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Prostanoids in Asthma and COPD

Actions, Dysregulation, and Therapeutic Opportunities

Zbigniew Zaslona, PhD, and Marc Peters-Golden, MD

Pathophysiologic gaps in the actions of currently available treatments for asthma and COPD
include neutrophilic inflammation, airway remodeling, and alveolar destruction. All of these
processes can be modulated by cyclic adenosine monophosphate-elevating prostaglandins E,
and I, (also known as prostacyclin). These prostanoids have long been known to elicit bron-
chodilation and to protect against bronchoconstriction provoked by a variety of stimuli. Much
less well known is their capacity to inhibit inflammatory responses involving activation of
lymphocytes, eosinophils, and neutrophils, as well as to attenuate epithelial injury and mes-
enchymal cell activation. This profile of actions identifies prostanoids as attractive candidates
for exogenous administration in asthma. By contrast, excessive prostanoid production and
signaling might contribute to both the increased susceptibility to infections that drive COPD
exacerbations and the inadequate alveolar repair that characterizes emphysema. Inhibition of
endogenous prostanoid synthesis or signaling, thus, has therapeutic potential for these types
of patients. By virtue of their pleiotropic capacity to modulate numerous pathophysiologic
processes relevant to the expression and natural history of airway diseases, prostanoids emerge
as attractive targets for therapeutic manipulation. CHEST 2015; 148(5):1300-1306
ABBREVIATIONS: cAMP = cyclic adenosine monophosphate; COX = cyclooxygenase; EP = E prostanoid

receptor; Epac = exchange protein activated by cyclic adenosine monophosphate; GPCR = G protein-
coupledreceptor; IP = I prostanoid receptor; PG = prostaglandin; PKA = proteinkinase A; Th = T-helper

Asthma and COPD represent the two most ameliorate neutrophilic inflammation, air-
common chronic lung diseases. Although way remodeling, or alveolar destruction.
both are characterized by airflow obstruc- Although drug development increasingly
tion and treated with bronchodilators and favors therapies designed to block specific
corticosteroids, they differ substantially in molecular targets, strategies that are capable
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unmet needs are apparent. For example, no This article focuses on two specific pros-
current treatment approaches effectively tanoid lipid mediators—prostaglandin (PG)
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E, and PGI, (also known as prostacyclin)—that exert
pleiotropic effects on lung structure and function, as
well as on immune and inflammatory processes. We
review available evidence suggesting that these endoge-
nous mediators are deregulated in airway disease and
that therapeutic strategies involving either their admin-
istration or inhibition may have utility in asthma and
COPD. We will not consider other prostanoids, such
as PGD, and thromboxane A,, but interested readers
are referred to an article! that more comprehensively
reviews the pertinent airway actions of all prostanoids
than space permits here.

Prostanoid Synthesis, Receptors, and Signaling

Prostanoids are a family of metabolites of the fatty acid
arachidonic acid, which include PGD,, PGE,, PGF,,
and PGI,, as well as thromboxane A,.2 Their synthesis
entails hydrolysis of arachidonic acid from membrane
phospholipids by phospholipase A,, its oxygenation by
constitutive cyclooxygenase (COX)-1 and inducible
COX-2 isoforms, and isomerization by specific terminal
synthases (Fig 1). PGE, is produced by virtually all lung
cell types, but the most abundant sources are epithelial
cells, fibroblasts, and macrophages.? The major source
of PGI, is endothelial cells.*

Prostanoids act in both paracrine and autocrine fashion
through G protein-coupled receptors (GPCRs) on the
surface of target cells. PGE, can bind four distinct
GPCRs, E prostanoid (EP) 1-4, while PGI, acts via the
GPCR I prostanoid receptor (IP). EP2, EP4, and IP are
coupled to a stimulatory G, protein subunit that signals
by activating adenylyl cyclase to convert adenosine tri-
phosphate into the second messenger cyclic adenosine
monophosphate (cAMP). The 3, adrenergic receptor,
agonists for which have long been a mainstay of therapy
for obstructive lung diseases, is also a cAMP-coupled
GPCR. cAMP is degraded by phosphodiesterases, and
their inhibition by roflumilast represents an alternative
means of increasing cAMP. Increased intracellular
cAMP levels can be sensed by and activate distinct effec-
tors, the best studied being protein kinase A (PKA) and
exchange proteins activated by cAMP (Epacs). PKA
acts by phosphorylating diverse target proteins, while
Epacs activate the small GTPase Rap1.¢ EP3 is coupled
to an inhibitory G, protein subunit that inhibits adenylyl
cyclase activity, resulting in decreased cAMP levels and
signaling. EP1 is coupled to G, subunit, which activates
phospholipase C to hydrolyze membrane phospholipids
into diacyl glycerol (which activates protein kinase C)
and inositol 1,4,5-trisphosphate (which releases calcium
from intracellular stores). Therefore, PGE, can mediate
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either suppressive effects (via increased cAMP) or stim-
ulatory effects (via reduced cAMP or increased calcium)
on smooth muscle tone and cell activation, depending
on the profile of EP receptors expressed on pertinent
target cells.

