activator of TLR-3, Poly I:C, 

induces the specific release of interferon α (IFNα), which reflects the responses to both 

respiratory syncytial virus (RSV) and the influenza virus (Kulka et al., 2004) suggesting a 

potential role for TLR-3 in virus-induced mast cell activation within the lung.
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Mast cells can also be activated by bacterial products such as lipopolysaccharide (LPS) that 

acts through TLR-4. Addition of LPS to mast cell cultures in vitro augments IL-5 and IL-13 

production as well as mRNA levels for IL-4, IL-5 and IL-13 in mouse bone marrow-derived 

mast cells activated with IgE/Ag (Nigo et al., 2006). These results were reinforced with in 
vivo studies that demonstrated a dramatic increase in ovalbumin-induced eosinophilia in the 

lung with LPS treatment in wild-type mice, which was ablated in TLR-4-deficient mice 

(Nigo et al., 2006). In addition, mast cell-deficient mice (KitW/Wv) adoptively transferred 

with wild-type bone marrow-derived mast cells restored the synergistic effect of LPS on 

ovalbumin-induced airway eosinophilia, but TLR-4−/− bone marrow-derived mast cells did 

not (Nigo et al., 2006). Furthermore, inhalation of LPS into the lungs of mice increased IL-5 

production by mast cells and exacerbated airway inflammation in a mouse model of asthma 

(Murakami et al., 2007). Taken together, these studies demonstrate that mast cell 

responsiveness and airway inflammation can be augmented by both viruses and bacteria and 

thus could contribute to deteriorating lung physiology in asthma during asthma 

exacerbations.

7. Potential mechanisms of chronic mast cell activation

The mechanism(s) underlying chronic mast cell activation in asthma are not understood, but 

in vitro studies highlight several possible candidates that are relevant to the asthmatic 

airway. The first of these is IgE, which appears obvious because of the well-defined role of 

the high affinity IgE receptor, FcεRI, in mast cell degranulation. However, IgE may have 

roles in mast cell activation and function beyond that of recognising antigen. Monomeric 

IgE alone activates mouse mast cells leading to the release of cytokines but not 

degranulation, and this production of cytokines can promote mast cell survival in an 

autocrine or paracrine manner (Kalesnikoff et al., 2001; Kitaura et al., 2003; Oka et al., 

2004; Pandey et al., 2004). When IgE is added to human lung mast cells in the presence of 

SCF, it induces a dose-dependent increase in the release of histamine, LTC4 and IL-8 (Cruse 

et al., 2005). In addition, monomeric IgE in the absence of SCF promotes human lung mast 

cell survival through the autocrine production of IL-6 (Cruse et al., 2008). Signalling from 

monomeric IgE is maintained provided that there is free IgE in the medium suggesting that 

binding of IgE to FcεRI may heighten mast cell responsiveness and could account for the 

observation that there is a reproducible correlation between serum IgE levels, airway 

hyperresponsiveness and asthma (Burrows et al., 1989; Sears et al., 1991; Sunyer et al., 

1996; Sunyer et al., 1995). Furthermore, IgE binding to FcεRI increases surface FcεRI 

expression on mast cells by stabilising the FcεRI complex at the plasma membrane 

(Yamaguchi et al., 1997). Moreover, sensitisation of mast cells with IgE markedly increases 

the expression of the FcεRI receptor β subunit and a smaller splice variant of FcεRIβ 

(Brenzovich et al., 2009).

FcεRIβ is encoded by the membrane spanning 4A gene family member 2 (MS4A2). This is 

of interest because human linkage analyses identified that the gene loci 11q12-q13 are 

linked to allergy and asthma susceptibility (Cookson and Hopkin, 1988; Cookson et al., 

