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Abstract

Introduction

Airway surface dehydration, caused by an imbalance between secretion and absorption of

ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs

mucociliary clearance. Recent evidence suggests that this mechanism may be implicated

in chronic obstructive pulmonary disease (COPD). However, the role of airway surface de-

hydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown.

Objective

We aimed to investigate in vivo the effect of airway surface dehydration on several CS-

induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of

the epithelial Na+ channel (βENaC).

Methods

βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks.

Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pul-

monary inflammation, lymphoid follicles, emphysema and airway wall remodelling were de-

termined and lung function was measured.

Results

Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation,

mucin expression and destruction of alveolar walls and accelerated the formation of pulmo-

nary lymphoid follicles. Moreover, lung function measurements demonstrated an increased

compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg

mice, compared to WTmice. CS exposure further altered lung function measurements.
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Conclusions

We conclude that airway surface dehydration is a risk factor that aggravates CS-induced

hallmarks of COPD.

Introduction
Efficient mucociliary clearance is an essential innate defence mechanism of the lung [1–4]. Al-
though ciliary activity and mucus secretion play an important role in airway mucus clearance,
evidence from biophysical studies indicates that the hydration state of the airway surface is the
key determinant [5, 6]. While airway surface dehydration is a well-established disease mecha-
nism in cystic fibrosis [5, 7], recent research suggests that this abnormality may also play a role
in chronic obstructive pulmonary disease (COPD) [8–11]. Pathologically, COPD is mainly
caused by cigarette smoking and characterized by mucus obstruction of the small airways [12],
chronic pulmonary inflammation, obstructive bronchiolitis and emphysema [13, 14].

Several studies demonstrated that cigarette smoke (CS) has detrimental effects on the hydra-
tion of airway surfaces. First, it was shown that CS affects ion channels in the apical membrane
of airway epithelial cells, thereby disturbing the balance between Na+ absorption and Cl- secre-
tion and leading to airway surface dehydration. Most notably, CS induces an acquired deficien-
cy of the cystic fibrosis transmembrane conductance regulator (CFTR), a crucial cAMP-
dependent Cl- channel that is mutated in cystic fibrosis [8–10]. In chronic smokers, CFTR
function is reduced to ~ 45% of normal and mucus is hyperconcentrated in vivo [8, 9]. This ac-
quired CFTR dysfunction contributes to inadequate mucociliary transport [10] and is associat-
ed with chronic bronchitis and dyspnoea in smokers with and without COPD [15].
Furthermore, exposure to CS extract enhances the activity of the epithelial Na+ channel
(ENaC) in alveolar type I and type II cells [16], suggesting that CS exposure results in a hypose-
cretory/hyperabsorptive ion transport phenotype. Along these lines, recent studies on the pro-
tein levels of CFTR and ENaC in lung tissue of COPD patients demonstrated that CFTR levels
were positively correlated with lung function, whereas levels of α- and βENaC showed a nega-
tive correlation with lung function [17]. In mice, an imbalance between Na+ absorption and Cl-

secretion, has been achieved in βENaC transgenic (βENaC-Tg) mice. In these mice, airway-
specific overexpression of βENaC causes constitutive airway surface dehydration and sponta-
neous chronic obstructive lung disease characterized by airway mucus obstruction, neutrophil-
ic inflammation and development of emphysema early in life [7, 18].

A second mechanism by which CS can contribute to airway surface dehydration, is the CS-
induced mucin hypersecretion [3, 11, 13]. The two major secreted mucins in airways,
MUC5AC and MUC5B, are both increased in patients with COPD [19–21]. These mucin mac-
romolecules are secreted in a dry form and thus increase the concentration of the mucus gel
layer if the availability of airway surface fluid is limited. In their gel-on-brush model, Button
et al. recently showed that an increased concentration of mucins causes an increase in the os-
motic pressure of the mucus gel layer and, above a certain threshold, this causes a compression
of the subjacent periciliary layer, leading to a collapse of the cilia and mucostasis [6].

Since observational evidence indicates that there is a degree of airway surface dehydration
in patients with COPD, this study aimed to investigate the in vivo effect of airway surface dehy-
dration on several pathological hallmarks of COPD and on lung function. To achieve this goal,
we exposed βENaC-Tg mice and wild-type (WT) littermates to air or CS for 4 or 8 weeks and

Airway Surface Dehydration and COPD

PLOSONE | DOI:10.1371/journal.pone.0129897 June 12, 2015 2 / 18

study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have read the
journal's policy and have the following conflicts:
Marcus A. Mall is listed on a patent application filed
by the University of North Carolina, describing the
βENaC-overexpressing mouse (patent number:
7514593; filing date: May 2003). Of note, the βENaC-
overexpressing mouse has been deposited at the
Jackson Laboratory for general deposition. This does
not alter the authors’ adherence to PLOS ONE
policies on sharing data and materials.



determined mucin expression, goblet cell metaplasia, pulmonary inflammation, lymphoid folli-
cles, pulmonary emphysema and airway wall remodelling, and measured lung function.

