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Abstract

Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing
power to detect causal genetic variants. One approach involves assessing the relationship between
each phenotype and each single nucleotide polymorphism (SNP) individually and using a
Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a
multivariate regression or a dimension reduction technique, such as principal component analysis
(PCA), and test for the association with the principal components (PC) of the phenotypes rather
than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to
maximize heritability at individual SNPs, in this paper, we propose to construct a maximally
heritable phenotype (MaxH) by taking advantage of the estimated total heritability and co-
heritability. The heritability and co-heritability only need to be estimated once, therefore our
method is applicable to genome-wide scans. MaxH phenotype is a linear combination of the
individual phenotypes with increased heritability and power over the phenotypes being combined.
Simulations show that the heritability and power achieved agree well with the theory for large
samples and two phenotypes. We compare our approach with commonly used methods and assess
both the heritability and the power of the MaxH phenotype. Moreover we provide suggestions for
how to choose the phenotypes for combination. An application of our approach to a COPD
genome-wide association study shows the practical relevance.
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1 Introduction

Complex diseases are often assessed using multiple correlated phenotypes. These
phenotypes, sometimes called “endophenotypes”, are heritable predicators of disease status.
A standard approach to analyze multiple phenotypes is to consider each phenotype
separately, but many suggestions have been made for combining the phenotypes in some
way with the goal of increasing power, or elucidating disease mechanisms. A multivariate
regression strategy is straightforward, but computationally intensive and the power of the
approach compared to other approaches depends upon unknown effects (Korte et al., 2012;
Schifano et al., 2013). Other strategies use linear combinations of the phenotypes for
analysis. Principal component approach (PCA) generates linear combinations through
maximizing phenotypic variances (Avery et al., 2011; Karasik et al., 2004). Multiphen
(O'Reilly et al., 2012) takes the single SNP as the outcome, multiple phenotypes as the
predictors and tests the association between the linear combination of phenotypes and single
SNP by ordinal regression. Here we propose a linear combination of the phenotypes that
maximizes the total heritability, estimated from a sample of unrelated individuals (Yang et
al., 2010); as such our approach is suitable for application to a genome-wide analysis
because the linear combination is selected only once, and can be applied to all SNPs on the
GWAS chip. The increased heritability of the phenotype translates into improved power for
association testing. In contrast, the heritability and the consequent power of the first
principal component can be much lower, depending on the genetic parameters (Aschard et
al., 2014).

In the linkage era, Ott and Rabinowitz (1999) introduced the approach of incorporating
phenotypes into a linear combination with maximized heritability and increased power of
locating genes in the context of pedigrees and the presence of pleiotropy. It also has been
integrated into a family-based association test for repeated measure analysis by Lange et al.
(2004). Klei et al. (2008) first applied it to association studies with independent samples.
Their approach, like Lange's (Lange et al., 2004) focused on the notion of optimizing the
contribution of a single genetic variant to phenotypic variance which is a fraction of the total
heritability of the individual trait. Both Lange's (Lange et al., 2004) and Klei's (Klei et al.,
2008) methods estimated the appropriate coefficients for each genetic variant separately. For
family trios, Lange et. al. (Lange et al., 2004) recommended using the non-informative
portion of the family data to estimate this quantity as it is independent of the remaining
sample. In population studies, Klei et al. (2008) explored a method of sample splitting and
cross validation to determine these coefficients from a training set and then test for
association using the remainder of the sample. The method works well for individual SNPs,
but is not practical for a genome-wide association study (GWAS). Our method differs from
Klei et al. (2008) and Lange et al. (2004) by globally estimating the total heritability of each
single phenotype and estimating genetic covariances of pairs of phenotypes, which only
need to be performed once. The combined phenotype (MaxH) is used to test all SNPs.
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We compare our method with (1) single phenotype tests adjusting for multiple comparison;
(2) univariate test using the first PC of PCA (Avery et al., 2011; Karasik et al., 2004)
method; (3) Multiphen (O'Reilly et al., 2012), (4) multivariate regression using Mendel
(Lange et al., 2013). Method (2) and (3) use the linear combination of the phenotypes and
tests the association through linear regression. Mendel builds upon multivariate regression.
It is a likelihood based method using both score and likelihood ratio tests (LRT) for
association testing. Recent work from Aschard et al. (2014) shows that testing only the top
PCs often has low power, whereas combining signals across all PCs can have greater power.
We therefore compared MaxH with multivariate regression using multiple PC phenotypes.
Through simulations and real examples, we find our approach proved to have higher power
for testing SNPs explaining only a small fraction of the total heritability compared to other
univariate association methods.

