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Abstract

Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing 

power to detect causal genetic variants. One approach involves assessing the relationship between 

each phenotype and each single nucleotide polymorphism (SNP) individually and using a 

Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a 

multivariate regression or a dimension reduction technique, such as principal component analysis 

(PCA), and test for the association with the principal components (PC) of the phenotypes rather 

than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to 

maximize heritability at individual SNPs, in this paper, we propose to construct a maximally 

heritable phenotype (MaxH) by taking advantage of the estimated total heritability and co-

heritability. The heritability and co-heritability only need to be estimated once, therefore our 

method is applicable to genome-wide scans. MaxH phenotype is a linear combination of the 

individual phenotypes with increased heritability and power over the phenotypes being combined. 

Simulations show that the heritability and power achieved agree well with the theory for large 

samples and two phenotypes. We compare our approach with commonly used methods and assess 

both the heritability and the power of the MaxH phenotype. Moreover we provide suggestions for 

how to choose the phenotypes for combination. An application of our approach to a COPD 

genome-wide association study shows the practical relevance.

Corresponding author: Jin Zhou, Division of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, 
AZ 85724, Phone: (520) 626-1393, jzhou@email.arizona.edu. 

HHS Public Access
Author manuscript
Hum Hered. Author manuscript; available in PMC 2016 June 20.

Published in final edited form as:
Hum Hered. 2015 ; 79(2): 93–104. doi:10.1159/000381641.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Principal component of heritability; Co-heritability; GWAS; Multivariate analysis

1 Introduction

Complex diseases are often assessed using multiple correlated phenotypes. These 

phenotypes, sometimes called “endophenotypes”, are heritable predicators of disease status. 

A standard approach to analyze multiple phenotypes is to consider each phenotype 

separately, but many suggestions have been made for combining the phenotypes in some 

way with the goal of increasing power, or elucidating disease mechanisms. A multivariate 

regression strategy is straightforward, but computationally intensive and the power of the 

approach compared to other approaches depends upon unknown effects (Korte et al., 2012; 

Schifano et al., 2013). Other strategies use linear combinations of the phenotypes for 

analysis. Principal component approach (PCA) generates linear combinations through 

maximizing phenotypic variances (Avery et al., 2011; Karasik et al., 2004). Multiphen 

(O'Reilly et al., 2012) takes the single SNP as the outcome, multiple phenotypes as the 

predictors and tests the association between the linear combination of phenotypes and single 

SNP by ordinal regression. Here we propose a linear combination of the phenotypes that 

maximizes the total heritability, estimated from a sample of unrelated individuals (Yang et 

al., 2010); as such our approach is suitable for application to a genome-wide analysis 

because the linear combination is selected only once, and can be applied to all SNPs on the 

GWAS chip. The increased heritability of the phenotype translates into improved power for 

association testing. In contrast, the heritability and the consequent power of the first 

principal component can be much lower, depending on the genetic parameters (Aschard et 

al., 2014).

In the linkage era, Ott and Rabinowitz (1999) introduced the approach of incorporating 

phenotypes into a linear combination with maximized heritability and increased power of 

locating genes in the context of pedigrees and the presence of pleiotropy. It also has been 

integrated into a family-based association test for repeated measure analysis by Lange et al. 

(2004). Klei et al. (2008) first applied it to association studies with independent samples. 

Their approach, like Lange's (Lange et al., 2004) focused on the notion of optimizing the 

contribution of a single genetic variant to phenotypic variance which is a fraction of the total 

heritability of the individual trait. Both Lange's (Lange et al., 2004) and Klei's (Klei et al., 

2008) methods estimated the appropriate coefficients for each genetic variant separately. For 

family trios, Lange et. al. (Lange et al., 2004) recommended using the non-informative 

portion of the family data to estimate this quantity as it is independent of the remaining 

sample. In population studies, Klei et al. (2008) explored a method of sample splitting and 

cross validation to determine these coefficients from a training set and then test for 

association using the remainder of the sample. The method works well for individual SNPs, 

but is not practical for a genome-wide association study (GWAS). Our method differs from 

Klei et al. (2008) and Lange et al. (2004) by globally estimating the total heritability of each 

single phenotype and estimating genetic covariances of pairs of phenotypes, which only 

need to be performed once. The combined phenotype (MaxH) is used to test all SNPs.
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We compare our method with (1) single phenotype tests adjusting for multiple comparison; 

(2) univariate test using the first PC of PCA (Avery et al., 2011; Karasik et al., 2004) 

method; (3) Multiphen (O'Reilly et al., 2012), (4) multivariate regression using Mendel 

(Lange et al., 2013). Method (2) and (3) use the linear combination of the phenotypes and 

tests the association through linear regression. Mendel builds upon multivariate regression. 