Methods
Details of materials and methods used can be found in the online supplement (S1 File).

Primary tracheal epithelial cultures
For each experiment, freshly excised tracheae were collected and pooled from 10 mice per
group. Epithelial cells were isolated and cultured on membranes (T-Col, Costar, Cambridge,
MA) under air-liquid interface conditions as described previously [22], and cultures were stud-
ied after reaching confluence (14 days).

Measurement of airway surface liquid height
Primary tracheal epithelial cultures were washed with PBS, and 20 μl of PBS containing 2 mg/ml
Rhodamine dextran (10 kDa; Molecular Probes) was added to the lumen to visualize the airway
surface liquid layer. To avoid evaporation of the ASL, 80 μl of immiscible perfluorocarbon
(Fluorinert-77, Sigma-Aldrich) was added to the airway surface following the addition of the la-
beling dye. Images of the Rhodamine-labeled airway surface liquid were acquired by confocal
microscopy (Leica TCS SP8, Leica Microsystems, Mannheim, Germany). The height of the air-
way surface liquid was measured by averaging the heights obtained from xz scans of sixteen pre-
determined positions on the culture as previously described [22]. Airway surface liquid height
was measured 5 min following the addition of the Rhodamine dextran and at designated time
points over a period of 24 h in primary tracheal epithelial cultures from βENaC-Tg mice and
WT littermates.

Animals
Male βENaC-Tg mice, backcrossed onto the C57Bl/6 background [22], were mated with female
C57Bl/6Cr1 wild-type (WT) mice (Charles River). All mice were bred in the animal facility of
the Ghent University Hospital and housed in filtertop cages in standard conditions under a
12 h light-dark cycle and provided with a standard diet (Pavan, Brussels, Belgium) and chlori-
nated tap water ad libitum. Mice were euthanized with an overdose of pentobarbital (Sanofi,
Libourne, France). All in vivomanipulations were approved by the local Ethics Committee for
animal experimentation of the Faculty of Medicine and Health Sciences (Ghent University).

Cigarette smoke exposure
Groups of 8 to 11 βENaC-Tg mice andWT littermates were exposed whole body to cigarette
smoke as described before (a total of 120 mice was used) [23]. In short, mice were exposed 5
days a week to the mainstream cigarette smoke of 5 cigarettes (Reference cigarette 3R4F with-
out filter, University of Kentucky, Lexington, KY, USA), 4 times a day with a 30 minute smoke
free interval between exposures. A standard smoking apparatus was used with the smoking
chamber adapted for a group of mice. A smoke/air ratio of 1/6 was obtained. Control mice
were exposed to room air. CS exposure started at an age of 7–8 weeks and the exposure period
was either 4 or 8 weeks.

βENaC immunohistochemistry
Lung sections were evaluated for overexpression of the β-subunit of ENaC, using a rabbit poly-
clonal anti-βENaC antibody [25].
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Goblet cell analysis and mucin gene expression
Transversal sections were made from the paraffin-embedded left lung and were stained with
Periodic acid-Schiff (PAS). Goblet cells were counted using Axiovision software (Zeiss) and
were expressed as number of cells per millimetre basal membrane. Expression of Muc5ac and
Muc5b was quantified by quantitative real-time polymerase chain reaction (qRT-PCR).

Pulmonary inflammation
Bronchoalveolar lavage (BAL) fluid was collected via a tracheal cannula. Differential cell counts
of the lavage fluid were obtained by cytocentrifuged preparations after May-Grünwald-Giemsa
staining. Flow cytometric analysis was used for quantifying inflammatory cell types in BAL
fluid and single cell suspensions of lung tissue [23–25]. qRT-PCR was used to evaluate the ex-
pression of several chemokines. The protein levels of Cxcl1 and Ccl20 in BAL fluid supernatant
of mice were determined with an ELISA kit (R&D systems).

Lymphoid follicles
In order to quantify lymphoid follicles, defined as dense accumulations of at least 50 lympho-
cytes, paraffin-embedded sections of the left lung were immunohistochemically stained with
anti-CD3 (Dako) and anti-B220 (BD biosciences) [26]. The number of follicles was normalized
for the total area of parenchyma that was scored.