In the following sections, we first present the method of combining multiple phenotypes
through maximizing total heritability and show how power can be approximated analytically
for univariate regression given the phenotypic and genotypic variance matrix. In the results
section, we provide simple examples illustrate how the heritability changes as a function of
the number of phenotypes combined, as well as the impact of missing data. We also provide
simulations to show the impact of estimating heritability on power. We use a data example
and simulations to compare MaxH with the other approach described above.

2 Material and Method

2.1 Integration of Phenotypes

Let m be the unknown number of independent causal loci, indexed by k, n be the number of
individuals, indexed by i, and T be the number of phenotypes, indexed by t. In the absence
of any covariates or major gene effects, each phenotype is assumed to have the standard
polygenic model (Falconer et al., 1981), given by

m
Yo =Mt D QpTritey
k=1 (1)

=Mt +Gti+E,

where vy is the tth phenotypic value for the ith individual; i is the mean of the phenotype;
Xki 1S the standardized minor allele count at locus k of individual i, ay is the additive allelic

effect of locus k on phenotype t, gm:z:::latkzm is the total additive genetic effect of
individual i's phenotype t, and the g; are the residual effects. We treat ay as random
variables independent of the xy;s and of each other, with zero means and common variances
and covariances, so that

E(gu)= 0
Var (gu)= oy
Cov (grisgy;) = oy

= Oat0u Py/>
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where 05 =V ar (Z::latkl'ki) is the total additive genetic variance and o, is the
covariance between the additive effects for phenotypes t and t/, average over the k causal
loci. This o, can be viewed as the average pleiotropy. Finally, assuming the genetic and
environmental effects are independent we have

Vp=Var (y;) =Var (gi+e) =Vy+Ve, ()

where yj, gj, and g are the length T vectors of phenotypes, genetic and environment
components for the ith individual, and

o e o
ay alT
V, =Var ()= R
aTl .. o'aT
o2 ... o 3
€1 “r
Ve =Var(e;)= .-
o s o2
T1 T

Note that this model also implies
Cov (yti> yti') = Gy Ugt
Cov (ysi,yp,) = G0

'O att!

where the Gjj s are the genetic relationship coefficients for individuals i and i’. Elements of
the n x n genetic relationship matrix, G, can be determined from pedigree information
(Lange, 2002) or estimated from GWAS data (Yang et al., 2010). This multivariate
polygenic model is discussed in Korte et al. (2012) and Lee et al. (2012).

Narrow sense heritability of the tth phenotype is defined as the proportion of the additive
genetic variance among the total phenotypic variance, i.e.,

o2

h2: at
t 2 2
U(lt +0’€f,

To integrate multiple phenotypes, our goal is to find a vector of coefficients | such that YI
has the maximum heritability among all such linear combinations of the phenotypes, where
Y = (Y1,...,.y7 ) isan x T matrix of the collection of all T phenotypes. The heritability of any
linear combination of phenotypes YI, can be expressed as the Rayleigh quotient (Horn and
Johnson, 1985),

'Vl

vl

hi=

4

Henceforth we denote YI with | chosen to maximize heritability as the set of MaxH
phenotypes. The same optimization problem (4) has also been encountered in Fisher's linear
discriminant analysis (LDA) for classification (Witten and Tibshirani, 2011). Detailed
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explanation for optimizing equation (4) can be found in Supplementary Material and the

notes (Welling, 2005). Briefly, one needs to eigendecompose the matrix Vg% 1/1;1‘/9% and the

desired optimization solution is to find the biggest eigenvalue, i.e., maximized heritability »?
and the corresponding eigenvector w.

The above calculation assumes the parameters in Vi, and V are known; in reality we need to
estimate them. Historically V|, and V were estimated using data on pedigrees with known
genetic relationships, i.e., G. More recent work shows how to approximate G and estimate
Vp and Vg from GWAS data on population based samples (Yang et al., 2010). With G
treated as known, (Vg, Vp) can be estimated using Maximum Likelihood (ML), Restricted
ML (REML) or Method of Moments (MOM) approaches. When the sample size is large, the
maximization is not trivial and the computation is costly. We used ML for the application
example, and recommend that ML or REML be used in practice. For efficiency of
computation, we used the much simpler MOM approach to estimate Vg and Vp, in the
simulations (Lange, 2002). We summarize the steps needed to compute the MaxH
phenotype in the Supplementary Material.

