

cysteinyl leukotrienes and their receptors (14, 15), and overexpression of PgD₂ (16). Thus, it is intriguing that the current study, although confirming the presence of a Th2 signature, does demonstrate a hint at other distinctive features of AERD. Although excessive granulocyte-macrophage colony-stimulating factor and MCP-1 may support a more robust Th2 process, the dearth of tissue plasminogen activator is quite intriguing, suggesting a role for the procoagulation pathway and fibrin deposition that perhaps drives some of the aggressive remodeling that defines this disorder. Activation of the coagulation pathway might also be consistent with recent studies demonstrating a role for platelet-associated inflammation in AERD (17), which is another area of research largely unexplored in these diseases and inviting further research. ■

Author disclosures are available with the text of this article at www.atsjournals.org.

Larry Borish, M.D.
University of Virginia Health Systems
Charlottesville, Virginia

References

1. Stevens WW, Ocampo CJ, Berdnikovs S, Sakashita M, Mahdavinia M, Suh L, Takabayashi T, Norton JE, Hulse KE, Conley DB, et al. Cytokines in chronic rhinosinusitis: role in eosinophilia and aspirin-exacerbated respiratory disease. *Am J Respir Crit Care Med* 2015; 192:682-694.
2. Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, Bachert C, Baraniuk J, Baroody FM, Benninger MS, et al. American Academy of Allergy, Asthma and Immunology; American Academy of Otolaryngic Allergy; American Academy of Otolaryngology-Head and Neck Surgery; American College of Allergy, Asthma and Immunology; American Rhinologic Society. Rhinosinusitis: establishing definitions for clinical research and patient care. *Otolaryngol Head Neck Surg* 2004;131:S1-S62.
3. Mygind N, Dahl R, Bachert C. Nasal polyposis, eosinophil dominated inflammation, and allergy. *Thorax* 2000;55:S79-S83.
4. Bachert C, Gevaert P, Holtappels G, Johansson SG, van Cauwenberge P. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. *J Allergy Clin Immunol* 2001;107:607-614.
5. Ponikau JU, Sherris DA, Kephart GM, Kern EB, Gaffey TA, Tarara JE, Kita H. Features of airway remodeling and eosinophilic inflammation in chronic rhinosinusitis: is the histopathology similar to asthma? *J Allergy Clin Immunol* 2003;112:877-882.
6. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Koth LL, Arron JR, Fahy JV. T-helper type 2-driven inflammation defines major subphenotypes of asthma. *Am J Respir Crit Care Med* 2009; 180:388-395.
7. Gevaert P, Lang-Loidolt D, Lackner A, Stammberger H, Staudinger H, Van Zele T, Holtappels G, Tavernier J, van Cauwenberge P, Bachert C. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. *J Allergy Clin Immunol* 2006;118:1133-1141.
8. Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P, Bachert C. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. *Allergy* 2006;61: 1280-1289.
9. Akdis CA, Bachert C, Cingi C, Dykewicz MS, Hellings PW, Naclerio RM, Schleimer RP, Ledford D. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. *J Allergy Clin Immunol* 2013;131:1479-1490.
10. Derycke L, Eyerich S, Van Crombruggen K, Pérez-Novo C, Holtappels G, Deruyck N, Gevaert P, Bachert C. Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. *PLoS One* 2014;9: e97581.
11. Adappa ND, Zhang Z, Palmer JN, Kennedy DW, Doghramji L, Lysenko A, Reed DR, Scott T, Zhao NW, Owens D, et al. The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. *Int Forum Allergy Rhinol* 2014; 4:3-7.
12. Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW, et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. *J Clin Invest* 2014;124:1393-1405.
13. Payne SC, Early SB, Huyett P, Han JK, Borish L, Steinke JW. Evidence for distinct histologic profile of nasal polyps with and without eosinophilia. *Laryngoscope* 2011;121:2262-2267.
14. Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JF, Austen FK, Holgate ST, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. *J Clin Invest* 1998;101:834-846.
15. Corrigan C, Mallett K, Ying S, Roberts D, Parikh A, Scadding G, Lee T. Expression of the cysteinyl leukotriene receptors cysLT(1) and cysLT(2) in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis. *J Allergy Clin Immunol* 2005;115:316-322.
16. Cahill KN, Bensko JC, Boyce JA, Laidlaw TM. Prostaglandin D₂: a dominant mediator of aspirin-exacerbated respiratory disease. *J Allergy Clin Immunol* 2015;135:245-252.
17. Laidlaw TM, Kidder MS, Bhattacharyya N, Xing W, Shen S, Milne GL, Castells MC, Chhay H, Boyce JA. Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. *Blood* 2012;119:3790-3798.