It is a likelihood based method using both score and likelihood ratio tests (LRT) for 

association testing. Recent work from Aschard et al. (2014) shows that testing only the top 

PCs often has low power, whereas combining signals across all PCs can have greater power. 

We therefore compared MaxH with multivariate regression using multiple PC phenotypes. 

Through simulations and real examples, we find our approach proved to have higher power 

for testing SNPs explaining only a small fraction of the total heritability compared to other 

univariate association methods.

In the following sections, we first present the method of combining multiple phenotypes 

through maximizing total heritability and show how power can be approximated analytically 

for univariate regression given the phenotypic and genotypic variance matrix. In the results 

section, we provide simple examples illustrate how the heritability changes as a function of 

the number of phenotypes combined, as well as the impact of missing data. We also provide 

simulations to show the impact of estimating heritability on power. We use a data example 

and simulations to compare MaxH with the other approach described above.

2 Material and Method

2.1 Integration of Phenotypes

Let m be the unknown number of independent causal loci, indexed by k, n be the number of 

individuals, indexed by i, and T be the number of phenotypes, indexed by t. In the absence 

of any covariates or major gene effects, each phenotype is assumed to have the standard 

polygenic model (Falconer et al., 1981), given by

(1)

where yti is the tth phenotypic value for the ith individual; μt is the mean of the phenotype; 

xki is the standardized minor allele count at locus k of individual i, atk is the additive allelic 

effect of locus k on phenotype t,  is the total additive genetic effect of 

individual i's phenotype t, and the εti are the residual effects. We treat atk as random 

variables independent of the xkis and of each other, with zero means and common variances 

and covariances, so that
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where  is the total additive genetic variance and  is the 

covariance between the additive effects for phenotypes t and t′, average over the k causal 

loci. This  can be viewed as the average pleiotropy. Finally, assuming the genetic and 

environmental effects are independent we have

(2)

where yi, gi, and εi are the length T vectors of phenotypes, genetic and environment 

components for the ith individual, and

(3)

Note that this model also implies

where the Gii′s are the genetic relationship coefficients for individuals i and i′. Elements of 

the n × n genetic relationship matrix, G, can be determined from pedigree information 

(Lange, 2002) or estimated from GWAS data (Yang et al., 2010). This multivariate 

polygenic model is discussed in Korte et al. (2012) and Lee et al. (2012).

Narrow sense heritability of the tth phenotype is defined as the proportion of the additive 

genetic variance among the total phenotypic variance, i.e.,

To integrate multiple phenotypes, our goal is to find a vector of coefficients l such that Yl 
has the maximum heritability among all such linear combinations of the phenotypes, where 

Y = (y1,...,yT ) is a n × T matrix of the collection of all T phenotypes. The heritability of any 

linear combination of phenotypes Yl, can be expressed as the Rayleigh quotient (Horn and 

Johnson, 1985),

(4)

Henceforth we denote Yl with l chosen to maximize heritability as the set of MaxH 

phenotypes. The same optimization problem (4) has also been encountered in Fisher's linear 

discriminant analysis (LDA) for classification (Witten and Tibshirani, 2011). Detailed 
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explanation for optimizing equation (4) can be found in Supplementary Material and the 

notes (Welling, 2005). Briefly, one needs to eigendecompose the matrix  and the 

desired optimization solution is to find the biggest eigenvalue, i.e., maximized heritability 

and the corresponding eigenvector w.

The above calculation assumes the parameters in Vp and Vg are known; in reality we need to 

estimate them. Historically Vp and Vg were estimated using data on pedigrees with known 

genetic relationships, i.e., G. More recent work shows how to approximate G and estimate 

Vp and Vg from GWAS data on population based samples (Yang et al., 2010). With G 
treated as known, (Vg, Vp) can be estimated using Maximum Likelihood (ML), Restricted 

ML (REML) or Method of Moments (MOM) approaches. When the sample size is large, the 

maximization is not trivial and the computation is costly. We used ML for the application 

example, and recommend that ML or REML be used in practice. For efficiency of 

computation, we used the much simpler MOM approach to estimate Vg and Vp in the 

simulations (Lange, 2002). We summarize the steps needed to compute the MaxH 

phenotype in the Supplementary Material.