PGE, and PGI, in Asthma

Asthma is characterized by increased susceptibility to
bronchoconstriction and increased mucus secretion,
both of which are the consequences of chronic airway
inflammation. The inflammation of classic atopic
asthma involves antigen sensitization resulting in pro-
duction of (1) IgE antibodies, which trigger mast cells to
secrete mediators such as cysteinyl leukotrienes that
reversibly contract airway smooth muscle and (2) type 2
CD4 T-helper (Th) cell-derived cytokines such as IL-4,
IL-5, and IL-13, which promote eosinophilic airway
inflammation, damage the airway epithelial barrier, and
cause mucus gland hyperplasia. Over time, airway
smooth-muscle hyperplasia/hypertrophy and subepithe-
lial deposition of extracellular matrix proteins such as
collagen can lead to remodeling and irreversible luminal
narrowing of the airways. A contrasting paradigm in
which airway inflammation is persistently dominated by
neutrophils rather than eosinophils is now recognized in
a surprisingly large proportion of patients with asthma.”
This undoubtedly contributes to the unexpectedly high
frequency of corticosteroid resistance among these
patients,’ as neutrophilic inflammation is notoriously
refractory to the actions of these agents.

Over a 50-year span, our appreciation of prostanoid
actions in the airways has evolved from mere regulators
of airway tone to molecules influencing virtually every
aspect of structural and inflammatory cell biology.
Inhalation of exogenous PGE, or its analogs has long
been known to result in bronchodilation as well as pro-
tection against early- and late-phase bronchoconstric-
tion induced by various triggers in people with
asthma.?2 Unfortunately, these beneficial actions are
counterbalanced by the fact that inhaled PGE, also
induces severe cough in animal models and human
subjects.’>!* However, it is now apparent that PGE,
mediates cough via the EP3 receptor's but bronchodila-
tion in humans via EP4,'s offering the possibility of
treatment with a receptor-selective agonist. Limited data
reveal that inhalation of a PGI, analog in patients with
asthma failed to elicit bronchodilation'”'¢ but did lower
the cough threshold."

Although PGE, is classically linked to the cardinal manifes-
tations of inflammation (pain, fever, and swelling), these
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Figure 1 - Prostanoid synthesis, receptors, and signaling. A, Arachidonic acid is released from membrane phospholipids by cPLA, and can be metabo-
lized by the constitutive COX-1 or inducible COX-2 enzymes to make PGH,. Subsequently, PGH, serves as substrate for terminal PG synthases, which
complete the biosynthesis of specific PG products, including PGE, and PGL, also known as prostacyclin. These prostanoids can act in both autocrine and
paracrine fashion on target cells by binding to cell surface 7-transmembrane G protein-coupled receptors. B, PGE, acts through four different receptors
(EP1-EP4), while prostacyclin acts via one (IP). EP2, EP4, and IP are coupled to a stimulatory G, protein subunit, which activates AC. AC catalyzes
conversion of ATP to 3',5'-cAMP, a second messenger in intracellular signaling involved in various biologic processes. The degradation of cAMP into
AMP is mediated by PDEs. The prototypic effector for cAMP actions is PKA, a tetramer consisting of two C and two R subunits. Binding of
cAMP to R subunits causes their dissociation from C subunits, enabling the release of free C subunits to phosphorylate substrate proteins in the cytosol
or nucleus. cAMP can also activate Epacs. Binding of cAMP causes Epacs to catalyze exchange of bound GDP for GTP and, hence, activation of Rapl.
EP3 is coupled to an inhibitory G, subunit, which inhibits the production of cAMP from ATP. EP1 is coupled to a G, subunit, which activates PLC.
PLC catalyzes the formation of DAG and IP3 from phosphatidylinositol. DAG can activate PKC, which can, in turn, phosphorylate target proteins.
IP3 translocates to the ER, where it triggers an increase in intracellular Ca>* and activates numerous signaling events. AC = adenylyl cyclase; ATP = adenosine
triphosphate; C = catalytic; Ca’* = calcium; cAMP = cyclic adenosine monophosphate; COX = cyclooxygenase; cPLA, = cytosolic phospholipase A ;
DAG = diacylglycerol; EP = E prostanoid receptor; Epac = exhange protein activated by cyclic adenosine monophosphate; ER = endoplasmic reticulum;
GDP = guanosine diphosphate; GTP = guanosine triphosphate; IP = I prostanoid receptor; IP3 = inositol 1,4,5-trisphosphate; PDE = phosphodiesterase;
PG = prostaglandin; PGH, = prostaglandin H,; PKA = protein kinase A; PKC = protein kinase C; PLC = phospholipase C; R = regulatory; Rapl =