Copyright © 2015 by the American Thoracic Society

“B” for Bad, Beneficial, or Both? Lung Lymphoid Neogenesis in Chronic Obstructive Pulmonary Disease

Lymphoid neogenesis, the formation of tertiary lymphoid structures (1), within distal lung parenchyma indisputably characterizes advanced chronic obstructive pulmonary disease

(COPD) (2, 3). Many such lung lymphoid follicles (LLFs) contain germinal centers, indicating immunoglobulin class-switching. Some LLFs in advanced COPD produce auto-antibodies that could fuel lung destruction (4, 5). These findings make lung B cells highly suspicious, especially when congregating in LLF.

However, proximity does not prove culpability. It is challenging to know conclusively when LLF are detrimental and when they are responding appropriately to threatening microbial

The authors are supported by Merit Review Awards I01 CX000911 from the Clinical Science Research and Development Service and I01 BX001389 from the Biomedical Laboratory Research and Development Service, Department of Veterans Affairs; and U01 HL098961 and R01 HL114447 and Contract No. HHSN26820090016C from the National Heart, Lung, and Blood Institute, National Institutes of Health.

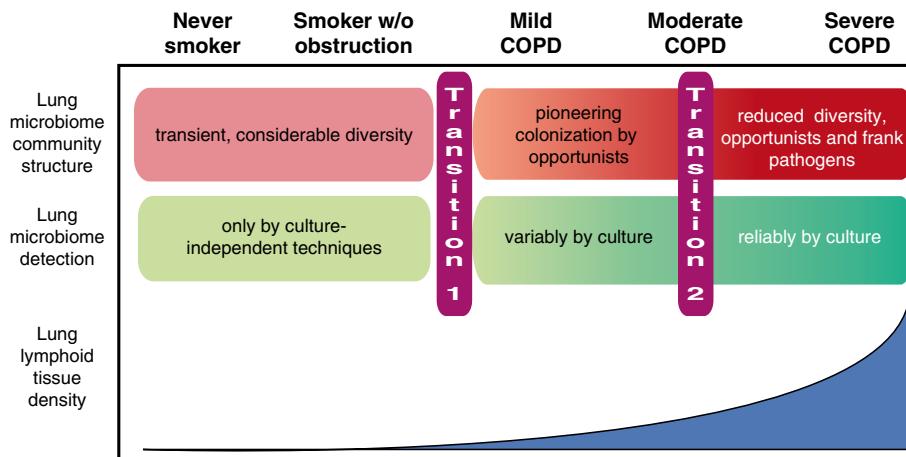
signals. The stakes on this question are substantial. COPD is on track to become the world's leading killer within this century. Therapies proven to arrest its progression in individual patients are lacking. B cells could be eliminated therapeutically in COPD using rituximab, if proven to be prudent. Are LLF B cells in advanced COPD bad, or beneficial? Or might they have begun good but become subverted by the processes they sought to control?

