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Abstract

Pulmonary X-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research 

and development has been motivated, in part, by the quest to sub-phenotype common chronic lung 

diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the 

main COPD research tools, disease biomarkers are being validated that go beyond anatomy and 

structure to include pulmonary functional measurements such as regional ventilation, perfusion 

and inflammation. In addition, there has also been a drive to improve spatial and contrast 

resolution while at the same time reducing or eliminating radiation exposure. Therefore, this 

review focuses on our evolving understanding of patient-relevant and clinically-important COPD 

endpoints and how current and emerging MRI and CT tools and measurements may be exploited 

for their identification, quantification and utilization. Since reviews of the imaging physics of 

pulmonary CT and MRI and reviews of other COPD imaging methods were previously published 

and well-summarized, we focus on the current clinical challenges in COPD and the potential of 

newly emerging MR and CT imaging measurements to address them. Here we summarize MRI 

and CT imaging methods and their clinical translation for generating reproducible and sensitive 

measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma 

morphology. The key clinical problems in COPD provide an important framework in which 
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pulmonary imaging needs to rapidly move in order to address the staggering burden, costs as well 

as the mortality and morbidity associated with COPD.

Keywords

phenotypes; pulmonary MRI; COPD; quantitative CT; dual energy CT; pulmonary ventilation and 
perfusion

INTRODUCTION -COPD MEASUREMENTS AND ENDPOINTS ARE 

URGENTLY NEEDED

Despite decades of research, therapies that modify chronic obstructive pulmonary disease 

(COPD) progression or mortality are lacking.1 Despite considerable efforts to discover and 

develop new COPD interventions, progress has been slow. This is in large part due to limited 

and suboptimal patient phenotyping that relies on spirometry measurements made at the 

mouth that cannot account for the regional and inter-subject variability of COPD. Moreover, 

while COPD is still diagnosed and classified on the basis of symptoms related to the 

presence of persistent airflow limitation,1 these measurements correlate weakly with 

important clinical outcomes.2

A wide variety of imaging methods may be used to study the pulmonary system, including 

those that rely on tissue absorption of x-ray radiation (chest x-ray and CT), radiofrequency 

stimulation (magnetic resonance imaging: MRI) or signals generated from injected or 

inhaled radioactive particles (simple gamma emission projection imaging, single photon 

emission tomography (SPECT) and Positron Emission Tomography (PET)) and inhaled or 

injected contrast agents. New insights into the basis for disease initiation and progression 

using these methods have the potential to break through the current conundrum, which is the 

fact that image acquisition and analysis tools are slow to be adopted because of a lack of 

meaningful interventions and yet the interventions are slow in coming because of a lack of 

understanding disease mechanisms and etiology. Therefore, as shown in Figure 1, we frame 

this review of CT and MRI measurements and phenotypes as potential solutions to the 

following major COPD problems: 1) COPD treatments are required that improve outcomes, 

not just symptoms, 2) a better understanding of COPD disease onset and mechanisms is 

urgently required in order to better design drugs targeted at underlying pathophysiology, 3) 

more sensitive measurements are required to better understand the links between ventilation, 

perfusion and inflammation, and, 4) better predictive measurements of COPD exacerbations 

and progression are critically needed. Here we summarize and compare MRI and CT tools 

and measurements of COPD because of their near-universal availability that makes their use 

in COPD multicenter clinical trials and COPD patient care, both practical and timely. Taken 

together, MRI and CT methods provide a way to identify the underlying pathologies 

associated with COPD and previous work has been summarized and previously reviewed3–5
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PULMONARY CT MEASUREMENTS OF COPD

CT Structural Measurements and Phenotypes

Computer-based methods6–9 for the objective quantitation of CT images are increasingly 

used in multi-center studies10–15 that aim to interrogate phenotype-genotype linkages and 

identify intermediary endpoints for the assessment of potential interventions. A cornerstone 

of this approach is the CT lung tissue attenuation or density mask that provides a way to 

estimate regional COPD-related emphysema. By empirically defining regional 

emphysematous lung using selected threshold tissue attenuation measurements (Hounsfield 

Unit: HU) at full inspiration (total lung capacity: TLC), one can count the number of voxels 

in the whole lung and express this measure. In this way, the percent of voxels reflecting 

emphysema can be expressed relative to the total volume of the lung or lung region.16–23 