2.2 Association Testing and Power Approximation

Thus far, we have focused on maximizing heritability in order to integrate multiple
phenotypes. Now we consider testing and power for individual SNPs using MaxH
phenotype. To test the hypothesis of no association for a single variant, we include a major
gene effect and use the “mixed model” (Korte et al., 2012)

Yt =t +0:T0i+geit+€ ()

where Xj is the standardized additive coding for the SNP we wish to test and b = (by,...,bt)
is the vector of genetic effects for the T phenotypes. Letting Y| = (y);) = Yl denote the n-
vector of MaxH phenotypes, for each element, we have

yu=l yi=p+bzoi+gu+ey

where yi = (Y1i, Y2i.-..¥4i) is individual i's T phenotypic measurments, by = 10, yy =1
(Hg,-mM7), 915 = 195, and &; = 5. Hence

E(yu)= w+b
Var (y;) = 'Vl

TotestHg: by =1 =0, a Wald test is given by

where p, is the ordinary least squares (OLS) estimator of by and SE is its standard error under
the regression model (Klei et al., 2008). In the calculation of SE(b) we have neglected the
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correlation of subjects’ phenotypes generated by the polygenic background, since in a
population based sample, the genetic relationships are small in practice. But the correlations
are considered when generating MaxH phenotypes. Simulation example shows that the type
| error rate is protected.

The power of any test to reject Hg : by = 110 = 0 depends not only on the test statistic, but also
on how b = (by,...,b7) is chosen. The vector b can be chosen arbitrarily, but if the polygenic
model is correct, in a GWAS setting with polygenic effects, it is natural to consider testing
SNPs whose genetic effects are consistent with the polygenic model, i.e., b ~ c.#" (0, V),
where c is a scale parameter chosen to determine the heritability of the major gene effect.
When including a major gene effect, the overall genetic variance of a linear combination

becomes bl?+l' Var (g;) 1. Inorder to maintain a fixed overall heritability (Equation (4)), we

choose the major gene effect to satisfy, b?:ch'Vgl, where [ Vgl is again the total genetic
variance including the major gene effect; this implies that by explains a fraction c? of the
total heritability.

The Wald test statistic W2 in equation (6) follows a chi-square distribution with 1 degree of

freedom, i.e., X (8 1) with non-centrality parameter (NCP)

2 th

2=n—81=L %)
1-— z:2hl2

As heritability 52 increases, the NCP and the power of the test increases, as does the
asymptotic power. Power gain is heavily dependent on the gain of heritability. For the
MaxH phenotype, the structure of the genotypic and phenotypic variance-covariance matrix
and the number of phenotypes combined determines the heritability. In practice V, and Vg
must be estimated, and sampling error may decrease power if too many phenotypes are
added. This is considered later, as well as when b comes from arbitrary distributions.

3.1 Combining Phenotypes with Vg and V, known

First we consider combining the simple case of two phenotypes with equal heritabilities,
which are standardized with mean zero and variance one. The genotypic and phenotypic
variance-covariance matrices take the form,

where rg and rp, are the genotypic and phenotypic correlation coefficients. Note that the
phenotypic variance components are partitioned into genetic and environmental
components, i.e., Vp = Vg + Ve, thus rp = rgh2 + Ie (1 — h?), where re is environmental
correlation coefficient. Since -1 < r. < 1, it follows that the genotypic and phenotypic
correlation coefficients have the constraints,
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rp > n? — 1+h27*g and 7, < h27‘g—|—1 — R

To maximize equation (4), the eigensystem equation S(2) in the Supplementary Material has

eigenvectors, (1, 1) and (1, —1), with eigenvalues i_jihz and t_jzh?. MaxH is obtained by
picking the largest eigenvalue and corresponding eigenvector, subject to the constraint in

(8), which also guarantees that the maximized heritability 7 is bounded in (0, 1).

In this simple example where the heritability of two phenotypes are the same, the
eigenvectors of the PCA approach are the same as the MaxH approach and the combined
phenotypes are Y; + Y, and Y1 — Yy, but with different eigenvalues. The eigenvalues of the
two PCs are 1 £ r,. When rg > rp > 0, both MaxH and the first PC phenotypes are Y; + Y».
However, when ry > rg > 0, MaxH takes the combined phenotype which maximizes the
heritability, i.e., Y1 — Yo, while PCA takes the combined phenotype which maximizes the
phenotypic variance, i.e., Y1 + Y. The selection of the maximal PC depends only on the
sign of rp. Thus the first PC from PCA approach is always Y; + Y3 for r, > 0, but it is Y1 -
Y, from MaxH approach when rp > rg > 0. Aschard et al. (2014) obtained a similar result
using a slightly different model. For T = 2, their model is equivalent to ours with the major
gene Xg, except that the polygenic component g;j is omitted and the residual variance
covariance matrix has positive covariance v. The single major gene effect explains all of the
heritability, and as a result ry = +1 if by and b, have the same sign or rq = -1 otherwise. We
consider a range of possible rq indicating a range of pleiotropy, based on which, we integrate
phenotypes that maximize heritability.