In this issue of the *Journal*, new clues come from two groups (6, 7) with long-term interest in this question. Polverino and colleagues (pp. 695–705) primarily used human lung tissue resected for clinical indications supplemented by *in vitro* experiments (6), whereas Seys and colleagues (pp. 706–718) also employed their established murine cigarette smoke-exposure model (7). Both studies convincingly associate LLF accumulation in COPD with dysregulation of B-cell activating factor (BAFF), and the latter found that blocking BAFF partially reduced lung pathology in mice (7).

BAFF is a 285-amino acid glycoprotein essential for the survival of conventional B cells beyond the first (T1) post-bone marrow stage. Known formally as tumor necrosis factor ligand superfamily member 13B (TNFSF-13B) (plus multiple aliases reflecting discovery by several groups), BAFF exists as a transmembrane protein (CD257) and as active cleaved and secreted soluble molecules. Its predominant sources are monocytes, macrophages, conventional and follicular dendritic cells, and some T cells. Human B cells do not normally produce BAFF, but can during Epstein Barr virus infection or after *in vitro* stimulation via their B-cell antigen receptor plus CD40 (8). BAFF deficiencies are associated with immunoglobulin deficiency, whereas excesses are found in autoimmune diseases including systemic lupus. BAFF binds to three receptors, including most specifically and avidly to BAFFR.

These interesting papers contain both congruent and complementary findings. Each elegantly demonstrated BAFF expression within human LLF. Seys and colleagues found increased lung concentrations of both BAFF messenger RNA and protein in Global Initiative for Obstructive Lung Disease (GOLD) stage II COPD, relative to never-smokers, but importantly, neither differed significantly from smokers without obstruction (7). Focusing on LLF and examining a wider COPD severity range, Polverino and colleagues demonstrated that BAFF expression by LLF B cells correlated directly with LLF size and COPD spirometric severity, and inversely with apoptotic B-cell detection (6). They further showed that cigarette smoke extract induced concentration-dependent effects on murine B cells *in vitro*: low levels induced BAFF, whereas high levels caused apoptosis that could be blocked by exogenous BAFF, unexpectedly in a nuclear factor- κ B-dependent manner (6). Closing the loop mechanistically, Seys and colleagues tested BAFF blockade in their murine model, using a decoy receptor (BAFFR-Fc) both prophylactically and therapeutically. BAFFR-Fc administration reduced LLF extent and lung inflammation and reduced emphysema, but only when used prophylactically, and then only as assessed by destructive index, but not by mean linear intercept.

Both studies meticulously employed cutting-edge techniques and a robust number of human subjects (146 [6] and 70 [7], respectively). Limitations are minor (e.g.,


immunolocalization was complicated by the likelihood that not all BAFF was cell-associated), leading to the prudent characterization of staining, as "in the vicinity of" B cells, CD4 $^{+}$ (but not CD8 $^{+}$) T cells, and fibroblastic reticular cells (7). The latter are one of three stromal cell types essential for lymphoid neogenesis (9), a point adding to mechanistic understanding of BAFF in COPD.

So, do these novel discoveries constitute another "smoking gun" (10) establishing adaptive immunity as central to COPD progression? Before reaching that verdict, we urge caution, based on the timing of LLF expansion, confirmed by both studies to be primarily late during COPD progression, and the dominant role in immune system development of interactions with microbes, especially bacteria.

In multiple longitudinal studies, FEV₁ declined more greatly in spirometrically mild COPD than in advanced disease. Yet lung B-cell (and T-cell) abundance is low in GOLD stage I COPD (2), unlike the expansion of lung mononuclear phagocytes that begins soon after initiating smoking (11). This disparity between histology and spirometry suggests that, despite the intriguing effects of BAFF blockade in mice (7), whatever processes drive the initial transition from preserved to impaired lung function in some human smokers (Figure 1, *transition 1*), they are unlikely to be caused by lung B cells, as neither they nor LLF are common at that stage.