2.2 Association Testing and Power Approximation

Thus far, we have focused on maximizing heritability in order to integrate multiple 

phenotypes. Now we consider testing and power for individual SNPs using MaxH 

phenotype. To test the hypothesis of no association for a single variant, we include a major 

gene effect and use the “mixed model” (Korte et al., 2012)

(5)

where x0i is the standardized additive coding for the SNP we wish to test and b = (b1,...,bT) 

is the vector of genetic effects for the T phenotypes. Letting Yl = (yli) = Yl denote the n-

vector of MaxH phenotypes, for each element, we have

where yi = (y1i, y2i,...,yti)′ is individual i's T phenotypic measurments, bl = l′b, μl = l′
(μ1,...,μT ), gli = l′gi, and εli = l′εi. Hence

To test H0 : bl = l′b = 0, a Wald test is given by

(6)

where  is the ordinary least squares (OLS) estimator of bl and SE is its standard error under 

the regression model (Klei et al., 2008). In the calculation of SE(b̂) we have neglected the 
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correlation of subjects’ phenotypes generated by the polygenic background, since in a 

population based sample, the genetic relationships are small in practice. But the correlations 

are considered when generating MaxH phenotypes. Simulation example shows that the type 

I error rate is protected.

The power of any test to reject H0 : bl = l′b = 0 depends not only on the test statistic, but also 

on how b = (b1,...,bT) is chosen. The vector b can be chosen arbitrarily, but if the polygenic 

model is correct, in a GWAS setting with polygenic effects, it is natural to consider testing 

SNPs whose genetic effects are consistent with the polygenic model, i.e., , 

where c is a scale parameter chosen to determine the heritability of the major gene effect. 

When including a major gene effect, the overall genetic variance of a linear combination 

becomes . In order to maintain a fixed overall heritability (Equation (4)), we 

choose the major gene effect to satisfy, , where l′Vgl is again the total genetic 

variance including the major gene effect; this implies that bl explains a fraction c2 of the 

total heritability.

The Wald test statistic W2 in equation (6) follows a chi-square distribution with 1 degree of 

freedom, i.e.,  with non-centrality parameter (NCP)

(7)

As heritability  increases, the NCP and the power of the test increases, as does the 

asymptotic power. Power gain is heavily dependent on the gain of heritability. For the 

MaxH phenotype, the structure of the genotypic and phenotypic variance-covariance matrix 

and the number of phenotypes combined determines the heritability. In practice Vp and Vg 

must be estimated, and sampling error may decrease power if too many phenotypes are 

added. This is considered later, as well as when b comes from arbitrary distributions.

3 Results

3.1 Combining Phenotypes with Vg and Vp known

First we consider combining the simple case of two phenotypes with equal heritabilities, 

which are standardized with mean zero and variance one. The genotypic and phenotypic 

variance-covariance matrices take the form,

where rg and rp are the genotypic and phenotypic correlation coefficients. Note that the 

phenotypic variance components are partitioned into genetic and environmental 

components, i.e., Vp = Vg + Ve, thus rp = rgh2 + re (1 – h2), where re is environmental 

correlation coefficient. Since −1 ≤ re ≤ 1, it follows that the genotypic and phenotypic 

correlation coefficients have the constraints,
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(8)

To maximize equation (4), the eigensystem equation S(2) in the Supplementary Material has 

eigenvectors, (1, 1) and (1, −1), with eigenvalues  and . MaxH is obtained by 

picking the largest eigenvalue and corresponding eigenvector, subject to the constraint in 

(8), which also guarantees that the maximized heritability  is bounded in (0, 1).

In this simple example where the heritability of two phenotypes are the same, the 

eigenvectors of the PCA approach are the same as the MaxH approach and the combined 

phenotypes are Y1 + Y2 and Y1 – Y2, but with different eigenvalues. The eigenvalues of the 

two PCs are 1 ± rp. When rg > rp > 0, both MaxH and the first PC phenotypes are Y1 + Y2. 

However, when rp > rg > 0, MaxH takes the combined phenotype which maximizes the 

heritability, i.e., Y1 – Y2, while PCA takes the combined phenotype which maximizes the 

phenotypic variance, i.e., Y1 + Y2. The selection of the maximal PC depends only on the 

sign of rp. Thus the first PC from PCA approach is always Y1 + Y2 for rp > 0, but it is Y1 – 

Y2 from MaxH approach when rp > rg > 0. Aschard et al. (2014) obtained a similar result 

using a slightly different model. For T = 2, their model is equivalent to ours with the major 

gene x0, except that the polygenic component gi is omitted and the residual variance 

covariance matrix has positive covariance ν. The single major gene effect explains all of the 

heritability, and as a result rg = +1 if b1 and b2 have the same sign or rg = −1 otherwise. We 

consider a range of possible rg indicating a range of pleiotropy, based on which, we integrate 

phenotypes that maximize heritability.