The increase of maximized heritability represents an increase in power. Figure 1 shows the
maximized heritability as a function of r, and rg. To develop intuition for how the MaxH
and its heritability behaves, we consider the two extremes of pleiotropy. When rq equals
zero, i.e., there is no correlation between the coefficients of the genetic effects at the causal
loci, and no evidence for average pleiotropy. In this case, the phenotypic correlation is
proportional to the residual correlation. If rp > 0 the maximized heritability is h2/(1 - rp) and
the MaxH phenotype is Y1 — Y. Conversely, the first PC takes Y1 + Y». Intuitively we see
that the first PC maximizes the phenotypic (residual) covariance of the linear combination,
while MaxH minimizes the residual effects. A more specific example is, when ry = 0,
genetic component of the first phenotype is positive (non-zero), genetic component of the
second phenotype is zero, and environmental correlation is positive (i.e. r, > 0), MaxH (the
difference of the two single phenotypes) will not enhance the genetic signal, rather reduce
the residual variances. In the absence of any information about genetic effects at a particular
SNP, the phenotype with the smallest residual variance will be the best phenotype. So MaxH
will do better than PC. Now consider the other extreme where |rg| approaches 1, i.e., the
genetic effects for one phenotype predict perfectly the genetic effects for the second. In this
case, MaxH chooses the linear combination which maximizes the variance of the combined
genetic effects. The first PC continues to maximize the total phenotypic variance, and agrees
with the MaxH choice when |rg| approaches 1, because most of the phenotypic covariance is
in the genetic, not the residual component. Note that when rp, = rg, either linear combination
gives the same heritability as a single phenotype, and is also equivalent to PC. When rp and

Hum Hered. Author manuscript; available in PMC 2016 June 20.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhou et al.

Page 8

rq have the same magnitude, but different signs, we can expect MaxH to do much better than
the case when rp = rg.

When combining more than two phenotypes, we extend the above design where pairwise
correlations are the same, both phenotypic and genotypic, but heritabilities differ, i.e.,

1 krg . ktrg I
kry k2 e kg rp 1 p
Vg:h2 s Vol e e e |
k:t+1rg coo R20-1) thflrg rp, o 1 om
k:trg . k2t*1rg L2t Ty Ty 1

where 0 < k < 1. For simplicity, we consider the situation when genetic and phenotypic
correlations are both positive. In Figure 2, we show the maximized heritability as a function
of the number of phenotypes combined while varying the value of rg, rp, and k. For all four
cases, we set h? = 0.4. In Figure 2a and Figure 2b we set k = 1, i.e., all combined phenotypes
have the same heritability as 40%. When rg > r, = 0.4 (Figure 2a), both approaches behave
the same and the heritability increases as the number of phenotypes combined increases. In
Figure 2c and Figure 2d we vary k (0 < k < 1) so that phenotypes with lower heritabilities
are added in. Both figures (Figure 2c and Figure 2d) show PC loses heritability when adding
phenotypes with lower heritabilities. This pattern exists even when heritabilities of
phenotypes combined are fixed (Figure 2b). When rq < rp, adding more phenotypes with
lower heritabilities can increase the heritability of MaxH more dramatically than combing
phenotypes when rg > 1, and combining more than two phenotypes does not provide a
noticeable advantage for MaxH.

3.2 Testing a Single Locus in the Presence of Polygenic Variance

Here we estimate power for three settings when combining two phenotypes with the same
heritability (h? = 0.4). First we assume Vg and V, are known for the purpose of calculating
the MaxH phenotype, then we relax that assumption. The test statistic of association and its
standard error are calculated as in Section 2.2. We consider three cases, a) ryg > rp (i.e., rq =
0.9,rp=04);b)rg<rp(ie, rg=07,rp=0.8);andc) rg<rp(i.e,, ry=0.1,rp=0.5). We
simulate phenotypes based on polygenic model (1) and (3). Genotypes are taken from
genome-wide SNP data of COPDGene cohort of Non-Hispanic White (NHW) population.
Only SNPs (51,428 SNPs in total) from Chromosome 1 were used for simplicity.