Similarly, although the lung microbiome community structure of smokers without airflow obstruction does not differ from that of never-smokers (12), what data exist (13) indicate it changes progressively in the fraction of smokers who progress to COPD (Figure 1, *transition 2*). No publications have yet directly related reduced lung microbiome diversity to LLF extent. Nevertheless, reasonable doubt should exist that early lung lymphoid neogenesis develops independent from lung microbiome alteration, which neither study claims. Conversely, autonomous BAFF elaboration could plausibly contribute to dysregulated inflammation or even frank autoimmunity in advanced COPD, especially combined with the known defective function of both T-regulatory and T-helper cells (14, 15).

Hence, important new insights have been gained from these papers (6, 7), but even more must be learned before novel therapies, including the several BAFF-inhibitory drugs under evaluation in multiple myeloma, can be contemplated for use in COPD. The markedly abnormal lung microbiome of some patients with advanced COPD likely drives symptoms and contributes to exacerbation severity, and thereby mortality. Specific IgA may be important for these patients, and is certainly essential to maintain homeostasis with our gut microbiome. Moreover, B cells also inhibit inflammation via IL-10 or IL-35 (16), which merit greater study in COPD. Before testing BAFF elimination, it will be crucial to identify and validate biomarkers that define in exactly which COPD phenotypes lung B cells are misbehaving versus beneficial. Intervening earlier in COPD progression will require determining whether lung dysbiosis, perhaps in association with specific COPD endotypes, causes the initial transition to airflow obstruction (Figure 1, *transition 1*) or is simply a biomarker for the processes that do. Both goals can be accomplished most expediently by longitudinally analyzing the interplay of pulmonary immunity, lung microbiome, and clinical outcomes in cohorts

Figure 1. Relationship between lung microbiome community structure and intrapulmonary lymphoid tissue abundance in cigarette smoking-induced chronic obstructive pulmonary disease (COPD). In never-smokers and smokers without airflow obstruction, lung bacterial communities are diverse and shaped by repeated elimination of bacteria derived from the upper airway. Lung bacteria are detectable only by sequencing, and some may be nonviable. In mild to moderate COPD, although sequencing indicates that microbe numbers are not necessarily greater, they become variably detectable by culture (indicating viability). Whether this change (*transition 1*) causes obstruction or is a marker of shared underlying causes is undefined. A further change occurs in moderate to severe COPD (*transition 2*), with reduced diversity and predominance of opportunistic and even pathogenic species. The relationship of this transition to spirometric severity differs between COPD phenotypes, and whether it drives progression outside exacerbations is unproven. Importantly, expansion of lung lymphoid follicles occurs relatively late during pathogenesis and parallels altered microbial community structure.

of patients with COPD of distinct phenotypes and a range of severities. ■

Author disclosures are available with the text of this article at www.atsjournals.org.

Acknowledgment: The authors thank Dr. Robert P. Dickson, Dr. Peter M. Henson, Dr. Carlos H. Martinez, and all the members of the SPIROMICS Steering Committee for helpful discussions.

Jeffrey L. Curtis, M.D.
Pulmonary and Critical Care Medicine Section
VA Ann Arbor Healthcare System
Ann Arbor, Michigan
and

Division of Pulmonary and Critical Care Medicine
and
Graduate Program in Immunology
University of Michigan Health System
Ann Arbor, Michigan

Christine M. Freeman, Ph.D.
Division of Pulmonary and Critical Care Medicine
University of Michigan Health System
Ann Arbor, Michigan
and

Research Service
VA Ann Arbor Healthcare System
Ann Arbor, Michigan

Gary B. Huffnagle, Ph.D.
Division of Pulmonary and Critical Care Medicine
and
Department of Microbiology & Immunology
University of Michigan Health System
Ann Arbor,

ORCID ID: 0000-0001-5191-4847 (J.L.C.).