The increase of maximized heritability represents an increase in power. Figure 1 shows the 

maximized heritability as a function of rp and rg. To develop intuition for how the MaxH 

and its heritability behaves, we consider the two extremes of pleiotropy. When rg equals 

zero, i.e., there is no correlation between the coefficients of the genetic effects at the causal 

loci, and no evidence for average pleiotropy. In this case, the phenotypic correlation is 

proportional to the residual correlation. If rp > 0 the maximized heritability is h2/(1 – rp) and 

the MaxH phenotype is Y1 – Y2. Conversely, the first PC takes Y1 + Y2. Intuitively we see 

that the first PC maximizes the phenotypic (residual) covariance of the linear combination, 

while MaxH minimizes the residual effects. A more specific example is, when rg = 0, 

genetic component of the first phenotype is positive (non-zero), genetic component of the 

second phenotype is zero, and environmental correlation is positive (i.e. rp > 0), MaxH (the 

difference of the two single phenotypes) will not enhance the genetic signal, rather reduce 

the residual variances. In the absence of any information about genetic effects at a particular 

SNP, the phenotype with the smallest residual variance will be the best phenotype. So MaxH 

will do better than PC. Now consider the other extreme where |rg| approaches 1, i.e., the 

genetic effects for one phenotype predict perfectly the genetic effects for the second. In this 

case, MaxH chooses the linear combination which maximizes the variance of the combined 

genetic effects. The first PC continues to maximize the total phenotypic variance, and agrees 

with the MaxH choice when |rg| approaches 1, because most of the phenotypic covariance is 

in the genetic, not the residual component. Note that when rp = rg, either linear combination 

gives the same heritability as a single phenotype, and is also equivalent to PC. When rp and 
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rg have the same magnitude, but different signs, we can expect MaxH to do much better than 

the case when rp = rg.

When combining more than two phenotypes, we extend the above design where pairwise 

correlations are the same, both phenotypic and genotypic, but heritabilities differ, i.e.,

where 0 < k ≤ 1. For simplicity, we consider the situation when genetic and phenotypic 

correlations are both positive. In Figure 2, we show the maximized heritability as a function 

of the number of phenotypes combined while varying the value of rg, rp, and k. For all four 

cases, we set h2 = 0.4. In Figure 2a and Figure 2b we set k = 1, i.e., all combined phenotypes 

have the same heritability as 40%. When rg > rp = 0.4 (Figure 2a), both approaches behave 

the same and the heritability increases as the number of phenotypes combined increases. In 

Figure 2c and Figure 2d we vary k (0 < k < 1) so that phenotypes with lower heritabilities 

are added in. Both figures (Figure 2c and Figure 2d) show PC loses heritability when adding 

phenotypes with lower heritabilities. This pattern exists even when heritabilities of 

phenotypes combined are fixed (Figure 2b). When rg < rp, adding more phenotypes with 

lower heritabilities can increase the heritability of MaxH more dramatically than combing 

phenotypes when rg > rp, and combining more than two phenotypes does not provide a 

noticeable advantage for MaxH.

3.2 Testing a Single Locus in the Presence of Polygenic Variance

Here we estimate power for three settings when combining two phenotypes with the same 

heritability (h2 = 0.4). First we assume Vg and Vp are known for the purpose of calculating 

the MaxH phenotype, then we relax that assumption. The test statistic of association and its 

standard error are calculated as in Section 2.2. We consider three cases, a) rg > rp (i.e., rg = 

0.9, rp = 0.4); b) rg < rp (i.e., rg = 0.7, rp = 0.8); and c) rg < rp (i.e., rg = 0.1, rp = 0.5). We 

simulate phenotypes based on polygenic model (1) and (3). Genotypes are taken from 

genome-wide SNP data of COPDGene cohort of Non-Hispanic White (NHW) population. 

Only SNPs (51,428 SNPs in total) from Chromosome 1 were used for simplicity.

Our purpose is to show that power increase is determined by the increase of the maximized 

heritability (Equation (7) and Figure 1), and that the magnitude of the heritability increase is 

a surrogate of power increase. Phenotypes were simulated based on the linear model (1). 