The CT density mask is particularly useful in classifying mild/moderate and severe 

emphysema24,25 and has been used in the National Emphysema Treatment Trial (NETT) to 

identify subgroups of patients who show benefit from lung volume reduction surgery.26 In 

the left panel of Figure 2, (using Apollo software provided by VIDA Diagnostics, Coralville, 

IA, USA), the spatially-heterogeneous distribution of emphysema, shown in spheres and 

regional clustering (sphere size) is shown by lung lobe. Similarly, a density mask may be 

used on the expiratory dataset (RV or FRC) to identify regions of air trapping as shown in 

the middle panel of Figure 2. In both the inspiratory and expiratory images, airways may 

also be segmented and labeled9,27,28 using commercially-available software such that 

relationships can be determined between the airway path, airway remodeling features, and 

parenchymal destruction or peripheral airway closure. CT-based density metrics have been 

used in numerous large-scale studies12–15, producing a wealth of literature over the past 

several years. These measures have identified correspondence of quantitative CT measures 

of emphysema and air trapping to, for example: genotypes,29,30 left ventricular (LV) 

filling,31 physiologic measures,32,33 environmental smoke exposure in childhood as a risk 

factor for emphysema,34 predictors of bronchoreversibility,35 association of cigarette 

smoking with sub-clinical disease,36 and trapped gas in severe asthma.37 It is also important 

to note that in addition to tissue attenuation or density masks, texture analyses may be 

employed to evaluate clusters of emphysema such38 as estimated using low attenuating 

clusters. Image analysis methods based on such local feature patterns provide a way to 

objectively differentiate between these subtypes and some of these methods have better 

classification rates than expert radiologists39. So-called low attenuation clusters are visually 

obvious, correlating with histopathology measurements40 and more closely reflecting 

scoring performed by a radiologist41

However, CT quantification of the lung parenchyma is also challenging. Scanner mis-

calibration, inconsistent use of reconstruction kernels, differences in reconstruction 

algorithms between manufacturers and poor coaching of the patient to the targeted lung 

volume can result in measurement variability.42–45 Accurate, quantitative CT requires image 

acquisition consistency46 and even then, subject age, sex, race/ethnicity and height influence 

the normal range of these measures (similar to lung function) as does weight.47 Current 

smoking status has a large and paradoxical effect on these measures,47 making precise 

measurements of smoking status (eg. Cotinine or other objective measure) important in 
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longitudinal studies. Reference equations for both percent emphysema and total lung volume 

on CT are now available to account for most of these differences.47 The limitations due to 

concerns of radiation dose are being addressed with recent advances in CT technologies, 

including improvements in the x-ray tube, detector technology, adaptive exposure 48,49 and 

iterative image reconstruction,50–54 leading to clinically-adequate image quality with sub-

mSv doses.48,55 Finally, despite considerable successes using quantitative CT to assess the 

presence and distribution of emphysema and airway wall remodeling56–61, critical 

underlying differences among disease sub-populations continue to emerge. For example, in 

an apparently discordant result, spatially-matched airway segmentation demonstrated that 

airway walls may become thinner rather than thicker in COPD, leaving open the possibility 

that airway wall remodeling may, itself have multiple phenotypes.9

Functional CT Measurements and Phenotypes

Pulmonary CT Vascular or Perfusion—It has long been thought that a better 

understanding of the pathologic response to inflammation in COPD and asthma will be 

important for the design of new therapies. What is well-understood is that in response to 

noxious particles and gases in cigarette smoke, the lung reacts by recruiting inflammatory 

cells. Pulmonary vascular changes, including thickening of the vessel walls, have been 

characterized early in the history of COPD.62,63 More recently it was observed that in the 

presence of inflammation, there is an enhanced delivery of progenitor cells to the lung.64,65 

Remy-Jardin and colleagues recently observed an increased propensity for the lung to 

develop emphysema in regions of suspected inflammatory processes as defined by ill-

defined ground glass opacities and micro nodules.66 In more than half of smokers, the 

inflammatory process was able to resolve itself with repair and maintenance of normal 

parenchymal anatomy and function. For the remainder (30–45% of smokers) there was 

parenchymal destruction. There is evidence in the literature suggesting that in humans and 

animals, hypoxic pulmonary vasoconstriction (HPV) is normally blocked in the presence of 

inflammation.25,67–69 For example, Alford et al.70 demonstrated that smokers with normal 

pulmonary function, but small visibly obvious signs of localized, apical centrilobular 

emphysema, have an increase in coefficient of variation (CV) of CT-based regional 

pulmonary blood flow (PBF) and mean transit time (MTT), supporting a hypothesis that one 

etiology of smoking-associated emphysema may be failure to maintain PBF to inflamed 

lung regions. Recent work published together with an associated editorial31,71 also 

demonstrated and discussed the strong relationship between impaired LV filling and percent 

emphysema in a group of non-smokers, ex-smokers and current smokers. The correlation 

between impaired LV filling with emphysema was greatest in current smokers compared 

with previous smokers, consistent with the notion that the inflammatory effects of smoking 

may determine this effect rather than emphysema alone.

