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  Asthma and COPD represent the two most 

common chronic lung diseases. Although 

both are characterized by airfl ow obstruc-

tion and treated with bronchodilators and 

corticosteroids, they diff er substantially in 

etiology, pathophysiology, and natural his-

tory. Despite numerous advances in man-

agement of these disorders over the past 2 

decades, disease burden remains high and 

unmet needs are apparent. For example, no 

current treatment approaches eff ectively 

ameliorate neutrophilic infl ammation, air-

way remodeling, or alveolar destruction. 

Although drug development increasingly 

favors therapies designed to block specifi c 

molecular targets, strategies that are capable 

of targeting multiple pathophysiologic 

components of obstructive lung diseases 

still command appeal.  

 Th is article focuses on two specifi c pros-

tanoid lipid mediators—prostaglandin (PG) 
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 Pathophysiologic gaps in the actions of currently available treatments for asthma and COPD 

include neutrophilic infl ammation, airway remodeling, and alveolar destruction. All of these 

processes can be modulated by cyclic adenosine monophosphate-elevating prostaglandins E 2  

and I 2  (also known as prostacyclin). These prostanoids have long been known to elicit bron-

chodilation and to protect against bronchoconstriction provoked by a variety of stimuli. Much 

less well known is their capacity to inhibit infl ammatory responses involving activation of 

lymphocytes, eosinophils, and neutrophils, as well as to attenuate epithelial injury and mes-

enchymal cell activation. This profi le of actions identifi es prostanoids as attractive candidates 

for exogenous administration in asthma. By contrast, excessive prostanoid production and 

signaling might contribute to both the increased susceptibility to infections that drive COPD 

exacerbations and the inadequate alveolar repair that characterizes emphysema. Inhibition of 

endogenous prostanoid synthesis or signaling, thus, has therapeutic potential for these types 

of patients. By virtue of their pleiotropic capacity to modulate numerous pathophysiologic 

processes relevant to the expression and natural history of airway diseases, prostanoids emerge 

as attractive targets for therapeutic manipulation.      CHEST  2015; 148(5): 1300 - 1306  
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E 2  and PGI 2  (also known as prostacyclin)—that exert 

pleiotropic eff ects on lung structure and function, as 

well as on immune and infl ammatory processes. We 

review available evidence suggesting that these endoge-

nous mediators are deregulated in airway disease and 

that therapeutic strategies involving either their admin-

istration or inhibition may have utility in asthma and 

COPD. We will not consider other prostanoids, such 

as PGD 2  and thromboxane A 2 , but interested readers 

are referred to an article  1   that more comprehensively 

reviews the pertinent airway actions of all prostanoids 

than space permits here. 