One hundred SNPs on Chromosome 1 were randomly chosen as the causal SNPs for 

polygenic background. Five hundred replicates, each with 3000 individuals and T = 2 were 

simulated. Our approach was then compared to the single trait association analysis and the 

PC approach. We consider testing only one of the 100 causal SNPs with effects chosen as 

described in Section 2.2 with c = 2%. A different causal SNP is selected for each of the 500 

replicates. Thus we compute average power for a SNP explaining 2% of the heritability. 
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After generating the single phenotypes, MaxH phenotype and the first PC, we assess 

empirical type I error rate through testing all the SNPs on chromosome 2 from COPDGene 

NHW population which has no causal SNPs. The estimated type I error rate is well 

maintained (0.048) at the significant level of 0.05.

The results are shown in Table 1. The heritability of each phenotype is 0.4, and the 

maximized heritabilities predicted from our theory are given in lower panel of Table 1. As 

predicted from our previous results in the Section 3.1, MaxH and the first PC give nearly 

identical results when rg is large because they select identical linear combinations. Even a 

modest reduction of rg to 0.7 with an increase of rp to 0.8 shows substantial impact on the 

relative power of MaxH and PC, with MaxH doing better. For the third case, i.e., lower 

pleiotropy, the power of MaxH is even higher, while PC does worse than single phenotype 

case. The ordering of the power of MaxH in the three scenarios can be predicted from the 

order of the MaxH's heritability. The loss of power due to estimating rg is negligible for case 

a) and c), and about 5% for case b). This is likely due to the fact that rg and rp can be 

estimated well enough to choose the correct linear combination. The estimates of all the 

heritabilities tend to be lower than predicted by less than 10% (Table 1). The order is 

preserved. As we might expect, the power loss for PC is negligible when estimating the 

variance components, as it does not rely on the decomposition of Vp into genetic and 

residual components. For other values of h2 and T , the plots such as Figures 1 and 2 can be 

used as guidance for choosing which phenotypes to combine once rg and rp are estimated. 

Further studies are needed to determine loss of power for larger T and smaller n.

3.3 Empirical Power for Testing Small Effects

The 100 previously chosen SNPs from Chromosome 1 are used here as causal SNPs with 

each SNP explaining 1% of the total heritability. SNPs effects are generated from a bivariate 

normal distribution with mean zero and variance Vg. Simulations are performed for a range 

of rp and rg. Five hundred pairs of the phenotypes are simulated and tested against each of 

the 100 SNPs. We use the same strategy to estimate type I error rate by using all the SNPs 

from chromosome 2 and all the MaxH phenotypes. Our empirical type I error is well 

maintained at the significant level of 5 × 10−4 (i.e., 4.9 × 10−4).

We compare several methods based on the proportion of the 100 causal SNPs that have 

power over 80%, shown as heat maps in Figure 3 (univariate analysis) and Figure S2 

(multivariate analysis). Figure 3 shows the results for MaxH and PCA. It also shows the 

association analysis using original single phenotypes adjusting for multiple testing. The 

MaxH approach generally performs the best among univariate association analysis. When rg 

= rp, MaxH perform poorly which is consistent with the pattern of heritability maximization 

(Figure 1). With certain configurations of genetic and phenotypic correlations, the MaxH 

method can do as well as using multivariate phenotypes (Figure S2). Note that one could 

also perform a multivariate analysis using multiple phenotypes generated from our method, 

but it is equivalent to using original multiple phenotypes or generated from PCA method 

(see Discussion). We consider situation when rg = 0.7 and rp = 0.8 to examine the relation 

between effect sizes and power (Figure 4). In Figure 4, we plot the effect sizes of the 100 

causal SNPs. The power for such SNPs is shown in gray scale. The pattern of black dots 
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show that using a single phenotype (Y1 or Y2) for testing, power is the best for the loci 

which have the biggest effect sizes (|b1| or |b2|) for the corresponding phenotypes. Using PC 

approach, only the loci whose effects are large on both phenotypes have good power, i.e., 

intersection of the black points in the bottom two plots. However, using the MaxH 

phenotype, the set of loci having good power is when the effect sizes follows the global 

genetic distribution. Especially when both |b1| and |b2| are small and have opposite sign, 

MaxH is the only method that reveal them with very high power. However MaxH performs 

poorly along the diagonal stripe, i.e., when b1 = b2, no matter the magnitude of |b1| or |b2|. 

Using our MaxH method, 40% of the 100 loci have power over 80%. Only about 20% of the 

SNPs have power over 80% when using PC and single phenotypes.