Emphysema
In order to evaluate pulmonary emphysema, two complementary methods were used, the
mean linear intercept (Lm) and the destructive index (DI). The Lm is a measurement of alveo-
lar space enlargement whereas the DI is a calculation of the percentage of destroyed alveolar
walls. Both analyses were performed using the Image J software on haematoxylin and eosin
(H&E) stained lung sections.

Airway wall remodelling
To evaluate the deposition of fibronectin and collagen, paraffin-embedded sections of the left
lung were used for immunohistological staining. Fibronectin was stained with mouse anti-fi-
bronectin (Thermo-Scientific). Collagen was stained chemically with Sirius Red. The amount
of collagen and fibronectin in the airway wall was quantified using the Axiovision software
(Zeiss).

Lung function measurements
Using the Flexivent System (SCIREQ, Montreal, Canada), baseline lung function was examined
invasively in tracheostomised anaesthetized mice [27]. The jugular vein was used to administer
pancuronium bromide (1 mg/kg) (Inresa, Freiburg, Germany), which induces a neuromuscular
blockade. The mice were ventilated with an average breathing frequency of 150 breaths/minute.
Once the mice were stable, resistance (R) and dynamic compliance (Cdyn) were measured using
a ‘snapshot perturbation’manoeuvre. The forced oscillation perturbation (Quick Prime 3) was
applied to assess the tissue damping (G). Pressure-volume (PV) loops were generated to mea-
sure the static compliance (Cstat), total lung capacity (TLC) and hysteresis.
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Statistical analyses
Sigma Stat Software (SPSS 21.0, Chicago, IL, USA) was used to perform non-parametric tests
(Kruskall-Wallis and Mann-Whitney-U). Reported values are expressed as mean ± SEM.
P-values< 0.05 were considered to be significant.

Results

Overexpression of βENaC and reduced airway surface liquid height in
βENaC-Tg mice
To confirm the overexpression of the β-subunit of ENaC in βENaC-Tg mice, we performed an
immunohistochemical staining for βENaC on lung tissue sections fromWT and βENaC-Tg
mice. βENaC-positive cells were readily detected in conducting airways and alveoli in lungs of
WT mice (Fig 1A). The intensity of the immunoreactive signal was substantially stronger in
airways from βENaC-Tg compared to WTmice, consistent with a marked increase in βENaC
protein in epithelial cells (Fig 1A).

Fig 1. Overexpression of βENaC and reduced airway surface liquid height in βENaC-Tgmice. Immunolocalization of βENaC in airways fromWT and
βENaC-Tgmice. (A) Representative images of βENaC immunostaining of lung sections fromWT and βENaC-Tgmice that were exposed to air or CS for 8
weeks. n = 5 per group. Dysregulation of steady state airway surface liquid (ASL) height on airway epithelia from βENaC-Tg mice under thin film conditions.
Representative confocal images (B) and summary of measurements of airway surface liquid height (C) at t = 0, 2, 4, 8 and 24h after mucosal addition of 20 μl
of PBS containing Rhodamine dextran to primary tracheal epithelial cultures from βENaC-Tgmice andWT littermates. Scale bar, 7 μm. n = 4 experiments
per group. *p<0.001 compared to βENaC-Tg; §p<0.001 for t = 0h compared to all other time points within the same genotype; †p<0.05 for t = 24h wild-type
compared to t = 2h wild-type; ‡p<0.005 for t = 24h wild-type compared to t = 4h and 8h wild-type.

doi:10.1371/journal.pone.0129897.g001
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To determine the effects of βENaC overexpression on the regulation of airway surface liq-
uid, primary tracheal epithelial cell cultures of WT and βENaC-Tg mice grown at an air-liquid-
interface were challenged with a small volume of liquid added to the luminal compartment.
Airway surface liquid height was monitored sequentially by confocal microscopy over a period
of 24h. Within 2h after the initial volume challenge, the airway surface liquid was absorbed to a
height of ~4.5 μm in both WT and βENaC-Tg mice (Fig 1B and 1C). However, at 24h, airway
surface liquid height increased to ~6.3 μm in airway cultures fromWTmice, whereas it re-
mained significantly reduced in βENaC-Tg mice (Fig 1B and 1C). Consistent with previous
studies [22], these results demonstrate that βENaC-Tg airway epithelia fail to regulate airway
surface liquid to normal levels, and that steady state airway surface liquid is reduced in
βENaC-Tg compared to WT mice.