 Prostanoid Synthesis, Receptors, and Signaling 

 Prostanoids are a family of metabolites of the fatty acid 

arachidonic acid, which include PGD 2 , PGE 2 , PGF 2 a  , 

and PGI 2 , as well as thromboxane A 2 .  
2   Th eir synthesis 

entails hydrolysis of arachidonic acid from membrane 

phospholipids by phospholipase A 2 , its oxygenation by 

constitutive cyclooxygenase (COX)-1 and inducible 

COX-2 isoforms, and isomerization by specifi c terminal 

synthases ( Fig 1 ).   PGE 2  is produced by virtually all lung 

cell types, but the most abundant sources are epithelial 

cells, fi broblasts, and macrophages.  3   Th e major source 

of PGI 2  is endothelial cells.  4   

 Prostanoids act in both paracrine and autocrine fashion 

through G protein-coupled receptors (GPCRs) on the 

surface of target cells. PGE 2  can bind four distinct 

GPCRs, E prostanoid (EP) 1-4, while PGI 2  acts via the 

GPCR I prostanoid receptor (IP). EP2, EP4, and IP are 

coupled to a stimulatory G  a   protein subunit   that signals 

by activating adenylyl cyclase to convert adenosine tri-

phosphate into the second messenger cyclic adenosine 

monophosphate (cAMP). Th e  b  2  adrenergic receptor, 

agonists for which have long been a mainstay of therapy 

for obstructive lung diseases, is also a cAMP-coupled 

GPCR. cAMP is degraded by phosphodiesterases, and 

their inhibition by rofl umilast represents an alternative 

means of increasing cAMP.  5   Increased intracellular 

cAMP levels can be sensed by and activate distinct eff ec-

tors, the best studied being protein kinase A (PKA) and 

exchange proteins activated by cAMP (Epacs).  6   PKA 

acts by phosphorylating diverse target proteins, while 

Epacs activate the small GTPase Rap1.  6   EP3 is coupled 

to an inhibitory G  a   protein subunit that inhibits adenylyl 

cyclase activity, resulting in decreased cAMP levels and 

signaling. EP1 is coupled to G  a q  subunit, which activates 

phospholipase C to hydrolyze membrane phospholipids 

into diacyl glycerol (which activates protein kinase C) 

and inositol 1,4,5-trisphosphate (which releases calcium 

from intracellular stores). Th erefore, PGE 2  can mediate 

either suppressive eff ects (via increased cAMP) or stim-

ulatory eff ects (via reduced cAMP or increased calcium) 

on smooth muscle tone and cell activation, depending 

on the profi le of EP receptors expressed on pertinent 

target cells. 

 PGE 2  and PGI 2  in Asthma 

 Asthma is characterized by increased susceptibility to 

bronchoconstriction and increased mucus secretion, 

both of which are the consequences of chronic airway 

infl ammation. Th e infl ammation of classic atopic 

asthma involves antigen sensitization resulting in pro-

duction of (1) IgE antibodies, which trigger mast cells to 

secrete mediators such as cysteinyl leukotrienes that 

reversibly contract airway smooth muscle and (2) type 2 

CD4 T-helper (Th ) cell-derived cytokines such as IL-4, 

IL-5, and IL-13, which promote eosinophilic airway 

infl ammation, damage the airway epithelial barrier, and 

cause mucus gland hyperplasia. Over time, airway 

smooth-muscle hyperplasia/hypertrophy and subepithe-

lial deposition of extracellular matrix proteins such as 

collagen can lead to remodeling and irreversible luminal 

narrowing of the airways. A contrasting paradigm in 

which airway infl ammation is persistently dominated by 

neutrophils rather than eosinophils is now recognized in 

a surprisingly large proportion of patients with asthma.  7   

Th is undoubtedly contributes to the unexpectedly high 

frequency of corticosteroid resistance among these 

patients,  8   as neutrophilic infl ammation is notoriously 

refractory to the actions of these agents. 

 Over a 50-year span, our appreciation of prostanoid 

actions in the airways has evolved from mere regulators 

of airway tone to molecules infl uencing virtually every 

aspect of structural and infl ammatory cell biology. 

Inhalation of exogenous PGE 2  or its analogs has long 

been known to result in bronchodilation as well as pro-

tection against early- and late-phase bronchoconstric-

tion induced by various triggers in people with 

asthma.  9-12   Unfortunately, these benefi cial actions are 

counterbalanced by the fact that inhaled PGE 2  also 

induces severe cough in animal models and human 

subjects.  13,14   However, it is now apparent that PGE 2  

mediates cough via the EP3 receptor  15   but bronchodila-

tion in humans via EP4,  16   off ering the possibility of 

treatment with a receptor-selective agonist. Limited data 

reveal that inhalation of a PGI 2  analog in patients with 

asthma failed to elicit bronchodilation  17,18   but did lower 

the cough threshold.  19   

 Although PGE 2  is classically linked to the cardinal manifes-

tations of infl ammation (pain, fever, and swelling), these 
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eff ects refl ect its actions on nerves, the hypothalamus, 

and the microvasculature, respectively, rather than on 

leukocytes. In fact, its direct eff ects on infl ammatory 

cell functions are overwhelmingly inhibitory, and such 

eff ects have been validated in mouse models of allergic 

asthma. Th ese leukocyte suppressive actions of PGE 2  

are invariably mediated by increased intracellular 

cAMP (via EP2  .  EP4 activation), and many are shared 

by PGI 2 -IP signaling. Pertinent such actions of PGE 2  

and/or PGI 2  include inhibition of mast cell secretory 

responses,  20   traffi  cking of neutrophils  21   and eosinophils,  22   

dendritic cell activation or function,  23,24   and cytokine 

generation and proliferation by both type 1 Th  cell and 

type 2 Th  cell subsets of T lymphocytes  24-26  ; these are 

  