Although the fixed effects b1 and b2 are obtained from  where c = 0.01, they 

cover a broad region from −0.15 to 0.15. Our assumption about pleiotropy is that the effects 

of the polygenic components are drawn from a multivariate normal distribution with mean 

zero and variance covariance matrix Vg. This does not imply equal pleiotropy for all SNPs 

unless Vg has rank one. This is illustrated in Figure 4 where we plot the genetic effects for a 

set if 100 SNPs drawn from the polygenic distribution with mean zero, variances 0.4 and 

correlation of 0.7. As this figure illustrates, the extent of pleiotropy differs considerably 

among the 100 SNPs, even though rg is relatively high. It is natural to ask what would the 

power be for major SNP effects which are not drawn from this distribution, i.e., effects in 

the upper left and lower right corner. Intuitively we would expect that the genetic effects on 

the diagonal corners would be easier to detect since they are further from the origin, and this 

is indeed the case. Supplementary Figure S3 illustrates this point by drawing SNPs from a 

uniform distribution on the plane. The superiority of MaxH over PCA is clear (Figure S3).

3.4 GWAS Analysis in COPDGene NWH Population

We apply our method to COPDGene, a large case-control sample of well-characterized 

smokers from a genome-wide association study of respiratory disease. It includes 10,192 

non-hispanic white (NHW) and African American (AA) current and former smokers with 

airflow obstruction ranging from none to GOLD stage 4 (very severe) COPD. The study 

design of COPDGene has been reported previously (Regan et al., 2010). Briefly the subjects 

are included between the ages of 45 and 80 with at least a 10 pack-year smoking history. 

Exclusion criteria includes pregnancy, history of other lung disease except asthma, prior 

lobectomy or lung volume reduction surgery, active cancer undergoing treatment, or known 

or suspected lung cancer. We restrict our analysis to the NHW population, which includes 

6678 individuals after data cleaning and exclusions. Details concerning genotyping, quality 

control, and imputation are posted on the COPDGene website (http://www.copdgene.org).

We exclude SNPs that have MAF< 0.01 and Hardy-Weinberg Equilibrium (HWE) p-value< 

10−8 using PLINK (Purcell et al., 2007). Only those SNPs on the autosomes are used for 

heritability estimation by the software package Genome-wide Complex Trait Analysis 

(GCTA) (Yang et al., 2011a) (Table 2). Spirometry measures of lung function are performed 

before and after the inhalation of 180mcg (2 puffs) of albuterol. Pulmonary function 

measurements are collected according to the American Thoracic Society guidelines (Miller 

et al., 2005). Percent predicted values for FEV1 are calculated using equations of Hankinson 
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and colleagues (Hankinson et al., 1999). FEV1 and FEV1/FVC, both measurements of lung 

function, are used to diagnose and gauge severity of disease. Volumetric chest CT 

acquisitions are obtained at full inspiration (200 mAs), and at the end of normal expiration 

(50 mAs). Quantitative image analysis to calculate percent emphysema is performed using 

3D SLICER (http://www.slicer.org/). Percent emphysema, i.e., lung destructions that can 

lead to decreased lung function, is estimated from using the percent below −950HU on chest 

CT scans.

We consider one representative example of combining three major endophenotypes of 

COPD: FEV1 (post bronchodilator), FEV1/FVC and percent of Emphysema (Table 2). From 

Table 2 we can see that this is not a scenario where we expect MaxH to do very well;  is 

barely bigger than h2 for FEV1, and the |rp – rg| are all small. Results using only FEV1 and 

FEV1/FVC are qualitatively similar (not shown). Linear regression analyses of each 

individual phenotype and the combined phenotypes were adjusted for age, gender, height, 

pack-years, and the first five genetic ancestry variables estimated by the software 

EIGENSTRAT (Price et al., 2006). The standardized residuals for FEV1, FEV1/FVC, and 

log-transformed emphysema are used for analysis. Univariate genome-wide association 

analyses are performed using PLINK (Purcell et al., 2007) and multivariate analyses are 

performed using the Mendel software (Lange et al., 2013). Very few SNPs reached genome-

wide significant level of 5 × 10−8. For illustration, SNPs passing the threshold 5 × 10−7 and 

the corresponding gene information are shown in Table 3. Detailed Manhattan plots are 

shown in the Supplementary Figure S4. All results are adjusted for genomic control factor 

(in addition to first five genetic ancestry variables estimated using principal components).

Table 3 reports the significant results from PC and MaxH as well as multivariate regression, 

and Multiphen (O'Reilly et al., 2012). Full genome-wide association results for the 

individual phenotypes are presented in separate publications (Lutz et al and Cho et al, in 

preparation). SNPs in three loci, FAM13A (Chr 4) (Cho et al., 2010), HHIP (Chr 4) (Pillai et 

al., 2009), and CHRNA3/CHRNA5/AGPHD1 (Chr 15) (Hardin et al., 2012; Lambrechts et 

al., 2010; Pillai et al., 2009) have been previously reported, and well-replicated, as 

associated with COPD disease status. SNPs at all of these loci are associated with MaxH, 

but PC, multivariate regression, and Multiphen test failed to detect the FAM13A region. 