Ras-related protein 1.

effects reflect its actions on nerves, the hypothalamus,
and the microvasculature, respectively, rather than on
leukocytes. In fact, its direct effects on inflammatory
cell functions are overwhelmingly inhibitory, and such
effects have been validated in mouse models of allergic
asthma. These leukocyte suppressive actions of PGE,
are invariably mediated by increased intracellular
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cAMP (via EP2 > EP4 activation), and many are shared
by PGL,-IP signaling. Pertinent such actions of PGE,
and/or PGI, include inhibition of mast cell secretory
responses,? trafficking of neutrophils?! and eosinophils,
dendritic cell activation or function,??* and cytokine
generation and proliferation by both type 1 Th cell and
type 2 Th cell subsets of T lymphocytes?*2; these are
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summarized in Table 1.151920222325-41 Tnterestingly, PGE,
also promotes the differentiation and function of regu-
latory T cells, which restrain immune responses.*
Potentially pro-inflammatory actions of these prostanoids
include their ability to promote (1) IgE production by
B cells®; (2) type 17 Th cell differentiation,?®32 which
would be expected to enhance neutrophilic inflamma-
tion (which, however, might be counteracted by their
inhibition of cell trafficking); and (3) dendritic cell
maturation.?® Consistent with its net antiinflammatory
actions, inhaled PGE, also attenuates levels of eosinophils®
and PGD,* in the airways of allergen-challenged
patients with asthma.

Prostanoids also exert salutary actions on various
aspects of airway remodeling (Table 1). For example,
PGE, promotes airway epithelial cell wound closure?
while inhibiting proliferation of airway* and vascular#
smooth muscle cells. PGE, also inhibits survival,* pro-
liferation,* collagen synthesis,?” and myofibroblast dif-
ferentiation? in lung fibroblasts. PGI, likewise inhibits
fibroblast functions® in vitro and airway remodeling in
asthma models in vivo.* The effects of prostanoids on
lower airway mucus secretion are poorly understood, but
PGE, has been reported to inhibit allergen-induced mucus
hypersecretion in nasal epithelium of sensitized rats.*

The bronchoprotective function of endogenous prostanoids
is illustrated by the syndrome of aspirin-exacerbated
respiratory disease, also known as aspirin-induced

asthma, which occurs in 5% to 10% of people with
asthma.® In these susceptible patients, ingestion of
aspirin or other COX-1 inhibitors unleashes a marked
activation of mast cells and eosinophils. COX-1 inhibi-
tors likewise augment type 2 Th cell responses and
features of allergic inflammation when administered
during antigen sensitization in murine models.®* COX
inhibition does not distinguish among various candidate
protective prostanoids, but studies with specific receptor-
deficient mice support the potential contributions

of both PGE,-EP2% and PGIL,-IP? signaling as brakes on
inflammation. Support for disruption of the PGE,-EP2
brake as a basis for human aspirin-exacerbated respiratory
disease derives from observations that airway tissue from
these patients exhibits deficiencies in both PGE, levels™
and EP2 receptor expression,® and the association of
this syndrome with an EP2 gene polymorphism.

PGE, and PGI, in COPD

COPD is an umbrella term encompassing either of two
discrete types of lung response to inhalation of smoke
from combusted tobacco or biomass material, or a
combination of the two. Chronic bronchitis refers to a
primary airway response characterized by mucus
hypersecretion and bronchial wall thickening, while
emphysema describes a primary parenchymal response
characterized by alveolar wall destruction, which results
in loss of tethering and secondary collapse of airways.
Both forms of COPD involve chronic inflammatory

TABLE 1 | Effects of Prostanoids on Various Cell Types Pertinent to Asthma, COPD, or Both

Cell Type Relevant Disease Effects of PGE,-EP2/EP4 Signaling Effects of PGL-IP Signaling
Mast cells Asthma l (Torres et al20, Safholm et al??) {?
Dendritic cells Asthma/COPD 1T (Kalinskizs) 1 (Idzko et al23)
Neutrophils Asthma/COPD 4 (Mizuno et al2t) 4 (Mizuno et al2t)
Eosinophils Asthma 1 (Sturm et al22) 1 (Zhou et al»)
Macrophages Asthma/COPD 1 (Aronoff et al30) 1 (Aronoff et al31)
Thi cells COPD 1 (Kalinskiz2s) 1 (Zhou et al2)
Th2 cells Asthma | (Zaslona et al2s) 1 (Zhou et al2)
Th17 cells Asthma/COPD T (Kalinskizs) T (Zhou et al3?)
CD8 T cells COPD 1 (Ahmadi et al33) ?