  Figure 1  – Prostanoid   synthesis, receptors, and signaling. A, Arachidonic acid is released from membrane phospholipids by cPLA 2  and can be metabo-
lized by the constitutive COX-1 or inducible COX-2 enzymes to make PGH 2 . Subsequently, PGH 2  serves as substrate for terminal PG synthases, which 
complete the biosynthesis of specifi c PG products, including PGE 2  and PGI 2 , also known as prostacyclin. Th ese prostanoids can act in both autocrine and 
paracrine fashion on target cells by binding to cell surface 7-transmembrane G protein-coupled receptors. B, PGE 2  acts through four diff erent receptors 
(EP1-EP4), while prostacyclin acts via one (IP). EP2, EP4, and IP are coupled to a stimulatory G  a   protein subunit, which activates AC. AC catalyzes 
conversion of ATP to 3 9 ,5 9 -cAMP, a second messenger in intracellular signaling involved in various biologic processes. Th e degradation of cAMP into 
AMP is mediated by PDEs. The prototypic effector for cAMP actions is PKA, a tetramer consisting of two C and two R subunits. Binding of 
cAMP to R subunits causes their dissociation from C subunits, enabling the release of free C subunits to phosphorylate substrate proteins in the cytosol 
or nucleus. cAMP can also activate Epacs. Binding of cAMP causes Epacs to catalyze exchange of bound GDP for GTP and, hence, activation of Rap1. 
EP3 is coupled to an inhibitory G  a   subunit, which inhibits the production of cAMP from ATP. EP1 is coupled to a G  a q  subunit, which activates PLC. 
PLC catalyzes the formation of DAG and IP3 from phosphatidylinositol. DAG can activate PKC, which can, in turn, phosphorylate target proteins. 
IP3 translocates to the ER, where it triggers an increase in intracellular Ca 2 1   and activates numerous signaling events. AC  5  adenylyl cyclase; ATP  5  adenosine 
triphosphate; C  5  catalytic; Ca 2 1    5  calcium; cAMP  5  cyclic adenosine monophosphate; COX  5  cyclooxygenase; cPLA 2   5  cytosolic phospholipase A 2 ; 
DAG  5  diacylglycerol; EP  5  E prostanoid receptor; Epac  5  exhange protein activated by cyclic adenosine monophosphate; ER  5  endoplasmic reticulum; 
GDP  5  guanosine diphosphate; GTP  5  guanosine triphosphate; IP  5  I prostanoid receptor; IP3  5  inositol 1,4,5-trisphosphate; PDE  5  phosphodiesterase; 
PG  5  prostaglandin; PGH 2   5  prostaglandin H 2 ; PKA  5  protein kinase A; PKC  5  protein kinase C; PLC  5  phospholipase C; R  5  regulatory; Rap1  5  
Ras-related protein 1.   
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summarized in  Table 1   .  15,19,20,22,23,25-41     Interestingly, PGE 2  

also promotes the diff erentiation and function of regu-

latory T cells, which restrain immune responses.  34   

Potentially pro-infl ammatory actions of these prostanoids 

include their ability to promote (1) IgE production by 

B cells  35  ; (2) type 17 Th  cell diff erentiation,  28,32   which 

would be expected to enhance neutrophilic infl amma-

tion (which, however, might be counteracted by their 

inhibition of cell traffi  cking); and (3) dendritic cell 

maturation.  28   Consistent with its net antiinfl ammatory 

actions, inhaled PGE 2  also attenuates levels of eosinophils  42   

and PGD 2   
43   in the airways of allergen-challenged 

patients with asthma. 