Cigarette smoke-induced mucin expression is aggravated in βENaC-Tg
mice
The expression of Muc5ac and Muc5b was quantified in total lung tissue by qRT-PCR. The air-
way surface dehydration in air-exposed βENaC-Tg mice resulted in a higher expression of both
Muc5ac and Muc5b, compared to WTmice (Fig 2A and 2B). Four weeks of CS exposure signif-
icantly increased the expression of Muc5ac in βENaC-Tg mice, but not in WT mice (Fig 2A).
In contrast, CS exposure did not induce a significant upregulation of Muc5b expression in
lung, neither in βENaC-Tg mice nor in WT mice (Fig 2B). Similar results were obtained after 8
weeks of CS exposure (S1 Fig).

Goblet cell metaplasia was assessed by quantifying the number of periodic-acid-Schiff posi-
tive (PAS+) cells in the bronchial epithelium. Air-exposed βENaC-Tg mice had higher num-
bers of PAS+ cells compared to WT mice. However, 4 weeks of CS exposure did not induce an
increase in PAS+ cells, neither in WT nor in βENaC-Tg mice (Fig 3A–3C). In a subgroup of
animals (n = 3/group), PAS+ mucus content was measured in the airway lumen of non-lavaged
mice following 4 weeks of air or CS exposure. Similar to goblet cell metaplasia, there was more
mucus present in the airway lumen of βENaC-Tg mice, compared to WT controls independent
of CS exposure (Fig 3D–3F). Quantification of goblet cell metaplasia after 8 weeks of CS expo-
sure, resulted in a similar outcome (S1 Fig).

Fig 2. Cigarette smoke-inducedmucin expression is increased in βENaC-Tgmice.mRNA expression of Muc5ac (A) and Muc5b (B) in total lung tissue
upon 4 weeks of air or CS exposure. mRNA expression data were normalized for 3 reference genes (Hprt1, Gapdh, Tfrc). n = 6/group. *p<0.05, **p<0.01,
***p<0.001.

doi:10.1371/journal.pone.0129897.g002
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Cigarette smoke-induced pulmonary inflammation is aggravated in
βENaC-Tg mice
Following air exposure, the numbers of inflammatory cells in BAL fluid were significantly in-
creased in βENaC-Tg compared to WT mice. Four weeks of CS exposure led to a significant in-
crease in the number of total BAL cells, macrophages, neutrophils and lymphocytes, both in
WT and βENaC-Tg mice (Fig 4A–4D). Importantly, this increase in innate and adaptive im-
mune cells was significantly higher in βENaC-Tg mice, compared to WT mice (Fig 4A–4D).
Additionally, 4 weeks of CS exposure significantly increased the number of macrophages in the
lungs of βENaC-Tg and WTmice (Fig 4E), but had no effect on the number of neutrophils,
dendritic cells and CD4+ and CD8+ T-lymphocytes (data not shown). Interestingly, the CS-in-
duced increase in macrophages in lung tissue was aggravated in βENaC-Tg mice, compared to
WT controls (Fig 4E).

Similar results were obtained after 8 weeks of CS exposure (S2 Fig). Following 8 weeks of CS
exposure, additional cell types were quantified. While the CS-induced increase in dendritic
cells and CD4+ T-lymphocytes in BAL did not differ in WT and β-ENaC (Fig 4F–4H), the in-
crease in CD8+ T-lymphocytes was significantly aggravated in CS-exposed βENaC-Tg mice,
compared to WT littermates (Fig 4H).

Quantification of inflammatory chemokines revealed higher mRNA expression of Cxcl1
and Ccl20 in lung tissue of air-exposed βENaC-Tg mice, compared to WT littermates (Fig 5A–

Fig 3. Goblet cell metaplasia andmucus secretion upon air or CS exposure. (A)Goblet cell count upon 4 weeks of air or CS exposure. n = 8/group.
Representative images of goblet cells in airways of CS-exposedWTmice (B) and CS-exposed βENaC-Tg mice (C) upon 4 weeks of CS exposure. Arrows
indicate goblet cells. (D)Quantification of PAS+ mucus content in lumen of airways of non-lavaged mice upon 4 weeks of air or CS exposure n = 3/group.
Representative image of PAS+ mucus content in airways of CS-exposedWTmice (E) and CS-exposed βENaC-Tgmice (F). *p<0.05, **p<0.01,
***p<0.001.

doi:10.1371/journal.pone.0129897.g003
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5D). The CS-induced increase in pulmonary Ccl20 mRNA expression was aggravated in
βENaC-Tg mice, especially upon 8 weeks of CS exposure (Fig 5A–5D). Protein levels of Cxcl1
and Ccl20 in BAL fluid were significantly higher in βENaC-Tg mice, compared to WT litter-
mates (Fig 5E–5H). Moreover, the CS-induced increase in Cxcl1 protein levels in BAL was sig-
nificantly aggravated in βENaC-Tg mice (Fig 5A–5D).