1989; Sandford et al., 1993; Stafford et al., 1994) and the MS4A family are clustered in 

these regions (Liang et al., 2001; Liang and Tedder, 2001). MS4A1 (CD20) and MS4A2 
(FcεRIβ) are associated with the activation and proliferation of B cells (Tedder and Engel, 
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1994) and mast cells (Cruse et al., 2013; Cruse et al., 2010a; Gilfillan and Tkaczyk, 2006) 

respectively. FcεRIβ contributes to IgE-dependent mast cell signalling by trafficking FcεRI 

to the cell surface and amplifying FcεRI-induced signalling. The first transmembrane 

domain of FcεRIβ is required for trafficking the receptor complex (Singleton et al., 2009), 

whilst the C-terminal immunoreceptor tyrosine-based activation motif (ITAM) amplifies 

signalling (On et al., 2004). FcεRI signalling plays an important role in atopic asthma. Thus 

a report that polymorphisms in MS4A2 were associated with asthma gained interest (Laprise 

et al., 2000). Studies into the functional consequence of mutations in FcεRIβ did not affect 

the function of FcεRIβ (Donnadieu et al., 2000). However, we have identified expression of 

a novel truncated isoform of FcεRIβ (t-FcεRIβ) in human mast cells with a naturally 

occurring truncation of exon 3 that encodes the first two transmembrane domains of FcεRIβ 

(Cruse et al., 2010a). Since the first transmembrane domain of full length FcεRIβ is 

responsible for the formation of the FcεRI complex (Singleton et al., 2009), t-FcεRIβ 

consequently appears not to associate with the FcεRI complex. However, t-FcεRIβ retains 

the signalling ITAM motif and thus has the capacity to signal. While full-length FcεRIβ 

functions at the plasma membrane, t-FcεRIβ displays cytosolic and juxta-nuclear 

localisation, where it appears to bind calmodulin and traffic adaptor molecules and kinases 

to the peri-centrosome in response to Ca2+ signals, triggering microtubule formation and 

degranulation (Cruse et al., 2013). In addition, another truncation of full-length FcεRIβ has 

been reported that contains an inclusion of intron 5 and as a result loses the signaling ITAM, 

but retains the first two transmembrane domains and thus the ability to associate with the 

FcεRI complex (Donnadieu et al., 2003). This isoform of FcεRIβ acts to downregulate FcεRI 

expression by targeting the FcεRI complex for proteasomal degradation (Donnadieu et al., 

2003).

These observations could be particularly important because the linkage of MS4A2 with 

asthma susceptibility could be much more complex than the function of a single FcεRIβ 

isoform and may be related to differences in expression levels of alternative splice forms. 

Indeed, polymorphisms have been reported to be linked to asthma susceptibility in the 

promoter region of MS4A2, which could affect expression levels of FcεRIβ (Sharma et al., 

2009). In addition, mutations within regions recognised by the spliceosome could 

differentially affect isoform expression. However, reports of linkage of MS4A2 with asthma 

are conflicting and require more in-depth study before any conclusions can be drawn. With 

these caveats in mind, overexpression of full-length FcεRIβ actually inhibits mast cell 

degranulation (Cruse et al., 2013; Okayama et al., 2014), while overexpression of t-FcεRIβ 

potentiates degranulation (Cruse et al., 2013). One possible mechanism for inhibition of 

mast cell degranulation is that incorporation of FcεRIβ into the FcεRI complex is limited by 

the availability of the FcεRIβ and FcεRIβ subunits. Therefore, full-length FcεRIβ that is not 

incorporated into FcεRI could compete with either full-length FcεRIβ that is in complex 

with FcεRI for binding to Lyn kinase (Okayama et al., 2014) restricting the availability of 

the kinase for recruitment into lipid rafts, or possibly competition with t-FcεRIβ for binding 

Fyn or Gab2 (Cruse et al., 2013). Either way, it is likely that FcεRIβ isoforms have 

competitive actions that sequester kinases and adaptor proteins to distinct subcellular 

localisations that can alter spatio-temporal signalling dynamics.
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SCF may also play a major role in asthma as the expression of SCF is markedly increased in 

asthmatic airways (Al-Muhsen et al., 2004; Da Silva et al., 2006) and this expression is 

suppressed by glucocorticosteroids (Da Silva et al., 2006). Neutralising SCF in an animal 

model of asthma attenuates airway hyperresponsiveness, goblet cell hyperplasia and 

eosinophilia, which were accompanied by reduced IL-5 and TNFα production (Berlin et al., 

2006; Berlin et al., 2004). This is particularly interesting because TNFα is strongly 

implicated in asthma pathophysiology. TNFα is expressed at higher levels in the asthmatic 

lung, particularly in mast cells, (Berry et al., 2006; Bradding et al., 1994; Howarth et al., 

2005) and inhalation of TNFα induces airway hyperresponsiveness (Thomas and Heywood, 

2002; Thomas et al., 1995). However, in spite of early promise, recent studies of anti-TNFα 

therapy in asthma have been disappointing (Brightling et al., 2008; Holgate et al., 2011). 