T regulatory cells Asthma/COPD T (Baratelli et al34) ?

B cells/IgE Asthma T (Fedyk and Phipps3s) ?
Epithelial cells Asthma/COPD T (Savla et al3) ?
Fibroblasts Asthma/COPD 4 (Liu et al3??) I (Kohyama et al38)
Smooth muscle cells Asthma 1 (Mori et al?, Lundequist et al) 1 (Jain et al*)
Airway sensory nerves Asthma/COPD ne (Maher et al5) T (Ishiura et alt9)

T = activation; { =inhibition; 4T = activation and inhibition of distinct functions; ne = no effect; EP = E prostanoid receptor; IP =1 prostanoid

receptor; PG = prostaglandin; ? = effect unknown; Th = T-helper.
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processes driven primarily by expanded populations of
activated macrophages, neutrophils, and lymphocytes
(particularly CD8 T cells), all of which elaborate inflam-
matory mediators, oxidants, and proteases.’> COPD is
also characterized by accelerated senescence of fibro-
blasts,’ and the accompanying deficiency of parenchy-
mal extracellular matrix in emphysema has been termed
“mesenchymal insufficiency.”

In contrast to what has been observed in patients with
asthma,’ PGE, levels are increased in respiratory secre-
tions from patients with COPD.*% Increased PGE,-
EP2/4 signaling has also been observed in fibroblasts
isolated from the lung parenchyma of patients with
emphysematous COPD, reflecting overexpression of
COX-1 and -2¢" as well as EP2/4 receptors.* Interest-
ingly, this overexpression profile of COX-2/EP2 is the
inverse of the deficiency profile found in fibroblasts
from patients with idiopathic pulmonary fibrosis, 2
a condition characterized by “mesenchymal excess.”
Fibroblasts from patients with COPD likewise synthe-
size higher levels of PGI, than do control cells.®*

In view of their ability to promote fibroblast senes-
cence’ and to broadly inhibit fibroblast survival and
activation, increased PGE, and/or PGI, signaling could
contribute to the impaired lung repairé' and the alveolar
destruction of emphysema. This provides a rationale

for a therapeutic strategy consisting of inhibition of
prostanoid synthesis and/or antagonism of EP2/4 or IP
receptors. Indeed, an ongoing US National Institutes of
Health-supported randomized proof-of-concept trialé*
will determine the ability of the COX inhibitor ibupro-
fen (as compared with placebo) to improve biochemical
measures of lung repair in the distal lung of patients
with emphysema. It should be noted, however, that
such a strategy is in apparent conflict with the observation
that administration of a stable PGI, analog protected
against cigarette smoke extract-induced emphysema in
rats.® It is pertinent that PGE, and PGI, also exert broad
suppressive actions on innate immune functions of
phagocytes,®3! so inhibition of their synthesis or receptors
might additionally overcome the increased susceptibility
to infection that characterizes and contributes to disease
exacerbations in COPD. By contrast, the subset of patients
with COPD whose clinical phenotype or gene expression
profile’” overlaps that of classic type 2 Th cell-predominant
asthma might benefit from EP2/4 or IP agonism.

Conclusions

Based on their capacity to protect against bronchocon-
striction, activation of inflammatory cells (including
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T cells, eosinophils, and neutrophils), and features of
airway remodeling, analogs of PGE, or PGI, have signif-
icant appeal for the treatment of asthma as multifaceted
therapeutic substances whose repertoire includes critical
actions not shared by inhaled corticosteroid/long-acting
B agonist—the current gold standard controller agent.
A dual EP2/4 agonist would seem to hold the greatest
potential as an inhalational agent targeting all of these
component processes without eliciting cough. How to
best target prostanoid pathways in COPD may be more
complicated. A similar approach of exogenous EP2/4
agonism may likewise be useful in patients with COPD
whose clinical phenotype overlaps substantially with
that of asthma. However, in those with a predominant
emphysematous phenotype, inhibition of excessive PGE,
synthesis (using nonselective COX inhibitors) or sig-
naling (using inhaled or systemic EP2/4 antagonists)
might attenuate the mesenchymal insufficiency of this
form of disease. A similar approach may boost innate
immune function and, thus, be useful in patients who are
prone to COPD exacerbation. Maximizing the thera-
peutic potential inherent in these pathways will require
a better understanding of regulation of prostanoid syn-
thesis, receptors, and signaling in the airway vs the
parenchymal compartments and among patients with
various phenotypes and endotypes of COPD. The possi-
bility that superior pharmacologic precision and, hence,
therapeutic specificity and flexibility could be accom-
plished by bypassing the prostanoid receptors themselves
and selectively activating or inhibiting the downstream
cAMP effectors PKA or Epac remains entirely unex-
plored to date.
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