Cigarette smoke-induced formation of lymphoid follicles is accelerated in
βENaC-Tg mice
Eight weeks of CS exposure did not induce lymphoid follicles in WT mice. In contrast, after 8
weeks of CS exposure, the formation of lymphoid follicles was already detected in βENaC-Tg
mice (Fig 6). Whereas lymphoid follicle formation upon chronic CS exposure (i.e. 6 months)
was shown to be associated with elevated expression of Cxcl13 in WTmice, transcript levels of
this chemokine were not increased following 8 weeks of CS-exposure in βENaC-Tg mice (data
not shown).

Cigarette smoke-induced alveolar destruction is aggravated in
βENaC-Tg mice
Emphysema was measured by two complementary methods. The mean linear intercept (Lm), a
measure for alveolar airspace enlargement, was significantly enlarged in the βENaC-Tg mice
compared to WT littermates (Fig 7A). However, 4 weeks of CS exposure did not further in-
crease the Lm, neither in the βENaC-Tg mice nor in the WT controls (Fig 7A). Emphysema
was also quantified by determining the destructive index (DI). This measure quantifies the per-
centage of destruction of the alveolar walls. The DI tended to be higher in air-exposed
βENaC-Tg compared to WT mice (Fig 7D). Importantly, 4 weeks of CS exposure did not result
in an increased DI in WTmice, but did induce a significantly increased level of destruction in

Fig 4. Cigarette smoke-induced pulmonary inflammation is increased in βENaC-Tgmice. (A) Total inflammatory cell count in BAL upon 4 weeks of air
or CS exposure. Quantification of macrophages (B), neutrophils (C) and lymphocytes (D) in BAL upon 4 weeks of air or CS exposure. n = 7-8/group. (E)
Quantification of macrophages in total lung after 4 weeks of CS exposure. n = 7-8/group. Quantification of dendritic cells (F), CD4+ T-lymphocytes (G) and
CD8+ T-lymphocytes (H) in BAL upon 8 weeks of air or CS exposure. n = 8-11/group. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0129897.g004
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βENaC-Tg mice. (Fig 7D). Similar results were obtained after 8 weeks of CS exposure (S3 Fig).
Interestingly, Mmp12 mRNA expression was higher in lungs of βENaC-Tg mice compared to
WT littermates (Fig 7G).

Cigarette smoke does not induce airway wall remodelling in βENaC-Tg
mice
We investigated airway wall remodelling in mice by measuring the amount of fibronectin and
collagen deposited in the airway walls. Fibronectin and collagen deposition in the airway walls
did not differ between WT and βENaC-Tg mice and was not affected by 4 or 8 weeks of CS ex-
posure (S4 Fig).

Cigarette smoke-induced changes in lung function in WT and βENaC-Tg
mice
We assessed the pulmonary function of WT and βENaC-Tg mice after 4 weeks of exposure to
air or CS. Air-exposed βENaC-Tg mice exhibited a lower total pulmonary resistance, compared
to air-exposed WTmice (Fig 8A). CS exposure did not influence the total pulmonary resis-
tance, neither in WT nor in βENaC-Tg mice (Fig 8A). However, CS exposure significantly de-
creased the tissue damping in βENaC-Tg mice, whereas CS exposure of WT mice resulted in
an increased tissue damping (Fig 8B). This parameter is used to assess the tissue resistance. In
addition, the tissue elasticity was significantly lower in CS-exposed βENaC-Tg mice, compared
to CS-exposed WTmice (Fig 8C).

A significantly increased static and dynamic compliance was registered in βENaC-Tg mice
compared to WT mice, consistent with the increase in mean linear intercept measured in
βENaC-Tg mice (Fig 8A). Whereas CS exposure induced a significant decrease of both

Fig 5. mRNA expression and protein levels of chemokines upon air or CS exposure.mRNA expression of Cxcl1 in total lung tissue upon 4 weeks (A)
and 8 weeks (C) air or CS exposure. mRNA expression of Ccl20 in total lung tissue upon 4 weeks (B) and 8 weeks (D) air or CS exposure. mRNA expression
data were normalized for 3 reference genes (Hprt1, Gapdh, Tfrc). n = 6-8/group. Protein levels of Cxcl1 in BAL fluid upon 4 weeks (E) and 8 weeks (G) air or
CS exposure. Protein levels of Ccl20 in BAL fluid upon 4 weeks (F) and 8 weeks (H) air or CS exposure. Protein levels were measured by ELISA. n = 8-11/
group. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0129897.g005
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compliances in WT mice, CS exposure had no significant effect on the elevated static and dy-
namic compliance in the βENaC-Tg mice (Fig 8D and 8E). The total lung capacity (TLC) was
significantly higher in βENaC-Tg compared to WT mice. CS exposure induced a decrease in
TLC in WT mice, but did not influence this parameter in βENaC-Tg mice (Fig 8F). Analysis of
the PV-loops demonstrated that the hysteresis, i.e. area between inflating and deflating part of
the PV-loop, was significantly decreased in air-exposed βENaC-Tg mice compared to WT
mice (Fig 9A–9C). Exposing mice to CS, decreased the hysteresis both in WT and in βENaC-Tg
mice. Of note, hysteresis was significantly lower in CS-exposed βENaC-Tg mice compared to
CS-exposed WT mice (Fig 9C).