Another interesting aspect is that both SCF and IgE impact on the efficacy of β2-

adrenoceptor agonists, which are widely used as reliever medication in asthma. 

Administration of β2-adrenoceptor agonists acutely in vitro inhibits IgE-dependent human 

lung mast cell degranulation in the absence of SCF. However, this inhibition is lost in the 

presence of SCF and furthermore, when IgE is also present, the β2-adrenoceptor agonist 

salbutamol increases degranulation (Cruse et al., 2010b). This phenomenon may help to 

explain clinical observations where regular administration of the long acting β2-adrenoceptor 

agonist salmeterol increases the magnitude of the early asthmatic reaction and accompanied 

mast cell mediator release is enhanced (Giannini et al., 1996; Swystun et al., 2000). It might 

also explain why the regular administration of short acting β2-adrenoceptor agonists to 

asthmatic subjects has been associated with loss of asthma control (Taylor et al., 1993; 

Taylor et al., 1998).

8. Integration and crosstalk of adhesion and signalling

The involvement of SCF in mast cell responsiveness could also extend to roles in adhesion 

and related pathways. For example, mast cell progenitors in the blood would be likely to 

encounter soluble SCF, whereas mast cells in tissue would be exposed to membrane bound 

SCF expressed on structural cells. Recent evidence suggests that membrane bound SCF 

expressed on airway smooth muscle cells plays a critical role in the functional consequences 

of mast cell adhesion to airway smooth muscle cells. In collaboration with the mast cell-

expressed cell adhesion molecule 1 (CADM1) and soluble IL-6, SCF promotes mast cell 

survival, proliferation and secretion (Hollins et al., 2008). The cooperative actions of SCF 

and CADM1 could be due to direct interactions between CADM1 and KIT in mast cells 

facilitating stable interactions between KIT and membrane bound SCF on airway smooth 

muscle cells (Hollins et al., 2008) and lung fibroblasts (Moiseeva et al., 2013b). CADM1 

exists as several isoforms (Moiseeva et al., 2012, 2013a). The SP6 isoform is encoded by the 

full-length splice variant containing 12 exons. SP1 contains an internal in-frame truncation 

of exon 10. SP4 has exons 9 and 10 truncated in-frame, while SP3 is the shorter variant with 

truncations of exons 8, 9 and 10 (Moiseeva et al., 2013a). Differential expression of CADM1 

splice variants affects both the adhesion of mast cells and their survival (Moiseeva et al., 

2012, 2013a).

Downregulation of CADM1 expression reduced mast cell adhesion to airway smooth muscle 

and lung fibroblasts in vitro (Moiseeva et al., 2013b) and reduced mast cell viability 
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(Moiseeva et al., 2012). However, overexpression of the CADM1 SP4 splice variant, which 

is the dominantly expressed isoform in human mast cells, increased mast cell adhesion to 

human lung fibroblasts without affecting adhesion of mast cells to human airway smooth 

muscle cells (Moiseeva et al., 2013b). Conversely, overexpression of either SP1 or SP6 

reduced adhesion of mast cells to lung fibroblasts and not airway smooth muscle cells 

(Moiseeva et al., 2013a). These results are intriguing since they provide potential 

mechanisms for targeted adhesion of mast cells to specific cell types, which could be 

regulated by alternative splicing of CADM1 in the spliceosome, possibly in response to 

environmental cues.

9. Mast cell microlocalisation in the asthmatic lung

In addition to the microenvironment affecting mast cell function, it also contributes to mast 

cell microlocalisation within the lung, which itself may regulate mast cell function through 

cell-cell contact and adhesion signals. Mast cells are present near blood vessels and 

throughout the lamina propria of healthy airways (Carroll et al., 2002a; de Magalhaes 

Simoes et al., 2005; Pesci et al., 1993b). Mast cells infiltrate three key sites in asthmatic 

airways that may be critical for the development and propagation of the pathophysiology. 