Our purpose is to show that power increase is determined by the increase of the maximized
heritability (Equation (7) and Figure 1), and that the magnitude of the heritability increase is
a surrogate of power increase. Phenotypes were simulated based on the linear model (1).
One hundred SNPs on Chromosome 1 were randomly chosen as the causal SNPs for
polygenic background. Five hundred replicates, each with 3000 individuals and T = 2 were
simulated. Our approach was then compared to the single trait association analysis and the
PC approach. We consider testing only one of the 100 causal SNPs with effects chosen as
described in Section 2.2 with ¢ = 2%. A different causal SNP is selected for each of the 500
replicates. Thus we compute average power for a SNP explaining 2% of the heritability.
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After generating the single phenotypes, MaxH phenotype and the first PC, we assess
empirical type | error rate through testing all the SNPs on chromosome 2 from COPDGene
NHW population which has no causal SNPs. The estimated type | error rate is well
maintained (0.048) at the significant level of 0.05.

The results are shown in Table 1. The heritability of each phenotype is 0.4, and the
maximized heritabilities predicted from our theory are given in lower panel of Table 1. As
predicted from our previous results in the Section 3.1, MaxH and the first PC give nearly
identical results when ry is large because they select identical linear combinations. Even a
modest reduction of rg to 0.7 with an increase of rp to 0.8 shows substantial impact on the
relative power of MaxH and PC, with MaxH doing better. For the third case, i.e., lower
pleiotropy, the power of MaxH is even higher, while PC does worse than single phenotype
case. The ordering of the power of MaxH in the three scenarios can be predicted from the
order of the MaxH's heritability. The loss of power due to estimating ry is negligible for case
a) and c), and about 5% for case b). This is likely due to the fact that ry and rp can be
estimated well enough to choose the correct linear combination. The estimates of all the
heritabilities tend to be lower than predicted by less than 10% (Table 1). The order is
preserved. As we might expect, the power loss for PC is negligible when estimating the
variance components, as it does not rely on the decomposition of V,, into genetic and
residual components. For other values of hZ and T , the plots such as Figures 1 and 2 can be
used as guidance for choosing which phenotypes to combine once rq and ry are estimated.
Further studies are needed to determine loss of power for larger T and smaller n.

3.3 Empirical Power for Testing Small Effects

The 100 previously chosen SNPs from Chromosome 1 are used here as causal SNPs with
each SNP explaining 1% of the total heritability. SNPs effects are generated from a bivariate
normal distribution with mean zero and variance V. Simulations are performed for a range
of rp and rq. Five hundred pairs of the phenotypes are simulated and tested against each of
the 100 SNPs. We use the same strategy to estimate type | error rate by using all the SNPs
from chromosome 2 and all the MaxH phenotypes. Our empirical type | error is well
maintained at the significant level of 5 x 107 (i.e., 4.9 x 1074).

We compare several methods based on the proportion of the 100 causal SNPs that have
power over 80%, shown as heat maps in Figure 3 (univariate analysis) and Figure S2
(multivariate analysis). Figure 3 shows the results for MaxH and PCA. It also shows the
association analysis using original single phenotypes adjusting for multiple testing. The
MaxH approach generally performs the best among univariate association analysis. When rg
= rp, MaxH perform poorly which is consistent with the pattern of heritability maximization
(Figure 1). With certain configurations of genetic and phenotypic correlations, the MaxH
method can do as well as using multivariate phenotypes (Figure S2). Note that one could
also perform a multivariate analysis using multiple phenotypes generated from our method,
but it is equivalent to using original multiple phenotypes or generated from PCA method
(see Discussion). We consider situation when rq = 0.7 and rp = 0.8 to examine the relation
between effect sizes and power (Figure 4). In Figure 4, we plot the effect sizes of the 100
causal SNPs. The power for such SNPs is shown in gray scale. The pattern of black dots
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show that using a single phenotype (Y1 or Y,) for testing, power is the best for the loci
which have the biggest effect sizes (|by] or |by|) for the corresponding phenotypes. Using PC
approach, only the loci whose effects are large on both phenotypes have good power, i.e.,
intersection of the black points in the bottom two plots. However, using the MaxH
phenotype, the set of loci having good power is when the effect sizes follows the global
genetic distribution. Especially when both |b4| and |bo| are small and have opposite sign,
MaxH is the only method that reveal them with very high power. However MaxH performs
poorly along the diagonal stripe, i.e., when by = by, no matter the magnitude of |b4| or |by].
Using our MaxH method, 40% of the 100 loci have power over 80%. Only about 20% of the
SNPs have power over 80% when using PC and single phenotypes.