With the observation that pulmonary perfusion heterogeneity may serve as a biomarker in 

smokers susceptible to centrilobular emphysema,70 it has been hypothesized that the lung 

normally inhibits hypoxic pulmonary vasoconstriction (HPV) in the presence of 

inflammation. Conversely, in patients unable to block HPV in inflamed lung regions, 

perfusion is reduced, thus prolonging inflammation and limiting repair mechanisms. With 

the use of single breath methods in conjunction with dual energy CT, efforts have been 
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directed towards maintaining sensitivity to increased perfusion heterogeneity while 

simplifying imaging methodologies.

Dual energy CT (DECT) provides a way to double the temporal resolution of CT making it 

possible to image the entire lung field with a 0.62 mm slice thickness in 0.6 seconds. By 

having two x-ray guns together with two sets of detector rows, both capable of acquiring 128 

slices of image data, there is now the possibility of dual energy CT which allows for 

sensitive discrimination between tissue types and contrast agents such as iodine for 

perfusion and xenon for ventilation. At two different peak kilo-voltages (kVp), the 

reconstructed CT densities for iodine or xenon are shifted significantly between the two 

resultant image data sets, but the body tissues are not. Thus, because the two image sets 

were acquired simultaneously, assuring alignment, with a modified form of image 

subtraction (material decomposition) it is possible to assess perfused blood volume or 

regional ventilation respectively. For regional assessment of perfused blood volume, when 

blood is equilibrated with a concentration of iodine (or gadolinium) through the slow 

infusion of contrast agent, an image of iodine (or gadolinium) can be directly related to 

regional blood volume.

Other studies have demonstrated the equivalency of perfused blood volume (PBV), as 

assessed by dual energy CT, and true perfusion. Perfusion blood volume and perfused blood 

flow (PBF) likely reflect one another because peripheral vascular beds dilate and capillary 

beds are recruited with increased PBF. PBV may be evaluated using DECT during a slow 

infusion of x-ray contrast. As shown in Figure 3 modified72 from a report on interventions 

performed in pigs, regional perfusion (colour-coded from red to blue as percent of total 

perfused blood volume or total perfusion) was perturbed either by incrementally pulling 

back a balloon catheter placed in a pulmonary artery or by imaging the lung at various static 

inflation pressures which effectively reduces perfusion in the non-dependent lung regions.72 

Under all conditions, PBF maps and PBV maps are strikingly similar and a strong 

relationship for PBF and PBV heterogeneity was also demonstrated.

Pulmonary CT Ventilation—Xenon gas regional wash-in and wash-out kinetic studies 

were also explored using CT imaging73–75 and these methods have been translated clinical 

studies.76–82 Importantly, with the more recent development of dual-energy CT, it is possible 

to simplify the assessment of regional ventilation via use of single breath methods. As 

shown in Figure 4, by adjusting xenon inhalation of a Xe/O2 gas mixture, gas flow to the 

central airways may be monitored and compared with gas flow to the parenchyma. As 

shown in Figure 4 left panel, the central airway tree is identified by having the subject inhale 

to TLC, exhale the central dead space volume and re-inhale the same volume of a Xenon gas 

mixture. This leaves just the central airways filled with Xenon gas. In the right panel, results 

are shown from of a single inhalation of a Xenon gas mixture. It was also demonstrated that 

with a slow inhalation of Xenon gas mixtures, geometry and gas density influence or 

dominate gas distribution causing increased ventilation heterogeneity while with a rapid 

inspiration, ventilation is more homogeneous.83 Furthermore, the gravity-driven distribution 

of Xe gas can be eliminated by mixing Xe with helium (He), likely due to the change in the 

gas density mixture. Another contrast gas agent, Krypton (Kr) while less radio-dense than 

Xe84,85, has no anesthetic effects. As multi-spectral CT technologies, including Photon 
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Counting CT86–88 evolve, it is expected that sensitivity to Kr gas contrast will improve, 

making it a potential translational/clinical method.