 Prostanoids also exert salutary actions on various 

aspects of airway remodeling ( Table 1 ). For example, 

PGE 2  promotes airway epithelial cell wound closure  36   

while inhibiting proliferation of airway  39   and vascular  40   

smooth muscle cells. PGE 2  also inhibits survival,  44   pro-

liferation,  45   collagen synthesis,  37   and myofi broblast dif-

ferentiation  46   in lung fi broblasts. PGI 2  likewise inhibits 

fi broblast functions  38   in vitro and airway remodeling in 

asthma models in vivo.  47   Th e eff ects of prostanoids on 

lower airway mucus secretion are poorly understood, but 

PGE 2  has been reported to inhibit allergen-induced mucus 

hypersecretion in nasal epithelium of sensitized rats.  48   

 Th e bronchoprotective function of endogenous prostanoids 

is illustrated by the syndrome of aspirin-exacerbated 

respiratory disease, also known as aspirin-induced 

asthma, which occurs in 5% to 10% of people with 

asthma.  49   In these susceptible patients, ingestion of 

aspirin or other COX-1 inhibitors unleashes a marked 

activation of mast cells and eosinophils. COX-1 inhibi-

tors likewise augment type 2 Th  cell responses and 

features of allergic infl ammation when administered 

during antigen sensitization in murine models.  50   COX 

inhibition does not distinguish among various candidate 

protective prostanoids, but studies with specifi c receptor-

defi cient mice support the potential contributions 

of both PGE 2 -EP2  25   and PGI 2 -IP  29   signaling as brakes on 

infl ammation. Support for disruption of the PGE 2 -EP2 

brake as a basis for human aspirin-exacerbated respiratory 

disease derives from observations that airway tissue from 

these patients exhibits defi ciencies in both PGE 2  levels  51   

and EP2 receptor expression,  52   and the association of 

this syndrome with an EP2 gene polymorphism.  53,54   

 PGE 2  and PGI 2  in COPD 

 COPD is an umbrella term encompassing either of two 

discrete types of lung response to inhalation of smoke 

from combusted tobacco or biomass material, or a 

combination of the two. Chronic bronchitis refers to a 

primary airway response characterized by mucus 

hypersecretion and bronchial wall thickening, while 

emphysema describes a primary parenchymal response 

characterized by alveolar wall destruction, which results 

in loss of tethering and secondary collapse of airways. 

Both forms of COPD involve chronic infl ammatory 

  TABLE 1   ]     Effects of Prostanoids on Various Cell Types Pertinent to Asthma, COPD, or Both   

Cell   Type Relevant Disease Eff ects of PGE 2 -EP2/EP4 Signaling Eff ects of PGI 2 -IP Signaling  

Mast cells Asthma  ↓  (Torres et al  20  , Säfholm et al  27  )  ↓ ?

Dendritic cells Asthma/COPD  ↓  ↑  (Kalinski  28  )  ↓  (Idzko et al  23  )

Neutrophils Asthma/COPD  ↓  (Mizuno et al  21  )  ↓  (Mizuno et al  21  )

Eosinophils Asthma  ↓  (Sturm et al  22  )  ↓  (Zhou et al  29  )

Macrophages Asthma/COPD  ↓  (Aronoff  et al  30  )  ↓  (Aronoff  et al  31  )

Th1 cells COPD  ↓  (Kalinski  28  )  ↓  (Zhou et al  26  )

Th2 cells Asthma  ↓  (Zaslona et al  25  )  ↓  (Zhou et al  26  )

Th17 cells Asthma/COPD  ↑  (Kalinski  28  )  ↑  (Zhou et al  32  )

CD8 T cells COPD  ↓  (Ahmadi et al  33  ) ?

T regulatory cells Asthma/COPD  ↑  (Baratelli et al  34  ) ?

B cells/IgE Asthma  ↑  (Fedyk and Phipps  35  ) ?

Epithelial cells Asthma/COPD  ↑  (Savla et al  36  ) ?

Fibroblasts Asthma/COPD  ↓  (Liu et al  37  )  ↓  (Kohyama et al  38  )

Smooth muscle cells Asthma  ↓  (Mori et al  39  , Lundequist et al  40  )  ↓  (Jain et al  41  )

Airway sensory nerves Asthma/COPD ne (Maher et al  15  )  ↑  (Ishiura et al  19  )