Although the fixed effects by and b, are obtained from .4" (0, ¢V ) where ¢ = 0.01, they
cover a broad region from —0.15 to 0.15. Our assumption about pleiotropy is that the effects
of the polygenic components are drawn from a multivariate normal distribution with mean
zero and variance covariance matrix V. This does not imply equal pleiotropy for all SNPs
unless Vg has rank one. This is illustrated in Figure 4 where we plot the genetic effects for a
set if 200 SNPs drawn from the polygenic distribution with mean zero, variances 0.4 and
correlation of 0.7. As this figure illustrates, the extent of pleiotropy differs considerably
among the 100 SNPs, even though ry is relatively high. It is natural to ask what would the
power be for major SNP effects which are not drawn from this distribution, i.e., effects in
the upper left and lower right corner. Intuitively we would expect that the genetic effects on
the diagonal corners would be easier to detect since they are further from the origin, and this
is indeed the case. Supplementary Figure S3 illustrates this point by drawing SNPs from a
uniform distribution on the plane. The superiority of MaxH over PCA is clear (Figure S3).

3.4 GWAS Analysis in COPDGene NWH Population

We apply our method to COPDGene, a large case-control sample of well-characterized
smokers from a genome-wide association study of respiratory disease. It includes 10,192
non-hispanic white (NHW) and African American (AA) current and former smokers with
airflow obstruction ranging from none to GOLD stage 4 (very severe) COPD. The study
design of COPDGene has been reported previously (Regan et al., 2010). Briefly the subjects
are included between the ages of 45 and 80 with at least a 10 pack-year smoking history.
Exclusion criteria includes pregnancy, history of other lung disease except asthma, prior
lobectomy or lung volume reduction surgery, active cancer undergoing treatment, or known
or suspected lung cancer. We restrict our analysis to the NHW population, which includes
6678 individuals after data cleaning and exclusions. Details concerning genotyping, quality
control, and imputation are posted on the COPDGene website (http://www.copdgene.org).

We exclude SNPs that have MAF< 0.01 and Hardy-Weinberg Equilibrium (HWE) p-value<
1078 using PLINK (Purcell et al., 2007). Only those SNPs on the autosomes are used for
heritability estimation by the software package Genome-wide Complex Trait Analysis
(GCTA) (Yang et al., 2011a) (Table 2). Spirometry measures of lung function are performed
before and after the inhalation of 180mcg (2 puffs) of albuterol. Pulmonary function
measurements are collected according to the American Thoracic Society guidelines (Miller
et al., 2005). Percent predicted values for FEV; are calculated using equations of Hankinson
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and colleagues (Hankinson et al., 1999). FEV; and FEV1/FVC, both measurements of lung
function, are used to diagnose and gauge severity of disease. Volumetric chest CT
acquisitions are obtained at full inspiration (200 mAs), and at the end of normal expiration
(50 mAs). Quantitative image analysis to calculate percent emphysema is performed using
3D SLICER (http://www.slicer.org/). Percent emphysema, i.e., lung destructions that can
lead to decreased lung function, is estimated from using the percent below —950HU on chest
CT scans.

We consider one representative example of combining three major endophenotypes of
COPD: FEV; (post bronchodilator), FEV1/FVC and percent of Emphysema (Table 2). From

Table 2 we can see that this is not a scenario where we expect MaxH to do very well; p? is
barely bigger than h? for FEVy, and the |rp — rg| are all small. Results using only FEV; and
FEV1/FVC are qualitatively similar (not shown). Linear regression analyses of each
individual phenotype and the combined phenotypes were adjusted for age, gender, height,
pack-years, and the first five genetic ancestry variables estimated by the software
EIGENSTRAT (Price et al., 2006). The standardized residuals for FEV1, FEV1/FVC, and
log-transformed emphysema are used for analysis. Univariate genome-wide association
analyses are performed using PLINK (Purcell et al., 2007) and multivariate analyses are
performed using the Mendel software (Lange et al., 2013). Very few SNPs reached genome-
wide significant level of 5 x 1078, For illustration, SNPs passing the threshold 5 x 10~/ and
the corresponding gene information are shown in Table 3. Detailed Manhattan plots are
shown in the Supplementary Figure S4. All results are adjusted for genomic control factor
(in addition to first five genetic ancestry variables estimated using principal components).