The first of these sites is the airway smooth muscle where mast cell infiltration is a 

characteristic and reproducible feature of asthma (Amin et al., 2005; Begueret et al., 2007; 

Berger et al., 2003; Brightling et al., 2005a; Brightling et al., 2002a; Chen et al., 2004; El-

Shazly et al., 2006; Shikotra et al., 2012). It has long been considered that the disordered 

airway physiology and airway wall remodelling in asthma are a culmination of the effects of 

infiltrating eosinophils recruited to the lung by activated Th2 lymphocytes. However, the 

relationship between airway inflammation and airflow obstruction is weak.

A good example of this weak relationship was demonstrated by the study of eosinophilic 

bronchitis, which accounts for approximately 15% of patients referred to respiratory 

specialists for chronic cough (Brightling et al., 1999). Eosinophilic bronchitis is 

characterised by the presence of sputum eosinophilia without variable airflow obstruction or 

airway hyperresponsiveness (Brightling et al., 1999). Detailed comparisons between asthma 

and eosinophilic bronchitis reveal remarkable similarities between the two conditions. In 

terms of immunopathology, both asthma and eosinophilic bronchitis have identical mucosal 

inflammatory infiltration, subbasement membrane thickening and collagen deposition as 

well as comparable mucosal IL-4 and IL-5 expression (Berry et al., 2004; Brightling et al., 

2002b; Brightling et al., 2003b; Brightling et al., 2000). In addition to the histological 

similarities of the lungs in these two diseases, the inflammation patterns also appear similar 

with comparable levels of the inflammatory mediators histamine and PGD2 in induced 

sputum and BAL fluid as well as almost identical numbers of IL-4-expressing T cells 

(Brightling et al., 2002b; Brightling et al., 2000). Therefore, in eosinophilic bronchitis, it 

appears as though a seemingly identical pattern of inflammation as asthma exists without 

accompanied disordered airway physiology and airway hyperresponsiveness. This indicates 

that the Th2-related inflammation of the airways in asthma may not be fundamental to the 

pathogenesis of asthma. Instead, the picture that emerged was that the striking difference 

between asthma and eosinophilic bronchitis lay within the airway smooth muscle bundles.
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10. Mast cell infiltration into airway smooth muscle

Several studies have now demonstrated that mast cells infiltrate the airway smooth muscle 

bundles in asthma, but not in control subjects (Amin et al., 2005; Begueret et al., 2007; 

Berger et al., 2003; Brightling et al., 2005a; Brightling et al., 2002a; El-Shazly et al., 2006; 

Shikotra et al., 2012) or eosinophilic bronchitis patients (Brightling et al., 2002a). In 

addition, there is good correlation between the number of mast cells in the airway smooth 

muscle bundles and the severity of airway hyperresponsiveness (Brightling et al., 2002a). In 

contrast, we could not find T cells or eosinophils in the airway smooth muscle bundles of 

any of the subjects. Taken together, these studies suggest that mast cell infiltration into the 

airway smooth muscle bundles could be important for the development of airway 

hyperresponsiveness where direct interactions between mast cells and airway smooth muscle 

cells could be critical. Indeed, co-culture of human lung mast cells with human airway 

smooth muscle cells demonstrates that human airway smooth muscle promotes survival and 

proliferation of human lung mast cells and induces constitutive mast cell degranulation 

(Hollins et al., 2008). It is likely that the promotion of mast cell functional responses by 

interactions with airway smooth muscle cells is due to interactions with membrane bound 

SCF, possibly facilitated by the adhesion molecule CADM1 (Hollins et al., 2008). As 

described above, SCF primes mast cells for degranulation and under conditions that 

modulate the actin cytoskeleton, SCF can directly induce degranulation (Smrz et al., 2013). 