As an alternative to inhaled contrast agents, recent studies89,90 have shown that regional 

measures of lung ventilation can be assessed using CT images acquired at different volumes 

without the need for inhaled contrast agents. A two-lung volume (TLC or full inspiration 

and RV or full expiration) protocol has been standardized as part of “SPIROMICS”13 CT 

protocol that obtains isotropic sub-millimeter images of the entire lungs at TLC and RV. 

Using this protocol together with advanced image registration methods90–95, regional maps 

of lung ventilation can be obtained at spatial resolutions close to the size of a pulmonary 

acinus. Image matching of an inspiratory/expiratory lung image pair has also been 

employed7 to help differentiate air trapping from emphysema. Functional measurements 

may be directly generated from expiratory CT96,97 or a combination of inspiratory and 

expiratory CT, including those generated using parametric response maps.7 All of these 

important approaches have the potential to test the hypotheses generated using micro-CT98 

about the pathological mechanisms that accompany the earliest airway and parenchyma 

changes in COPD.

There is well-developed software commercially available for evaluating the relationship of 

airway microstructural abnormalities with ventilation and emerging software tools are now 

being developed to probe the geometry of the pulmonary arterial and venous trees and 

vascular-structure-function relationships.99–101 The extracted pulmonary vascular tree from 

a non-contrast inspiratory MDCT volume of the lung is shown in the right panel of Figure 

2, and the volume of this combined arterial and venous tree – the Total Pulmonary Vascular 

Volume or TPVV has been generated developed using methods that segment the arterial 

tree.101 The cross sectional area of the pulmonary trunk relative to the aorta has been 

shown102 to correlate with acute exacerbations in COPD patients and TPVV (normalized to 

total lung volume) is currently being used as an upstream marker of down-stream endothelial 

dysfunction.103

PULMONARY MRI MEASUREMENTS OF COPD

Conventional 1H MRI Structural and Functional Phenotypes

As pulmonary CT continues to advance with new capabilities and lower radiation doses, 

pulmonary MRI has also advanced to provide complimentary tools for the quantitative 

evaluation of lung structure and function. However, pulmonary MRI using conventional 

hardware platforms (1H methods) is very technically challenging and therefore currently, its 

clinical use, has been limited. These technical demands stem from the inherently low 

pulmonary 1H abundance and corresponding low 1H signal that can be measured using 

conventional MRI approaches. Furthermore, the multitude of lung air-tissue interfaces 

generate significant magnetic field distortions or susceptibility artifacts, further diminishing 

pulmonary 1H MRI signal. For these reasons, and until recently, the major applications of 

conventional pulmonary 1H MRI included intravenous contrast agents to evaluate pulmonary 

blood flow and vessel hemodynamics.104 Methods have also been devised that combine 

relaxation signals and intravenous contrast that provide a way to differentiate 

inflammation105, smooth muscle remodeling, edema and mucus deposition.104,105 Taken 
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together, these methods provide a way to identify the underlying pathologies associated with 

COPD. However, because signal intensity is generally very low using 1H MRI, careful 

calibration with other organs in the same field of view is required. In addition, because of 

gravity-dependent changes occur, signal averaging over time may not provide 

physiologically-relevant information in the dependent lung regions, where atelectasis may 

occur in minutes while supine.

Another way to address these challenges is to reduce the time (echo time or TE) required to 

acquire the pulmonary MR signal. As shown in Figure 5, conventional, ultra-short TE (UTE) 

pulse sequences as suggested 2 decades ago106 significantly improve pulmonary MR signal 

so that emphysematous regions can be identified and quantified, based upon the difference 

between tissue-poor emphysematous bullae and more normal parenchyma. So-called 

ultrashort-echo or zero echo time MRI methods help address the inherent challenges of low 

tissue and 1H density107 by minimizing the effects of rapid MR signal decay. The 

relationship between MRI signal intensity and tissue density108, as previously shown for 

pulmonary CT, is clearly important for further development of the method. The first studies 

employing UTE methods reported that the tissue density was related to MR signal109 and 