Table 3 reports the significant results from PC and MaxH as well as multivariate regression,
and Multiphen (O'Reilly et al., 2012). Full genome-wide association results for the
individual phenotypes are presented in separate publications (Lutz et al and Cho et al, in
preparation). SNPs in three loci, FAM13A (Chr 4) (Cho et al., 2010), HHIP (Chr 4) (Pillai et
al., 2009), and CHRNA3/CHRNA5/AGPHD1 (Chr 15) (Hardin et al., 2012; Lambrechts et
al., 2010; Pillai et al., 2009) have been previously reported, and well-replicated, as
associated with COPD disease status. SNPs at all of these loci are associated with MaxH,
but PC, multivariate regression, and Multiphen test failed to detect the FAM13A region.
Multiphen also fail to detect HHIP. All four methods confirmed the loci on Chr 15. Three
other loci, TGFB2 (Chr 1) (Soler Artigas et al., 2011), AGER (Chr6) (Hancock et al., 2010;
Repapi et al., 2010), and MMP12 (Chr 11) (Hunninghake et al., 2009; Korytina et al., 2008)
have previously shown weaker association results in COPD GWAS. PC and MaxH found
the SNP at MMP12 significant, but the multivariate regression and Multiphen do not. All
methods in Table 3 except MaxH find AGER significant. Only the multivariate method find
TGFB2. The final locus PTPRM, found only by the multivariate method, has not previously
been reported and is of uncertain validity. Although MaxH does not find the most loci (4
versus 6 for multivariate regression), it is the only approach to find all of the confirmed loci.
Further we judge its performance better than PC because PC failed to find FAM13A.
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4 Discussion

In order to discover novel genetic disease variants, multiple correlated phenotypes are
frequently used in genetic association studies with the goal of improving power. One
strategy uses a linear combination of the traits. The first PC derived trait is the linear
combination of individual traits that accounts for the maximum phenotypic variance. In this
paper, we propose an alternate dimension reduction scheme, i.e., a linear combination of the
phenotypes that maximizes the heritability (MaxH) of any linear combination of the traits. In
contrast to the first PC, the maximized heritability of this linear combination translates into
improved power for association testing, because the coefficients are chosen to maximize the
genetic variance while minimizing the residual variance. We compare several univariate and
multivariate methods using both simulated and real data. We also show that a multivariate
approach using all T phenotypes has better power than either univariate approach, first PC or
MaxH, but depending on the parameters using a smaller subset of traits may do almost as
well. Aschard et al. (2014) extends the single PC approach by including multiple PCs of the
phenotypic matrix in a multivariate regression, and shows that using all T PCs is equivalent
to multivariate regression using the original T traits. It is easy to see that using all the MaxH
PCs in a multivariate analysis is essentially equivalent to the multivariate analysis using the
original traits because both of the PC approaches are full rank linear transformations of the Y
(assuming Vg and V, are both of full rank), and a multivariate analysis is invariant to linear
transformations. However multivariate regression is usually computationally intensive and
the power gain compared to other approaches depends upon unknown effects and
assumptions (Korte et al., 2012; Schifano et al., 2013). In fact in a simulation study of Suo et
al. (2013), multivariate analysis of analysis of variance (MANOVA) performs the worst
compared to PCA and single phenotype approach.

We approximate power analytically as a simple function of the maximized heritability, given
the model parameters. The improvement in maximizing heritability relative to individual
trait heritability depends on the configuration of the phenotypic and genotypic correlation
coefficients rp and rg respectively, between pairs of phenotypes. Given a data set of multiple
phenotypes and SNPs from a GWAS platform, one can straightforwardly estimate the
necessary parameters, Vq and Vp, in order to calculate maximized heritability for any subset
of the T phenotypes. When rp and rg are fixed and estimated for the full set of T phenotypes,
by definition the maximized heritability always occurs when using the full set of T
phenotypes.

Our theory assumes that the SNP effects being tested are consistent with the polygenic
model. This assumption makes power calculations easy, but of course, it may not be correct.
However, when Vg and V, are estimated we assume no major gene effects, only zero mean
polygenic effects. If there are major gene effects for any trait, they should make a major
contribution to the estimated Vg, thus enhancing the power of MaxH. This point is illustrated
in Figure S3 which depicts testing polygenic effects which are not selected from the
assumed polygenic distribution. Figure S3 shows that MaxH has good power when testing
SNPs effects with very different pleiotropy. This is because the causal SNPs are assumed to
have zero means and the the sparse areas in Figure S3 tend to be further from the origin than
the many of the causal SNPs. The relationships between r, and rq and the individual
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phenotypic heritabilities can be used to infer which combined phenotypes will give larger
maximized heritabilities. Our data example illustrates that even if the maximized heritability
is only slightly higher than individual trait heritability, MaxH can still do well at picking up
established loci. MaxH is the best way to identify SNPs associated with at least one
phenotype. If a significant SNP is identified using MaxH, one should use other methods, e.g.
Stephens (2013), to look for direct or indirect effects and to determine which phenotypes are
directly associated.