References

- Ruddle NH. Lymphatic vessels and tertiary lymphoid organs. *J Clin Invest* 2014;124:953–959.
- Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. *N Engl J Med* 2004;350:2645–2653.
- van der Strate BW, Postma DS, Brandsma CA, Melgert BN, Luinge MA, Geerlings M, Hylkema MN, van den Berg A, Timens W, Kerstjens HA. Cigarette smoke-induced emphysema: A role for the B cell? *Am J Respir Crit Care Med* 2006;173:751–758.
- Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, Green L, Hacken-Bitar J, Huh J, Bakaeen F, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. *Nat Med* 2007;13:567–569.
- Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, Csizmadia E, Zhang Y, Sciurba FC, Duncan SR. Autoantibodies in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2008;177:156–163.
- Polverino F, Cosio BG, Pons J, Lauchó-Conterras M, Tejera P, Iglesias A, Rios A, Jahn A, Sauleda J, Divo M, et al. B cell-activating factor: an orchestrator of lymphoid follicles in severe chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2015;192:695–705.
- Seys LJM, Verhamme FM, Schinwald A, Hammad H, Cunoosamy DM, Bantsimba-Malandra C, Sabirsh A, McCall E, Flavell L, Herbst R, et al. Role of B cell-activating factor in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2015;192:706–718.
- Tangye SG, Bryant VL, Cuss AK, Good KL. BAFF, APRIL and human B cell disorders. *Semin Immunol* 2006;18:305–317.
- Aguazzi A, Kranich J, Krautler NJ. Follicular dendritic cells: origin, phenotype, and function in health and disease. *Trends Immunol* 2014;35:105–113.
- Kheradmand F, Shan M, Corry DB. Smoking gun: mature dendritic cells in human lung provide clues to chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2009;180:1166–1167.
- Niewoehner DE, Kleinerman J, Rice DB. Pathologic changes in the peripheral airways of young cigarette smokers. *N Engl J Med* 1974;291:755–758.
- Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, et al.; Lung HIV Microbiome Project. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. *Am J Respir Crit Care Med* 2013;187:1067–1075.

13. Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell JD, Brothers JF, Erb-Downward JR, Huffnagle GB, Hayashi S, Elliott WM, *et al.* The host response to the lung microbiome in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2015; 192:438–445.
14. Barceló B, Pons J, Ferrer JM, Sauleda J, Fuster A, Agustí AG. Phenotypic characterisation of T-lymphocytes in COPD: abnormal CD4+CD25+ regulatory T-lymphocyte response to tobacco smoking. *Eur Respir J* 2008;31:555–562.
15. Freeman CM, McCubbrey AL, Crudgington S, Nelson J, Martinez FJ, Han MK, Washko GR Jr, Chensue SW, Arenberg DA, Meldrum CA, *et al.* Basal gene expression by lung CD4+ T cells in chronic obstructive pulmonary disease identifies independent molecular correlates of airflow obstruction and emphysema extent. *PLoS One* 2014;9:e96421.
16. Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. *Nat Rev Immunol* 2015;15:441–451.

Copyright © 2015 by the American Thoracic Society

Low-Flow Extracorporeal Carbon Dioxide Removal Moving Closer to Reality

In patients with acute respiratory failure, invasive mechanical ventilation may be applied to ensure adequate gas exchange while unloading the respiratory muscles. However, the consequences of invasive mechanical ventilation may include ventilator-associated pneumonia and ventilator-induced lung injury (VILI), and in patients with obstructive lung disease, dynamic hyperinflation and worsening of intrinsic positive end-expiratory pressures may result (1).

Lung-protective ventilation strategies, as originally defined by the ARDSNet ARMA trial, using low tidal volumes and limited airway pressures, aim at minimizing stress and strain in patients with the acute respiratory distress syndrome (ARDS) (2). More recent findings suggest that at least in some patients with ARDS, the conventional strategy may not be protective enough to prevent tidal hyperinflation (3), and that plateau airway pressures lower than 30 cm H₂O may be required to further reduce VILI (4). As a logical consequence, the concept of ultraprotective ventilation has been introduced (5). However, such an approach, as well as any attempt to limit delta pressure, further reduces alveolar ventilation, thus increasing Pa_{CO₂} and ultimately lowering pH values. In the 1970s, the idea arose to separately regulate ventilation and oxygenation by combining invasive mechanical ventilation with an extracorporeal support device aimed mainly at CO₂ removal (6). The amount of CO₂ removed by the extracorporeal circuit directly corresponds with the extent to which alveolar ventilation can be reduced.