Discussion
There is increasing evidence of airway surface dehydration in smokers and patients with
COPD. This study demonstrates that airway surface dehydration in βENaC-Tg mice aggravates
CS-induced airway inflammation, mucin expression and destruction of alveolar walls and ac-
celerates the formation of pulmonary lymphoid follicles. In contrast, CS exposure did not in-
duce airway wall remodelling and had no effect on goblet cell metaplasia in βENaC-Tg mice.

Fig 6. Cigarette smoke-induced lymphoid follicle formation in βENaC-tg, but not in WTmice after 8 weeks of CS exposure. (A)Quantification of
lymphoid follicles normalized for the area of parenchyma (mm2) upon 8 weeks of air or CS exposure. n = 8-11/group. (B–C)Representative images of
lymphoid follicles found in CS-exposed βENaC-Tgmice. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0129897.g006
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It has been demonstrated that CS suppresses the function of the CFTR channel, with airway
surface dehydration and decreased mucociliary clearance as consequences [8–10, 15, 28].
Moreover, Dransfield et al. showed that a diminished CFTR function correlates with the pres-
ence of chronic bronchitis and the degree of dyspnoea [15]. Since Cftr-deficient mice do not
exhibit imbalanced airway ion transport in the lower airways and do not display cystic fibrosis-
like disease [7, 28–31], we used βENaC-Tg mice, backcrossed onto a C57Bl/6 background [22],
to test the hypothesis whether the presence of airway surface dehydration has an impact on
CS-induced pathology and pathophysiology in vivo. βENaC-Tg mice overexpress the β-subunit
of ENaC through an airway-specific club cell secretory protein (CCSP) promotor [7]. The con-
stitutive hyperabsorption of Na+ leads to airway surface dehydration and decreased mucocili-
ary clearance [7, 18].

Besides an imbalance of epithelial ion transport, mucus hypersecretion may contribute to
airway surface dehydration and mucociliary dysfunction. As Button et al. elegantly showed in
their gel-on-brush model, a hyperconcentrated mucus gel layer with> 8% solids can create
sufficient osmotic pressure to cause a collapse of the cilia and mucostasis [6]. Clunes et al.
found that mucus of chronic cigarette smokers contained approximately 10% solids, which
makes it likely that osmotic pressure of the hyperconcentrated mucus layer contributes to
mucociliary dysfunction in smokers [4, 32]. The predominant secreted mucins in airway
mucus are MUC5AC and MUC5B and both are upregulated in COPD [19–21]. Consistent
with previous studies, we observed higher transcript levels of Muc5ac and Muc5b and a signifi-
cant higher number of goblet cells in βENaC-Tg mice compared to WT mice [18]. Although
the Muc5b mRNA expression tended to be increased after 4 weeks of CS exposure, this increase
did not reach significance. In contrast, CS induced a significant increase of Muc5ac expression
in the βENaC-Tg mice, both after 4 and 8 weeks of CS exposure. Since mice do not readily

Fig 7. Cigarette smoke-induced alveolar destruction is increased in βENaC-Tgmice. (A)Mean linear intercept (Lm) upon 4 weeks of air or CS
exposure. n = 7-8/group. Representative image of WTmice: air-exposed (B) and CS-exposed (C). Destructive index (DI) upon 4 weeks of air or CS exposure
(D). n = 7-8/group. Representative image of βENaC-Tgmice: air-exposed (E) and CS-exposed (F). mRNA expression of Mmp12 in total lung upon 4 weeks
of air- or CS exposure (G). Normalized for 3 reference genes (Hprt1, Gapdh, and Tfrc). n = 6/group. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0129897.g007

Airway Surface Dehydration and COPD

PLOSONE | DOI:10.1371/journal.pone.0129897 June 12, 2015 11 / 18



develop goblet cell metaplasia upon CS exposure [33, 34], we did not observe an increase in
goblet cell metaplasia after CS exposure, neither in WT nor in βENaC-Tg mice. However, sub-
stantial mucin hypersecretion has been detected without increase in goblet cell numbers. It has
been suggested that Clara cells produce and secrete Muc5ac without being subjected to meta-
plastic changes, including the formation of PAS positive storage granules [35, 36]. Taken to-
gether, our results are consistent with the observation that Muc5ac is highly inducible by
noxious stimuli [20] and suggest that hypersecretion of Muc5ac in response to CS exposure
may contribute to mucus hyperconcentration and airway surface dehydration.