Reorganisation of the actin cytoskeleton would be expected to occur during adhesion and 

migration processes where low-level secretion of mediators would aid migration. Indeed, 

downregulation of CADM1 that plays an important role in mast cell adhesion to airway 

smooth muscle, alters filamentous actin dynamics (Moiseeva et al., 2014) and ultrastructural 

analysis of mast cells within the airway smooth muscle bundles of asthma patients show 

evidence of ongoing activation (Begueret et al., 2007).

The ability of airway smooth muscle cells to modulate human lung mast cell function is not 

one-directional, because mast cells can also alter airway smooth muscle responses. For 

example, the mast cell autacoid mediators histamine, PGD2 and LTC4 all potently induce 

bronchoconstriction and as discussed above, are all released during allergen provocation 

challenge. However, the effects of mast cells on airway smooth muscle may be more 

complex than this suggests. For example, mast cell-derived tryptase induces the production 

and release of transforming growth factor β (TGFβ) from human airway smooth muscle cells 

(Woodman et al., 2008). TGFβ then upregulates α-smooth muscle actin expression 

promoting differentiation of airway smooth muscle cells in an autocrine manner rendering 

the cells more responsive to histamine-induced contraction, thus acting as a positive 

feedback loop (Woodman et al., 2008). In addition, administration of tryptase to either dogs 

or sheep induces bronchoconstriction and airway hyperresponsiveness (Molinari et al., 1996; 

Sekizawa et al., 1989). Tryptase also increases the contractile response of sensitised bronchi 

to histamine in vitro and induces proliferation of human airway smooth muscle cells (Berger 

et al., 2001; Brown et al., 2002). However, co-culture of human lung mast cells with airway 

smooth muscle cells did not affect either proliferation or survival of airway smooth muscle 

cells even if they were activated with IgE and anti-IgE (Kaur et al., 2010) indicating that 
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other mechanisms are involved when mast cells are activated that may counteract the 

mitogenic actions of tryptase on airway smooth muscle cells.

11. Mast cell infiltration into airway epithelium and submucosal glands

Mast cells also infiltrate epithelial structures in asthmatic airways (Bradding et al., 1994; 

Laitinen et al., 1993; Pesci et al., 1993b). The microlocalisation of mast cells within the 

airway epithelium places them in an ideal environment to respond to stimuli such as 

aeroallergens and other noxious stimuli where mast cell-driven inflammatory and effector 

cell responses may be on-going. However, mast cells in the epithelium also have the capacity 

to suppress allergic inflammation. For example, mast cell activation by allergens and 

subsequent release of tryptase could act as a negative feedback signal since tryptase 

degrades respiratory allergens and IgE (Rauter et al., 2006; Rauter et al., 2008). Tryptase 

also stimulates epithelial proliferation as well as upregulation of IL-8 and intercellular 

adhesion molecule (ICAM1) expression (Cairns and Walls, 1996), thus promoting 

recruitment and adhesion of inflammatory cells. Indeed, mast cells adhere strongly to 

bronchial epithelial cells (Sanmugalingam et al., 2000). However, the interaction between 

mast cells and epithelial cells in health may actually keep mast cells “in check” since 

coculture experiments reveal that IgE-dependent degranulation of human lung mast cells is 

suppressed when cocultured with the bronchial epithelial cell line BEAS-2B or primary 

human epithelial cells (Martin et al., 2012; Yang et al., 2006). Therefore in healthy airways, 

mast cells adjacent to the epithelium may be suppressed by factors released by the epithelial 

cells, but in asthma where there is airway epithelial denudation and injury, this suppressive 

effect could be lost.

Mucus plugging is a feature of fatal asthma, but mucus hypersecretion is also present in 

milder disease (Cutz et al., 1978). Mast cells appear abundant in airway mucosal glands 

(Bradding et al., 1994). When comparing lung sections post-mortem from patients with fatal 

asthma, patients with asthma who died of unrelated causes (non-fatal asthma) and subjects 

without asthma, there was a significant increase in the number of mast cells within the 

mucosal gland stroma of fatal asthma and non-fatal asthma compared to control subjects, 

and there was evidence of mast cell degranulation in both non-fatal and fatal asthma (Carroll 

et al., 2002b). However, what was perhaps more striking was that the number of 

degranulated and intact mast cells within the mucous glands correlated strongly with the 

degree of mucus obstruction, suggesting that mast cells could be involved in the 

pathogenesis of fatal asthma.