T2*. UTE MRI was also used to measure signal intensity and T2* in emphysema110 and 

showed good correlations with histological measurements while T2* correlated with 

pulmonary function measurements111 and pulmonary signal intensity was related to tissue 

density, pulmonary function and CT density measurements.108 Very recently methods have 

been developed that exploit optimized112 and so-called zero echo time (ZTE)113 approaches 

and this has resulted in excellent, MR image quality and signal in pulmonary images that is 

very similar to CT. Another method for measuring regional lung function, involves using 

inhaled oxygen in combination with 1H MRI114 and this exploits the alteration of lung 

tissue 1H relaxation times by molecular O2. In this manner, wash-in or difference maps can 

be generated by using the inherent signal differences that stem from breathing room air and 

pure O2. While pulmonary ventilation is reflected by O2 wash-in maps, the alveolar-

capillary transfer may be reflected by the O2-enhancement ratio.115 Like all 1H-based MRI, 

O2-enhanced MRI is limited by the weak proton signal and the fact that O2-enhanced 

measurements still require histopathological validation. In fact, for all MRI measurements of 

COPD, validation of the pathologies directly or indirectly measured is still pending.

To tackle the challenge of very low pulmonary 1H signal intensity, Bauman and 

colleagues116–118 proposed another ingenious approach that relies on MRI signal 

oscillations that occur with the differences in lung volume during normal tidal breathing. It 

was hypothesized that the 1H MRI signal oscillations during breathing could be employed to 

generate both ventilation and perfusion images. They developed a way119 using Fourier 

decomposition (FD) of oscillating 1H signal intensity120 related to the compression and 

expansion of the lung parenchyma and blood flow121 to generate pulmonary ventilation 

and/or perfusion measurements. Importantly, this method was recently shown in COPD 

subjects with emphysema 122 and contrast can be generated using static volumetric 1H MRI 

methods.123 Figure 5 shows very recent examples of Fourier-decomposition of pulmonary 

magnetic resonance imaging (FDMRI) in COPD subjects across GOLD grades and excellent 

comparisons were also shown in animal studies.124 FDMRI exploits free-breathing 1H MRI 

and non-rigid registration to generate ventilation images. Importantly, although image 
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registration and analysis is complex, and again dependent on weak 1H MRI contrast, this 

approach does not depend on inhaled gas or injected contrast agents and therefore there is 

strong potential for clinical translation. Again, a more complete validation still needs to be 

undertaken.

Inhaled 19F and hyperpolarized 129Xe/3He MRI Structural and Functional Phenotypes

Similar to FD and O2-enhanced 1H MRI methods, MRI using inhaled 19F gas (after multiple 

breaths of perfluoropropane mixed with oxygen), or hyperpolarized noble gases such as 3He 

and 129Xe (after a single breath mixed with 4He or N2) provides a way to visualize 

pulmonary ventilation by taking advantage of high gas density in the lung. For inhaled 3He 

and 129Xe, increased nuclear polarization generates ventilation images of the airways and 

airspaces and to measure apparent diffusion coefficients that estimate gas displacement. 

For 129Xe, similar to Xe-CT methods, the fractional solubility of Xe gas in biological 

tissues125 has additional applications for measuring gas exchange, alveolar surface area and 

perfusion. For all three gases, the nuclear proton provides the MRI signal. In the case of 19F, 

MR signal is inherently strong because of the high gyromagnetic ratio of 19F such that extra 

polarization (and polarization equipment) is not required. For both 3He and 129Xe, however, 

nuclear polarization is achieved126,127 using laser polarization equipment. As shown in 

Figure 5, 3He and 129Xe MRI provide superior signal-to-noise ratio ventilation images in 

COPD subjects, and typically, image quality using 3He MRI is the greatest compared with 

polarized 129Xe and unpolarized 19F due to larger gyromagnetic ratio and high polarization 

rates for 3He. For these reasons, currently 3He MRI is most commonly used in research even 

though the global quantities of 3He are very limited and expensive. Although experience 

with 129Xe and 19F is still limited,128,129 these inhaled gas MRI methods provide the 

strongest translational potential because of the relative abundance and low cost of these 

gases. Notwithstanding these challenges, recent acute therapy studies in COPD post-

salbutamol130 and post-COPD exacerbation therapy requiring hospitalization131 show the 

potential for inhaled gas MRI ventilation defect measurements to represent the subtle (post-

exacerbation) and not so subtle (post-salbutamol) ventilation improvements after therapy. It 

is important to note that the visibly obvious and statistically-significant improvements in 

ventilation in these cases were not related to FEV1 improvements. In addition, in a number 

of these previous COPD studies132, and as shown in Fig. 6 ventilation measured using MRI 

was directly related to CT-derived measurements of abnormally-remodeled airways and 

emphysema. Importantly, previous work also showed the relationship of ventilation 

abnormalities with subclinical disease in smokers with normal lung function.133 Moreover, 

regional ventilation worsening in COPD has been measured over a follow-up period of two 

years134 even in patients with no change in FEV1. The Polarized Helium Imaging of the 