Multiphen also fail to detect HHIP. All four methods confirmed the loci on Chr 15. Three 

other loci, TGFB2 (Chr 1) (Soler Artigas et al., 2011), AGER (Chr6) (Hancock et al., 2010; 

Repapi et al., 2010), and MMP12 (Chr 11) (Hunninghake et al., 2009; Korytina et al., 2008) 

have previously shown weaker association results in COPD GWAS. PC and MaxH found 

the SNP at MMP12 significant, but the multivariate regression and Multiphen do not. All 

methods in Table 3 except MaxH find AGER significant. Only the multivariate method find 

TGFB2. The final locus PTPRM, found only by the multivariate method, has not previously 

been reported and is of uncertain validity. Although MaxH does not find the most loci (4 

versus 6 for multivariate regression), it is the only approach to find all of the confirmed loci. 

Further we judge its performance better than PC because PC failed to find FAM13A.
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4 Discussion

In order to discover novel genetic disease variants, multiple correlated phenotypes are 

frequently used in genetic association studies with the goal of improving power. One 

strategy uses a linear combination of the traits. The first PC derived trait is the linear 

combination of individual traits that accounts for the maximum phenotypic variance. In this 

paper, we propose an alternate dimension reduction scheme, i.e., a linear combination of the 

phenotypes that maximizes the heritability (MaxH) of any linear combination of the traits. In 

contrast to the first PC, the maximized heritability of this linear combination translates into 

improved power for association testing, because the coefficients are chosen to maximize the 

genetic variance while minimizing the residual variance. We compare several univariate and 

multivariate methods using both simulated and real data. We also show that a multivariate 

approach using all T phenotypes has better power than either univariate approach, first PC or 

MaxH, but depending on the parameters using a smaller subset of traits may do almost as 

well. Aschard et al. (2014) extends the single PC approach by including multiple PCs of the 

phenotypic matrix in a multivariate regression, and shows that using all T PCs is equivalent 

to multivariate regression using the original T traits. It is easy to see that using all the MaxH 

PCs in a multivariate analysis is essentially equivalent to the multivariate analysis using the 

original traits because both of the PC approaches are full rank linear transformations of the Y 
(assuming Vg and Vp are both of full rank), and a multivariate analysis is invariant to linear 

transformations. However multivariate regression is usually computationally intensive and 

the power gain compared to other approaches depends upon unknown effects and 

assumptions (Korte et al., 2012; Schifano et al., 2013). In fact in a simulation study of Suo et 

al. (2013), multivariate analysis of analysis of variance (MANOVA) performs the worst 

compared to PCA and single phenotype approach.

We approximate power analytically as a simple function of the maximized heritability, given 

the model parameters. The improvement in maximizing heritability relative to individual 

trait heritability depends on the configuration of the phenotypic and genotypic correlation 

coefficients rp and rg respectively, between pairs of phenotypes. Given a data set of multiple 

phenotypes and SNPs from a GWAS platform, one can straightforwardly estimate the 

necessary parameters, Vg and Vp, in order to calculate maximized heritability for any subset 

of the T phenotypes. When rp and rg are fixed and estimated for the full set of T phenotypes, 

by definition the maximized heritability always occurs when using the full set of T 

phenotypes.

Our theory assumes that the SNP effects being tested are consistent with the polygenic 

model. This assumption makes power calculations easy, but of course, it may not be correct. 

However, when Vg and Vp are estimated we assume no major gene effects, only zero mean 

polygenic effects. If there are major gene effects for any trait, they should make a major 

contribution to the estimated Vg, thus enhancing the power of MaxH. This point is illustrated 

in Figure S3 which depicts testing polygenic effects which are not selected from the 

assumed polygenic distribution. Figure S3 shows that MaxH has good power when testing 

SNPs effects with very different pleiotropy. This is because the causal SNPs are assumed to 

have zero means and the the sparse areas in Figure S3 tend to be further from the origin than 

the many of the causal SNPs. The relationships between rp and rg and the individual 
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phenotypic heritabilities can be used to infer which combined phenotypes will give larger 

maximized heritabilities. Our data example illustrates that even if the maximized heritability 

is only slightly higher than individual trait heritability, MaxH can still do well at picking up 

established loci. MaxH is the best way to identify SNPs associated with at least one 

phenotype. If a significant SNP is identified using MaxH, one should use other methods, e.g. 