Our method requires the estimation of the parameters once, then the combined phenotype
can be used as a single trait in the standard GWAS analysis. The computational cost is
relatively the same as the standard GWAS analysis. In practice, combining too many
phenotypes may hurt the heritability and power, as the variance matrices that have to be
estimated become too large. Large sample sizes are needed in order to accurately estimate
Vg and to find the correct linear combination. In real data analysis, population substructure
and environmental factors can inflate the estimation of Vg (Browning and Browning, 2011).
For COPDGene data example, we employ strict QC that were suggested by Yang et al.
(2011a) to minimize the potential inflation. Detailed discussions can be found in paper Zhou
et al. (2013). Specifically, the proportion of estimated heritability attributed to population
substructure across the whole genome is less than 1%. In controlling the effects of
population substructure for association testing, we use both PCs calculated by
EIGENSTRAT (Price et al., 2006) and genomic inflation factor (Yang et al., 2011b) to
adjust phenotypes and test statistics. EIGENSTRAT generates PCs using only the
information from genetic relationship matrix. For MaxH, we use both phenotypic and
genetic relationship matrix to generate PCs and estimate MaxH phenotype. There might be
more potential for bias. However, the PC's from EIGENSTRAT are PCs of genetic
relationship matrix, which are different from the PC's of the heritability matrix. They
therefore are still valid to be used in MaxH setting for population substructure adjustment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Maximized heritability as a function of genotypic and phenotypic correlation.
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Figure 2.

Maximized heritability as a function of the number of phenotypes. Left two plots show the
cases when rg > rp = 0.4; right two plots show the cases when ry < rp = 0.8. Upper two plots
show the situation when the combine phenotypes have the same heritability (h? = 0.4 and k
= 1) while fixing rp and varying rg. The lower two show the situation when heritabilities of
combined phenotypes drop as a factor of k (h? = 0.4 and k < 1) while fixing both rgand rp.
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Figure 3.
Proportion of 100 SNPs with empirical power greater than 0.8 as a function of ry and rp

using phenotype of first PC from MaxH and PCA method. *Association analysis was
performed using both single phenotypes and used Bonferroni correction to adjusted for extra
tests, i.e., 2.5 x 1074,
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Figure4.

100 SNPs’ empirical power as a function of effects sizes of both traits, when rp = 0.8 and rg

= 0.7. Gray scale represents the scale of power, the darker the higher power.
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Empirical power for a single major locus in the presence of polygenic variance are shown when using MaxH,

PC phenotypes, and two single phenotypes (upper panel). Estimated and predicated MaxH phenotype's

heritabilities are shown in the lower panel. Both empirical power and estimated heritabilities are assessed
when rq and rp are known and when rq and rp are unknown.

a
rg= 0.9, fp= 0.4 rg= 0.7, fp= 0.8 rg= 0.1, rp= 0.5
Power

MaxH 0716 MaxH 0.780 MaxH 0.796
rp and ry Known

PCA  0.716 PCA 0.692 PCA  0.652

. MaxH 0706 MaxH 0.748 MaxH 0.792

rp and ry Estimated

PCA  0.706 PCA 0.704 PCA  0.644

Traitl 0630 Traitl 0.664 Traitl 0.664
Single Trait

Trait2 0.638 Trait2 0.672 Trait2 0.668

MaxH Heritablity

Predicted 0.54 0.60 0.72
rp and ry Known 0.506(0.049) 0.566(0.113) 0.682(0.035)
rpand ry Estimated  0.509(0.049)  0.573(0.110)  0.676(0.035)

Hum Hered. Author manuscript; available in PMC 2016 June 20.



Zhou et al. Page 21

Table 2

Heritability estimates are listed on the diagonal. Phenotypic rp, (upper diagonal) and genotypic rg (lower
diagonal) correlations are listed on the off-diagonal. (MaxH = -0.892FEV1-0.349FEV/FVC
+0.283log(pctEmph); PCA=-0.583FEV;-0.631FEV/FVC +0.511log(pctEmph))

1duosnue Joyiny 1duosnuen Joyiny 1duasnuen Joyiny

1duasnuen Joyiny

FEVJ/FVC log(pctEmph) MaxH PCA

FEV,
FEV, 0.383
FEV/FVC 0.882

log(pctEmph)  -0.623
MaxH

PCA

0.837 -0.440
0.372 -0.637
-0.814 0.283

0.395

0.390
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