12. Mast cells in chronic obstructive pulmonary disease (COPD)

In addition to the strong evidence presented for a role of mast cells in the pathophysiology of 

asthma, there is growing evidence that mast cells may also play roles in other diseases of the 

airways. COPD is characterised by fixed airflow obstruction that is usually progressive. The 

disease is strongly associated with noxious inhaled particles or smoke such as tobacco 

smoke and is the result of chronic inflammation that leads the development of emphysema, 

chronic airway inflammation, mucus gland hyperplasia and small airway wall fibrosis. 

Although the density of mast cells in the lung decreases in COPD, mast cell activation and 
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degranulation are increased with evidence of enhanced histamine release in advanced COPD 

(Andersson et al., 2010; Wessler et al., 2007). An increase in the density of mast cells of the 

MCTC subtype has been reported in the alveolar parenchyma and airway smooth muscle in 

COPD (Andersson et al., 2010; Gosman et al., 2008). This could be important as CD88 (the 

receptor for the anaphylatoxin C5a) is expressed in the MCTC subtype of human lung mast 

cells (Oskeritzian et al., 2005) and C5a expression is increased in COPD patients (Marc et 

al., 2004). In addition, CD88 expression is increased in both MCTC and MCT cells in COPD 

(Andersson et al., 2010) and thus may be a cause for chronic mast cell activation in the 

disease.

13. Mast cells in interstitial lung disease

Interstitial lung diseases are a group of diseases characterised by the presence of pulmonary 

fibrosis. The most commonly encountered interstitial lung disease is idiopathic pulmonary 

fibrosis (IPF) with a histological pattern of usual interstitial pneumonia. The development of 

IPF is not well understood, but most likely driven by on-going damage to the alveolar 

epithelium, basement membrane and capillary endothelium (for review see (Strieter, 2005)). 

Chronic tissue damage leads to dysregulated repair mechanisms and generation of 

fibroblastic foci with the production of profibrotic mediators such as transforming growth 

factor β (TGFβ), platelet-derived growth factor (PDGF) and basic fibroblast growth factor 

(bFGF). The key cell type in IPF is an intermediary between fibroblasts and smooth muscle, 

termed the myofibroblast, that expresses α-smooth muscle actin (αSMA) and exhibits 

contractility, but has the capability of producing and depositing a fibrotic matrix (Zhang et 

al., 1994). Extensive literature indicates that there are important bidirectional interactions 

between mast cells and myofibroblasts in fibrotic tissues that are also of likely relevance to 

airway wall matrix deposition in COPD and asthma.

Mast cell numbers in the lung of patients with fibrotic lung disease are increased compared 

to control subjects and correlate with the severity of fibrosis (Pesci et al., 1993a). In 

addition, histamine concentrations in the BAL fluid of patients with IPF are elevated about 

10-fold that of control subjects (Casale et al., 1988; Rankin et al., 1987), and tryptase levels 

are increased in the lung tissue of IPF patients (Wygrecka et al., 2013). Mast cells present in 

pulmonary fibrosis show signs of on-going degranulation (Hunt et al., 1992; Kawanami et 

al., 1979) and coculture of human lung mast cells with human lung fibroblasts from IPF 

patients activates the mast cells to release tryptase (Wygrecka et al., 2013). Furthermore, 

infiltrating bFGF expressing cells are abundant in IPF and these cells have been identified as 

mast cells (Inoue et al., 2002; Inoue et al., 1996; Qu et al., 1995), which are surrounded by 

collagen, elastic fibres and smooth muscle cell/myofibroblast-like cells (Inoue et al., 2002; 

Wygrecka et al., 2013). SCF may again play an important role in interstitial lung disease 

since secretion of SCF by alveolar fibroblasts is increased in patients with diffuse interstitial 

fibrosis (Fireman et al., 1999). In addition, membrane bound SCF, but not soluble SCF, 

expression is increased in both lung tissue and in isolated lung fibroblasts in patients with 