Stephens (2013), to look for direct or indirect effects and to determine which phenotypes are 

directly associated.

Our method requires the estimation of the parameters once, then the combined phenotype 

can be used as a single trait in the standard GWAS analysis. The computational cost is 

relatively the same as the standard GWAS analysis. In practice, combining too many 

phenotypes may hurt the heritability and power, as the variance matrices that have to be 

estimated become too large. Large sample sizes are needed in order to accurately estimate 

Vg and to find the correct linear combination. In real data analysis, population substructure 

and environmental factors can inflate the estimation of Vg (Browning and Browning, 2011). 

For COPDGene data example, we employ strict QC that were suggested by Yang et al. 

(2011a) to minimize the potential inflation. Detailed discussions can be found in paper Zhou 

et al. (2013). Specifically, the proportion of estimated heritability attributed to population 

substructure across the whole genome is less than 1%. In controlling the effects of 

population substructure for association testing, we use both PCs calculated by 

EIGENSTRAT (Price et al., 2006) and genomic inflation factor (Yang et al., 2011b) to 

adjust phenotypes and test statistics. EIGENSTRAT generates PCs using only the 

information from genetic relationship matrix. For MaxH, we use both phenotypic and 

genetic relationship matrix to generate PCs and estimate MaxH phenotype. There might be 

more potential for bias. However, the PC's from EIGENSTRAT are PCs of genetic 

relationship matrix, which are different from the PC's of the heritability matrix. They 

therefore are still valid to be used in MaxH setting for population substructure adjustment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Maximized heritability as a function of genotypic and phenotypic correlation.
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Figure 2. 
Maximized heritability as a function of the number of phenotypes. Left two plots show the 

cases when rg > rp = 0.4; right two plots show the cases when rg < rp = 0.8. Upper two plots 

show the situation when the combine phenotypes have the same heritability (h2 = 0.4 and k 

= 1) while fixing rp and varying rg. The lower two show the situation when heritabilities of 

combined phenotypes drop as a factor of k (h2 = 0.4 and k < 1) while fixing both rg and rp.
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Figure 3. 
Proportion of 100 SNPs with empirical power greater than 0.8 as a function of rg and rp 

using phenotype of first PC from MaxH and PCA method. *Association analysis was 

performed using both single phenotypes and used Bonferroni correction to adjusted for extra 

tests, i.e., 2.5 × 10−4.

Zhou et al. Page 18

Hum Hered. Author manuscript; available in PMC 2016 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
100 SNPs’ empirical power as a function of effects sizes of both traits, when rp = 0.8 and rg 

= 0.7. Gray scale represents the scale of power, the darker the higher power.
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Table 1

Empirical power for a single major locus in the presence of polygenic variance are shown when using MaxH, 

PC phenotypes, and two single phenotypes (upper panel). Estimated and predicated MaxH phenotype's 

heritabilities are shown in the lower panel. Both empirical power and estimated heritabilities are assessed 

when rg and rp are known and when rg and rp are unknown.

a b c

rg = 0.9, rp = 0.4 rg = 0.7, rp = 0.8 rg = 0.1, rp = 0.5

Power

rp and rg Known
MaxH 0.716 MaxH 0.780 MaxH 0.796

PCA 0.716 PCA 0.692 PCA 0.652

rp and rg Estimated
MaxH 0.706 MaxH 0.748 MaxH 0.792

PCA 0.706 PCA 0.704 PCA 0.644

Single Trait
Trait 1 0.630 Trait 1 0.664 Trait 1 0.664

Trait 2 0.638 Trait 2 0.672 Trait 2 0.668

MaxH Heritablity

Predicted 0.54 0.60 0.72

rp and rg Known 0.506(0.049) 0.566(0.113) 0.682(0.035)

rp and rg Estimated 0.509(0.049) 0.573(0.110) 0.676(0.035)
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Table 2

Heritability estimates are listed on the diagonal. Phenotypic rp (upper diagonal) and genotypic rg (lower 

diagonal) correlations are listed on the off-diagonal. (MaxH = –0.892FEV1-0.349FEV1/FVC

+0.283log(pctEmph); PCA=–0.583FEV1-0.631FEV1/FVC +0.511log(pctEmph))

FEV1 FEV1/FVC log(pctEmph) MaxH PCA

FEV1 0.383 0.837 −0.440 - -

FEV1/FVC 0.882 0.372 −0.637 - -

log(pctEmph) −0.623 −0.814 0.283 - -

MaxH - - 0.395 -

PCA - - - 0.390
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