  ↑   5  activation;  ↓   5  inhibition;  ↓  ↑   5  activation and inhibition of distinct functions; ne  5  no eff ect; EP  5  E prostanoid receptor; IP  5  I prostanoid 
receptor; PG  5  prostaglandin; ?  5  eff ect unknown; Th  5  T-helper. 
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processes driven primarily by expanded populations of 

activated macrophages, neutrophils, and lymphocytes 

(particularly CD8 T cells), all of which elaborate infl am-

matory mediators, oxidants, and proteases.  55   COPD is 

also characterized by accelerated senescence of fi bro-

blasts,  56   and the accompanying defi ciency of parenchy-

mal extracellular matrix in emphysema has been termed 

“mesenchymal insuffi  ciency.”  57   

 In contrast to what has been observed in patients with 

asthma,  58   PGE 2  levels are increased in respiratory secre-

tions from patients with COPD.  59,60   Increased PGE 2 -

EP2/4 signaling has also been observed in fi broblasts 

isolated from the lung parenchyma of patients with 

emphysematous COPD, refl ecting overexpression of 

COX-1 and -2  61   as well as EP2/4 receptors.  56   Interest-

ingly, this overexpression profi le of COX-2/EP2 is the 

inverse of the defi ciency profi le found in fi broblasts 

from patients with idiopathic pulmonary fi brosis,  45,62   

a condition characterized by “mesenchymal excess.” 

Fibroblasts from patients with COPD likewise synthe-

size higher levels of PGI 2  than do control cells.  63   

 In view of their ability to promote fi broblast senes-

cence  56   and to broadly inhibit fi broblast survival and 

activation, increased PGE 2  and/or PGI 2  signaling could 

contribute to the impaired lung repair  61   and the alveolar 

destruction of emphysema. Th is provides a rationale 

for a therapeutic strategy consisting of inhibition of 

prostanoid synthesis and/or antagonism of EP2/4 or IP 

receptors. Indeed, an ongoing US National Institutes of 

Health-supported randomized proof-of-concept trial  64     

will determine the ability of the COX inhibitor ibupro-

fen (as compared with placebo) to improve biochemical 

measures of lung repair in the distal lung of patients 

with emphysema. It should be noted, however, that 

such a strategy is in apparent confl ict with the observation 

that administration of a stable PGI 2  analog protected 

against cigarette smoke extract-induced emphysema in 

rats.  65   It is pertinent that PGE 2  and PGI 2  also exert broad 

suppressive actions on innate immune functions of 

phagocytes,  66,31   so inhibition of their synthesis or receptors 

might additionally overcome the increased susceptibility 

to infection that characterizes and contributes to disease 

exacerbations in COPD. By contrast, the subset of patients 

with COPD whose clinical phenotype or gene expression 

profi le  67   overlaps that of classic type 2 Th  cell-predominant 

asthma might benefi t from EP2/4 or IP agonism. 

 Conclusions 

 Based on their capacity to protect against bronchocon-

striction, activation of inflammatory cells (including 

T cells, eosinophils, and neutrophils), and features of 

airway remodeling, analogs of PGE 2  or PGI 2  have signif-

icant appeal for the treatment of asthma as multifaceted 

therapeutic substances whose repertoire includes critical 

actions not shared by inhaled corticosteroid/long-acting 

 b  agonist—the current gold standard controller agent. 

A dual EP2/4 agonist would seem to hold the greatest 

potential as an inhalational agent targeting all of these 

component processes without eliciting cough. How to 

best target prostanoid pathways in COPD may be more 

complicated. A similar approach of exogenous EP2/4 

agonism may likewise be useful in patients with COPD 

whose clinical phenotype overlaps substantially with 

that of asthma. However, in those with a predominant 

emphysematous phenotype, inhibition of excessive PGE 2  

synthesis (using nonselective COX inhibitors) or sig-

naling (using inhaled or systemic EP2/4 antagonists) 

might attenuate the mesenchymal insuffi  ciency of this 

form of disease. A similar approach may boost innate 

immune function and, thus, be useful in patients who are 

prone to COPD exacerbation. Maximizing the thera-

peutic potential inherent in these pathways will require 

a better understanding of regulation of prostanoid syn-

thesis, receptors, and signaling in the airway vs the 

parenchymal compartments and among patients with 

various phenotypes and endotypes of COPD. Th e possi-

bility that superior pharmacologic precision and, hence, 

therapeutic specifi city and fl exibility could be accom-

plished by bypassing the prostanoid receptors themselves 

and selectively activating or inhibiting the downstream 

cAMP eff ectors PKA or Epac remains entirely unex-

plored to date. 
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