The invasiveness of extracorporeal lung support is closely related to the amount of blood that has to be pumped through an artificial lung. As CO₂ removal is highly dependent on the partial pressure gradient between the dissolved CO₂ in the blood phase and the CO₂ in the gas phase of an oxygenator, the use of low-flow extracorporeal lung support techniques has been suggested for CO₂ removal to compensate for the reduced alveolar ventilation in patients with hypercapnic respiratory failure or to apply ultraprotective ventilator settings in patients with ARDS.

The rationale for high-flow extracorporeal membrane oxygenation is to rescue patients from acute life-threatening hypoxemia, which might justify the higher risks associated with the use of large cannulas and high blood flow rates. The rate of complications reported using pumpless arteriovenous systems or pump-driven mid- to high-flow venovenous extracorporeal assist devices ranges between 10 and 25% and might even be higher (7). The theoretical rationale behind the use of low-flow extracorporeal support is to use smaller cannulae and lower extracorporeal blood flow rates, removing CO₂ directly from the blood to modulate the degree of VILI or dynamic hyperinflation, to avoid endotracheal

intubation during noninvasive ventilation, or to allow early extubation and weaning from invasive mechanical ventilation (7–12). Enhancing the efficiency of CO₂ removal is the key to minimizing blood flow requirements, and therefore cannula size. With current technology, lower blood flows limit the amount of CO₂ removal, and therefore lessen the potential benefits.

In this issue of the *Journal*, Zanella and colleagues (pp. 719–726) report on the successful use of an electrodialysis chamber integrated into an extracorporeal circulation system to significantly increase the amount of dissolved CO₂ in the blood before it passes through a conventional oxygenator, so-called respiratory electrodialysis (13). With this set up, the authors were able to demonstrate that, while using the same blood flow, nearly double the amount of CO₂ per minute could be removed from the blood of healthy pigs when compared with a conventional extracorporeal CO₂ removal device.

Zanella and colleagues developed the very clever concept of increasing the CO₂ partial pressure in the blood phase by increasing the amount of dissolved CO₂ through acidification. Their first approach consisted of blood acidification with hydrochloric acid or lactic acid, referred to as “acid load CO₂ removal, or ALCO₂R” (14). ALCO₂R increased membrane lung CO₂ removal to 50% of the total carbon dioxide production at a blood flow rate of 250 ml/minute by converting bicarbonate ions into dissolved CO₂ via acidification with metabolizable acids for blood entering a membrane lung, which provided the proof of principle. The current, more sophisticated approach uses an electrodialysis chamber for blood acidification without adding any external acid valences. With this approach, the authors nearly doubled the CO₂ removal rate for a given blood flow, thus opening the window for more efficient CO₂ removal, without the need to infuse exogenous acid. A similar technique immobilizes carbonic anhydrase on the surface of the membrane to improve CO₂ removal efficiency by enzymatically releasing CO₂ from serum bicarbonate (15). Reports on this technique, although very interesting, suggest it may currently be less effective than respiratory electrodialysis, and technical hurdles remain.

Zanella and colleagues provide evidence that their set-up is mostly free of serious adverse effects. Certainly, further studies are needed to better define the potential effects of the rapid pH and electrolyte shifts within the device, which are required for the technique, on the functionality of erythrocytes and other corpuscular blood components. The authors point out that a 40% increase in serum creatinine levels was noted in the pigs. This is clearly something that requires clarification in further studies of this technique. It must also be noted that the experiments were