Lung (PHIL) study, was performed in three European centres in 122 COPD patients and is 

yet the largest COPD MRI-CT multicenter comparison study completed to date.132 This 

important study showed the potential for COPD biomarkers stemming from a 

comprehensive, prospectively planned, multi-centre and multimodality imaging approach. 

Another innovative example135 showed the potential of ventilation MRI to interrogate the 

role of regional collateral ventilation in COPD patients with bullous emphysema. Finally 

MRI measurements of ventilation in mild and moderate patients (GOLD I/II COPD)136 were 
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also predictive of COPD exacerbation requiring hospital care, and in these patients, previous 

exacerbation and FEV1 were not.

For all inhaled gas MRI methods, diffusion due to random Brownian motion within the lung 

airways and airspaces can be measured using diffusion-weighted imaging similar to that 

used in conventional MRI.137 3He or 129Xe diffusion-weighted methods provide 

measurements of parenchyma microstructures, including the alveoli and acini that define the 

boundaries of the fundamental units for gas exchange.138 The ADC map provides 

quantitative regional airspace measurements information that is in agreement with the 

presence of emphysematous damage.139,140 Such measurements are consistent with alveolar 

changes related to differences in lung volumes141 gravitational dependence141–143 and 

ageing.144 Previous COPD studies have shown that ADC correlates with pulmonary 

function,142,145,146 histological measurements of lung surface area147 and is highly 

reproducible in COPD,141 while sensitive to subclinical disease148,149 and disease 

progression.150 Novel approaches have also been used to measure diffusion in longer time 

frames151, providing a way to generate information about acinar duct and airway 

connectivities, including communication and collateral ventilation.152,153 Long-range ADC 

appears to be more than twice as sensitive to parenchymal differences associated with COPD 

than short-range ADC154–156. Unfortunately this important information has not yet been 

exploited in clinical research studies.

Gadolinium-enhanced MRI Pulmonary Perfusion Phenotypes

Given the relative lack of 1H signal in the lung using conventional approaches, gadolinium-

enhanced imaging of first-pass pulmonary perfusion provides sensitive and relatively 

reproducible measurements of signal increase and its change over time (slope). Fourier 

transformation of the signal change allows for the assessment of pulmonary blood flow, 

mean transit time and pulmonary blood volume. These measures can be attained over the 

whole lung or the lung periphery in order to evaluate microvascular perfusion.157–159 

Pulmonary perfusion deficits were observed more frequently in COPD patients as compared 

to healthy volunteers; the largest study to date noted largely diminished pulmonary 

microvascular blood flow in mild to severe COPD with strong spatial correlations in severe 

disease to centrilobular and panlobular emphysema.160

CONCLUSIONS

As summarized in Table 1, pulmonary CT and MRI are on the threshold of providing 

regional, non-invasive measurements of ventilation, perfusion and parenchymal destruction 

as intermediate endpoints of COPD. However, whereas pulmonary CT measurements have 

been evaluated in COPDGene,12 ECLIPSE,14 MESA Lung,161 CanCOLD,15 and 

SPIROMICS,13 and cardiac MRI has been utilized in over 5000 participants in MESA, 

pulmonary MRI has not been exploited in large-scale studies. There are many reasons for 

this even though pulmonary MRI is rapid, well-tolerated and radiation-free, so it serves as an 

ideal platform for serial and longitudinal evaluations in patients. More widespread use of all 

imaging biomarkers has been limited for a number of key reasons including: 1) lack of 

support to harmonize image acquisition software, 2) universally available image analysis 
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software, 3) regulatory boundaries for emerging approaches, and, 4) historically weak links 

between respiratory and radiology clinical programs. Not-withstanding these issues, CT and 

MRI measurements of COPD are being developed to provide a better understanding of 

disease onset, develop COPD treatments that improve outcomes, and to provide better 

predictive measurements of COPD exacerbations and progression.