IPF compared to control subjects (Wygrecka et al., 2013). Furthermore, coculture of isolated 

lung fibroblasts from IPF patients with mast cells enhanced SCF-driven survival and 

proliferation (Wygrecka et al., 2013) in a similar manner to human airway smooth muscle 

cells (Hollins et al., 2008). These observations suggest that interactions between mast cells 
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and smooth muscle and/or myofibroblasts may play a role in matrix deposition and fibrosis 

in interstitial lung diseases. Indeed, mast cell mediators such as histamine, bFGF and TGFβ 

promote fibroblast proliferation in humans (Boucek and Noble, 1973; Feghali et al., 1992; 

Hetzel et al., 2005; Jordana et al., 1988) and mast cells adhere strongly to fibroblasts in 

coculture (Moiseeva et al., 2013b; Trautmann et al., 1997; Wygrecka et al., 2013).

14. Concluding remarks

Mast cells play an important role in the pathogenesis of asthma and this role most likely 

depends upon the microlocalisation of mast cells, providing a niche to support mast cell 

growth, survival and activation through cell-to-cell contact. There is growing evidence that 

this may also be true for other airway diseases where direct interactions may also be critical 

for chronic mast cell activation. The factors that regulate the functional responses of mast 

cells and structural cells that interact with mast cells are not yet understood, but we are 

beginning to identify important mediators. One of the critical aspects may be that studying 

functional responses of soluble mediators in suspension cultures might not represent what is 

happening in vivo where cell-to-cell contact, formation of co-stimulatory and adhesion 

complexes and ligands tethered at the surface may drastically alter the signalling from 

receptors. This aspect could be critical for mast cells that mature within tissues where a 

complex milieu of soluble and membrane bound growth factors appear to be able to drive 

differentiation of the cells with a great deal of plasticity. Understanding the mechanisms that 

regulate mast cell activation by cellular crosstalk both in health and disease could lead to the 

identification of novel therapies that might be effective when administered chronically in 
vivo.
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Figure 1. 
Schematic representation of mast cell infiltration into important structures of the airways in 

asthma and the functional consequences. For information on key mediators of these events 

see Tables 1 and 2.
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Table 1

Human mast cell mediators and their effects in airways.

Mediator Biological effects in airways References

Preformed (stored) mediators

Histamine Bronchoconstriction
Mucus hypersecretion
Collagen synthesis
Promotes tissue oedema
Fibroblast and endothelial cell proliferation
Dendritic cell activation

Caron, et al., 2001; Dunford & Holgate, 2010; 
Garbuzenko, et al., 2002; Hargreave, et al., 1981; 
Hirota, et al., 2012; Jordana, et al., 1988; Marks, et 
al., 1986; Tamaoki, et al., 1997

Heparin Anticoagulant
Storage matrix for mast cell mediators
Protects growth factors from degradation
Potentiates growth factors action
Fibroblast activation
Endothelial cell migration

Caughey, 1989; Gao & Goldfarb, 1995; Lloyd, et 
al., 1967; Metcalfe & Austen, 1979; Moiseeva & 
Bradding, 2011; Nieto, et al., 2013; Spivak-
Kroizman, et al., 1994; Terranova, et al., 1985

Tryptase Potentiates MC histamine release
Increases airway hyperresponsiveness
Generates C3a and bradykinin
Activates epithelial cells
Promotes fibroblast growth and collagen 
synthesis
Indirectly activates collagenase

Cairns & Walls, 1996; Cairns & Walls, 1997; 
Caughey, 1989; Garbuzenko, et al., 2002; He & 
Walls, 1997; Johnson, et al., 1997; Kozik, et al., 
1998; Moiseeva & Bradding, 2011; Ruoss, et al., 
1991; Schwartz, et al., 1983

Chymase Mucus secretion
Extracellular matrix degradation
Converts angiotensin I to angiotensin II
Activates IL-1β
Releases membrane bound SCF
Cleaves IL-33 to a more active form

Caughey, 1989; Fukami, et al., 1998; He & Zheng, 
2004; Lefrançais, et al., 2014; Longley, et al., 1997; 
Mizutani, et al., 1991; Moiseeva & Bradding, 2011