Airway surface dehydration produces chronic airway inflammation in BAL in βENaC-Tg
mice, with higher numbers of macrophages, neutrophils and lymphocytes compared to WT lit-
termates [7, 18, 22]. Our study confirms and extends these findings by showing that BAL of
βENaC-Tg mice also exhibits more dendritic cells and CD8+ T-lymphocytes. By exposing both
WT littermates and βENaC-Tg mice to CS, we demonstrated that airway surface dehydration
was associated with an aggravated CS-induced inflammatory response in βENaC-Tg mice. In
BAL, CS exposure induced a significantly higher increase in macrophages, neutrophils and
CD8+ T-lymphocytes, key players in COPD pathophysiology, in βENaC-Tg mice than in WT
mice [13, 37–39]. Interestingly, this exaggerated response already occurred after a subacute CS
exposure, i.e. 4 weeks.

In lung tissue, the CS-induced inflammatory response was limited to an increase in macro-
phages. Along with this increase in macrophage numbers, we observed an increase in matrix

Fig 8. Effect of CS exposure on lung function in WT and βENaC-Tgmice. Lung function was determined in WT and βENaC-Tgmice after exposure to air
or CS for 4 weeks. (A) Resistance (R) of the entire compartment (airways, tissue and chest wall). (B) Tissue damping (G), related to tissue resistance. (C)
Tissue elasticity (H). (D) Static compliance (Cstat). (E) Dynamic compliance (Cdyn). (F) Total lung capacity (TLC). *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0129897.g008
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metalloproteinase 12 (Mmp12), a macrophage-derived protease important in emphysema de-
velopment in WT and βENaC-Tg mice [40, 41].

Severe COPD is associated with increased numbers of airways containing lymphoid follicles
[12]. Moreover, the presence of lymphoid follicles has also been demonstrated in the lung pa-
renchyma of patients with COPD [42]. In WT mice, lymphoid follicles are usually detected
after 6 months of CS exposure [43]. In this study, lymphoid follicles were already detected in
βENaC-Tg mice after 8 weeks of CS exposure, suggesting that airway surface dehydration ac-
celerates the CS-induced formation of lymphoid follicles. Since we did neither observe a domi-
nance of B cells in these lymphoid follicles, nor an upregulation in total lung tissue of Cxcl13
transcript levels, a chemokine involved in lymphoid follicle formation upon chronic CS expo-
sure [43], we speculate that we observed early stages of follicle formation. Importantly, we did
not find evidence of pulmonary infection.

In COPD patients, emphysema develops after many years of cigarette smoking and it con-
sistently requires several months of CS exposure, i.e. 6 months, to evoke emphysema in WT
mice. In contrast, βENaC-Tg mice develop severe emphysema early in life [18, 40, 44]. Similar
elements that lead to the onset of emphysema, can be found in both βENaC-Tg mice and pa-
tients with COPD. First, in COPD, a proteinase/antiproteinase imbalance plays a key role in
the development of emphysema [45–47]. Recently, it has been shown that Mmp12 and

Fig 9. Pressure-Volume loops of air- and CS-exposedmice. (A) Representative PV loops of air-exposedWT (black) and βENaC-Tg (red) mice. (B)
Representative PV loops of CS-exposedWT (black) and βENaC-Tg (red) mice. (C) Area of PV loop or hysteresis. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0129897.g009
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neutrophil elastase also mediate emphysema in βENaC-Tg mice [40, 48]. Second, McDonough
et al. showed that small airway obstruction precedes emphysematous destruction in COPD pa-
tients [49]. In βENaC-Tg mice, airway surface dehydration leads to mucus obstruction in the
first days of life and preceding the onset of emphysema [7, 18, 22], constituting another simi-
larity to COPD patients. In this study, we confirmed severe emphysema in air-exposed
βENaC-Tg mice, as quantified by the mean linear intercept (Lm) [18]. However, we did not
find a further increase in Lm in the βENaC-Tg mice following CS exposure. Given the severity
of the constitutive emphysema in adult βENaC-Tg mice, it can be questioned whether it is at
all possible to establish further enlargement of the Lm upon CS exposure. In contrast, quantify-
ing the destructive index (DI), a measure for alveolar destruction, clearly showed that 4 weeks
of CS exposure already induced significant destruction of alveolar tissue in βENaC-Tg mice,
while there was not yet an effect in WT mice. We also performed lung function measurements
and observed a decreased resistance and increased compliance and TLC, indicating that the
lung function is dominated by the severe spontaneous emphysema in βENaC-Tg mice [18]. In-
terestingly, following CS exposure, the increased compliance measured in βENaC-Tg mice was
accompanied by a decreased tissue damping and tissue elasticity. Together with the morpho-
metric analysis of the DI, these data demonstrate that airway surface dehydration aggravated
CS-induced emphysema, even after short term exposure, suggesting that this mechanism may
contribute to emphysema formation in smokers with COPD.