The unique and complementary ability of both MRI and CT to measure disease 

morphological and functional consequences and explore mechanisms of disease 

pathophysiology has not yet translated to improved COPD patient care. In COPD, there is an 

increasing recognition that different phenotypes exist162–164 and that these patient groups 

may have different responses to therapy. Moreover as therapies become more targeted and 

patient-specific, imaging will likely be one of the only ways to verify response and efficacy 

for an individual patient or group of patients. This will require imaging to become more 

quantitative, sensitive and accessible to justify its current cost and complexity. Although the 

risks related to tobacco smoking will decrease over time in the developed world, as the 

world becomes more industrialized and polluted, and smoking habits change in the 

developing world, respiratory illnesses will continue to increase in prevalence, morbidity and 

overall mortality. It is in this clinical context that development and appropriate utilization of 

pulmonary MRI and CT remain critically important.
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Figure 1. Current COPD challenges
Three distinct COPD phases are outlined in schematic: 1) Early disease when patients are 

asymptomatic, clinical measurements typically do not reflect disease but imaging 

measurements provide evidence of mild emphysema, airways disease, perfusion 

heterogeneity, LV filling defects, etc. 2) Mild-moderate COPD as patients become 

symptomatic, clinical measurements are modestly abnormal while imaging measurements 

can be markedly abnormal revealing regional disease, LV filling defects can continue to 

worsen, co-morbidities can begin to appear including aortic aneurysms, coronary disease, 

lung nodules, osteoporosis, 3) Severe COPD with patients reporting severe symptoms and 

activity impairment, clinical measurements of airflow limitation, diffusing capacity of 

carbon monoxide and gas trapping are markedly abnormal and yet patients still can be 

differentiated into those with predominantly airway or predominantly parenchymal disease 

with marked differences in the distribution of parenchymal destruction.
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Figure 2. 
CT Measurements: Threshold-based evaluation of the extemt and distribution of 

emphysema at full inspiration (far left panel), amount and air trapping at expiration to 

functional residual capacity (FRC) or residual volume (RV) (middle panels), airway 

geometry assessed in conjunction with distribution patterns of emphysema and air trapping 

(middle panels), vascular anatomy (total pulmonary vascular volume and total pulmonary 

arterial volume assessed from full inspiratory non-contrast enhanced CT scans (far right 

panel). Colour-coding differentiate between lung lobes.
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Figure 3. 
Gray-scale (top row), PBV (middle row), and PBF (lower row) MDCT scans. (Columns 1–

3) Color map comparison of CT-derived PBF and PBV from pig imaged at 3 different lung 

volumes, used to achieve a range of pulmonary perfusion values. (Column 4) Color map 

comparison of CT-derived PBF (dynamic axial scanning) and PBV (dual energy spiral 

scanning) from pig studied with a balloon partially inflated in a left lower lobe pulmonary 

artery. Color coding is the same for each condition: percent of total PBV or PBV with low 

values in blue and high values in red. Modified from 72.
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Figure 4. 
Dual Energy CT scans of the airway tree (left) and lung parenchyma (right) of an 

anesthetized pig. For the scan in the left panel, the lung was inflated to 25 cmH2O airway 

pressure using room air. An amount of air approximately equal in volume to the central 

airway tree was removed and replaced with xenon gas. This provided a way to identify the 

central airway tree without the use of more conventional airway segmentation methods. In 

the right panel, the lungs were inflated from functional residual capacity to total lung 

capacity via a gas mixture of 80%xenon and 20%oxygen. Material decomposition image 

processing was used to generate an image representing the regional distribution of the 

inhaled xenon gas.
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Figure 5. 
MRI measurements of COPD for different GOLD stages including: emphysema (ADC, 1H 

MRI signal intensity), and ventilation (3He MRI and FDMRI).
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Figure 6. 
MR ventilation imaging reflecting the effects of both emphysema (slow filling units) and 

airways disease (airway obstruction) – a unique predictor of COPD exacerbations in mild 

disease.
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Table 1

MRI and CT COPD Phenotypes

Airways Disease

Imaging Biomarkers of COPD

Emphysema Perfusion abnormalities

CT Lumen area
Wall area %
Pi10
PRM-gas trapping
Xe gas ventilation

Low attenuating clusters
Low attenuating area
RA950
RA856
PRM-emphysema

Total pulmonary vascular volume
Iodine perfusion

MRI Ventilation defect percent
Percent ventilated volume

ADC Gadolinium perfusion
Xe perfusion/diffusion
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