Newly generated mediators

Prostaglandin D2 Bronchoconstriction
Mucus secretion
Promotes tissue oedema
Dendritic cell activation
Chemotaxis of eosinophils
Chemotaxis of Th2 T cells and basophils

Gosset, et al., 2003; Hardy, et al., 1984; Hirai, et 
al., 2001; Matsuoka, et al., 2000; Moiseeva & 
Bradding, 2011; Stebbins, et al., 2010

Cysteinyl leukotrienes (LTC4/LTD4) Bronchoconstriction
Mucus secretion
Promotes tissue oedema
Dendritic cell maturation and migration
Tissue fibrosis
Enhances IL-13-dependent ASM proliferation
Promotes IL-4 secretion from eosinophils
Promotes IL-5, IL-8 and TNFα release from MC

Bandeira-Melo, et al., 2002; Busse, 1998; Dahlén et 
al., 1980; Dannull, et al., 2012; Espinosa, et al., 
2003; Marom, et al., 1982; Mellor, et al., 2002; 
Moiseeva & Bradding, 2011; Perng, et al., 2006
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Table 2

Mast cell cytokines and their effects in airways.

Cytokine Biological effects in airways References

IL-4 Allergic sensitisation
Eosinophilic inflammation
Allergen-specific IgE production
Upregulation of IgE receptor expression
Airway inflammation
Airway hyperresponsiveness
Airway remodelling
Th2 cell polarisation

Brusselle, et al., 1994; Brusselle, et al., 1995; Chatila, et al., 2004; 
Lewis, et al., 2009; Maes, et al., 2012; Moiseeva & Bradding, 2011; 
Perkins, et al., 2006; Saito, et al., 2003; Xia, et al., 1997

IL-3/IL-5 Eosinophilic inflammation
Eosinophil activation
Airway inflammation
Airway remodelling

Cho, et al., 2004; Lopez, et al., 1988; Moiseeva & Bradding, 2011; 
Takatsu & Nakajima, 2008

IL-6 Mast cell survival
Mucus secretion
T cell activation
Airway inflammation

Cruse, et al., 2008; Moiseeva & Bradding, 2011; Neveu, et al., 2009; 
Yanagida, et al., 1996

IL-13 Goblet cell hyperplasia
Mucus hypersecretion
Airway remodelling
Airway hyperresponsiveness
Promotes eosinophilia
IgE synthesis
Airway inflammation

Chatila, et al., 2004; Grunig, et al., 1998; Lewis, et al., 2009; Maes, et 
al., 2012; Moiseeva & Bradding, 2011; Saito, et al., 2003; Wills-Karp, et 
al., 1998

TNFα Mucus production
Enhanced eosinophil activity
Promotes eosinophil adhesion to airway epithelium
Enhanced neutrophil activity
Enhanced mast cell activity
Airway inflammation

Chen, et al., 2003; Godding, et al., 1995; Lee, et al., 2008; Moiseeva & 
Bradding, 2011; Ohno, et al., 1990; Roubin, et al., 1987; Shalaby, et al., 
1985; Zhang, et al., 1997

SCF Enhances mast cell growth, survival and 
differentiation
Promotes mast cell recruitment
Enhances mast cell degranulation

Cruse, et al., 2014; Galli, et al., 1993; Gilfillan and Tkaczyk, 2006; 
Halova et al., 2012; Jensen et al., 2007; Moiseeva & Bradding, 2011; 
Nocka, et al., 1990; Okayama and Kawakami, 2006; Williams, et al., 
1990

NGF Enhances mast cell activation
Promotes proliferation of inflammatory cells
Airway inflammation
Airway hyperresponsiveness

Braun, et al., 1998; De Vries, et al., 1999; Friberg, et al., 2001; Frossard, 
et al., 2005; Frossard, et al., 2004

TGFβ Airway remodelling
Tissue fibrosis
Angiogenesis
Airway hyperresponsiveness
Airway inflammation

Bossé, et al., 2006; Kim, et al., 2005; Makinde, et al., 2007; Sagara, et 
al., 2002; Yang, et al., 2012

bFGF Airway remodelling
Airway smooth muscle proliferation

Bossé, et al., 2006; Moiseeva & Bradding, 2011; Redington, et al., 2001
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