This study suggests that therapeutic targeting of airway surface dehydration may be benefi-
cial in patients with COPD, although extrapolation of our experimental findings in mice after
(sub)acute cigarette smoke-exposure to the complex chronic disease COPD in humans should
be performed with caution. It has been shown in vitro that the CFTR potentiator ivacaftor can
partially rescue the CS-induced CFTR deficiency, thereby restoring the airway surface dehydra-
tion and mucociliary clearance in non-CF epithelial cells [10]. Moreover, the phosphodiester-
ase inhibitor roflumilast has beneficial effects on the CS-induced dehydration of the airway
surface of epithelial cell lines through elevation of intracellular cAMP levels and activation of
CFTR [50]. These proof-of-concept studies may facilitate future clinical trials that will be re-
quired to determine therapeutic effects improving CFTR function and airway surface hydra-
tion on mucus obstruction, airway inflammation and emphysema in patients with COPD.

Of note, our results also suggest that CS exposure of βENaC-Tg mice can be used as a time-
saving model for COPD-like pathology. Within a short time frame of 4 to 8 weeks, these mice
already develop a strong pulmonary inflammation, with the formation of lymphoid follicles,
and destruction of alveolar tissue, whereas these pathologies in WT mice can only be observed
following 6 months of CS exposure. In addition, βENaC-Tg mice also possess more characteris-
tics of chronic bronchitis, including goblet cell metaplasia and intraluminal mucus content,
than WTmice.

In summary, acquired CFTR malfunction and mucin hypersecretion, both leading to
mucus hyperconcentration, have been demonstrated in smokers with and without COPD, im-
plicating that airway surface dehydration is present in these patients [8, 9]. In our study, we
have shown that the presence of airway surface dehydration in βENaC-Tg mice significantly
aggravates the CS-induced pathological hallmarks of COPD, including mucin expression, pul-
monary inflammation, formation of lymphoid follicles and destruction of alveolar walls. We
speculate that the impaired mucociliary clearance caused by airway surface dehydration results
in a retention and concentration of CS in the airways, thus leading to exaggerated host re-
sponses, such as mucus hypersecretion and enhanced inflammation. Proteases, originating
from macrophages and neutrophils, can then lead to destruction of alveolar tissue and emphy-
sema. The results of our study identify airway surface dehydration as a novel risk factor for CS-
induced pathology.
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Supporting Information
S1 Fig. Goblet cell metaplasia and mucin expression upon 8 weeks of air or CS-exposure.
(A) Goblet cell count. n = 8-11/group. (B)mRNA expression of Muc5ac. (C)mRNA expres-
sion of Muc5b. Expression data normalized for 3 household genes (Hprt1, Gapdh, and Tfrc).
n = 8/group. �p<0.05, ��p<0.01, ���p<0.001.
(TIF)

S2 Fig. CS-induced inflammation in BAL upon 8 weeks of CS exposure. (A) Total inflam-
matory cell count in BAL. (B)Number of macrophages in BAL. (C)Number of neutrophils in
BAL. (D) Number of lymphocytes in BAL. n = 8-11/group. �p<0.05, ��p<0.01, ���p<0.001.
(TIF)

S3 Fig. Cigarette smoke-induced alveolar destruction is increased in βENaC-Tg mice after
8 weeks of air or CS exposure. (A)Mean linear intercept (Lm) after 8 weeks of air or CS expo-
sure. (B) Destructive index (DI) after 8 weeks of air of CS exposure. n = 8-11/group.
(TIF)

S4 Fig. 8 weeks of cigarette smoke exposure does not induce airway wall remodelling in
WT and βENaC-Tg mice. (A) Deposition of fibronectin in the airway wall. Normalized for pe-
rimeter basement membrane. (B) Deposition of collagen in the airway wall. Normalized for pe-
rimeter basement membrane. n = 8-11/group.
(TIF)

S1 File. Extended material and methods.
(DOCX)
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