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Introduction

Inflammation is an important contributor to the pathology of diseases implicated in skeletal
muscle dysfunction. A number of disorders including inflammatory myopathies and chronic
obstructive pulmonary disorder (COPD) are characterized by chronic inflammation or
elevation of the inflammatory mediators. While these disease states exhibit different
pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal
muscle physiology. Pro-inflammatory cytokines are key contributors to chronic
inflammation found in many of these pathologies. This section of the review focuses on
some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and
inflammatory myopathies that display skeletal muscle atrophy and also provides the reader
an overview of the mediators of inflammation, their signaling pathways, and mechanisms of
action.

Myogenic Regulatory Factors

Skeletal muscle arises from mesodermal precursor cells whose differentiation is controlled
by four highly conserved basic loop helix (bHLH) proteins known as Myogenic Regulatory
Factors (MRFs). These MRFs, namely MyoD, Myf5, MRF4, and myogenin have
overlapping patterns of gene expression. However, each plays a distinct role in myogenesis?.
Myogenin is the only MRF required for viability? 3. Mice lacking myogenin die at birth and
have severe muscle defects. Although the absence of Myf5, MRF4, and MyoD is not lethal,
each mutant nevertheless exhibits a distinct phenotype®.

Signaling pathways involved in skeletal muscle development

In response to environmental cues, skeletal muscle activates a variety of signaling pathways
to undergo remodeling and sustain a muscle performance. The Wnt pathway is required
during embryonic muscle development as well as during muscle stem cell self renewal and
differentiation in the adult®. Insulin-like growth factor (IGF-1) exerts a tremendous
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influence on skeletal muscle proliferation and myoblast differentiation. IGF-1 signaling also
induces hypertrophy to skeletal muscle cells by stimulating the phosphatidylinositol-3
kinase (PI3K)/Akt pathway, which activates mTOR and other downstream targets that
stimulate protein synthesis® 7. Mice null for the IGF-1 receptor exhibit reduced skeletal
muscle mass and growth retardation®: ®, whereas muscle specific overexpression of IGF-1
causes muscle hypertrophy and increases protein synthesis.1% 11: 12, Fibroblast growth factor
(FGF) is another signaling effector that plays essential roles in skeletal muscle development,
as loss of FGFR1 signaling leads to reduced skeletal muscle mass and perturbed myofiber
organization!3, While some pathways positively influence the development of skeletal
muscle, others act as negative modulators. During the induction of muscle atrophy, distinct
transcriptional pathways are activated, which catalyze increased protein turnover and
degradationl4 15, One such pathway is the ubiquitin-proteasome systemZ®. In multiple
models of skeletal muscle atrophy, E3 ubiquitin ligase genes, MurF1 and MAFbx/Atrogin-1
are significantly elevated!”: 18:19: 20 The inhibition of MuRF1 and MAFbx/Atrogin-1
involves FoxO family of transcription factors, which are phosphorylated by Akt 2122, Upon
dephosphorylation, FoxO transcription factors namely FoxO1 and FoxO3 translocate to the
nucleus and upregulate MurF1 and MAFbx/Atrogin-121.

In addition, the nuclear factor kappa B (NF-xB) signaling pathway has also been implicated
in regulating the atrophy of skeletal muscle. In cultured C2C12 myoblasts NF-«xB is
essential for TNF-a, to mediate an inhibition of muscle differentiation?3. Likewise, skeletal
muscle specific over expression of the NF-xB pathway promotes severe atrophy via the
regulation of MuRF1.

Regeneration of skeletal muscle post damage or injury

Skeletal muscle cells possess the remarkable ability to regenerate after injury. Whether the
injury is inflicted on a day-to-day basis and involves normal wear and tear, or a direct
physical trauma like extensive physical exercise, the process of muscle regeneration is
divided into two main phases; a degenerative phase followed by a regenerative phase. The
degenerative phase is characterized by extreme muscle necrosis and disruption of the
muscular architecture. This early phase is also accompanied by accumulation of an
inflammatory infiltrate and activation of quiescent, resident muscle stem cells called satellite
cells, which are essential for efficient muscle regeneration?4 25, The signals generated from
an injured muscle are thought to activate inflammatory cells residing within the muscle,
which in turn provide chemotactic signals to other circulating inflammatory cells.
Neutrophils promote revascularization in muscle cells and are amongst the first cells to
arrive at the site of injury. Among the cells of the myeloid lineage, eosinophils and
macrophages also positively influence muscle regeneration. Eosinophils promote muscle
regeneration by removing cellular debris and activating fibroblastic/adipogenic
mesenchymal progenitors (FAPs)26. Two distinct populations of macrophages, which are
present at the site of injury at different times, play key roles in muscle regeneration2’. The
pro-inflammatory M1 subtype is present 1 or 2 days post-injury and coincides with the
degenerative phase of muscle repair, marked by activation and proliferation of satellite cells.
Conversely, the anti-inflammatory M2 subtype peaks at 4 to 5 days post-injury and is
associated with the regenerative phase of muscle repair?’. Targeted ablation of neutrophils,
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monocytes, and macrophages severely disrupts muscle regeneration demonstrating their
importance in the repair process. Recent studies have highlighted the role of non satellite
cells in muscle regeneration. These include mesoangioblasts, which are associated with
blood vessels?8: 29 30 and interstitial cells that express PICs, PW1 interstitial cells (PW1)3L.
Furthermore, a permissive cellular environment that promotes interactions between FAPs
and satellite cells helps regulate muscle homeostasis32 33,

The regenerative phase of muscle repair is characterized by cellular proliferation of the
activated satellite cells, which re-enter the cell cycle and expand. Activated satellite cells
express the transcription factor Pax7 which is required for expansion and cell survival, and
further express MyoD that commits cells to a myoblast fate34: 35 36, The process of
differentiation is largely driven by MyoD and other MRFs such as myogenin, which in part
regulate the decline of Pax7, which if left intact, signals cells to self-renew to satellite cells
for a subsequent round of regeneration 37. Committed myoblasts proceed through the
differentiation program, characterized by fusion with neighboring myoblasts, to form
terminally differentiated, multinucleated myotubes. A successfully regenerated, mature
muscle fiber is almost indistinguishable from a non-injured, undamaged muscle fiber.

of inflammation

During injury to adult skeletal muscle there are a number of key inflammatory mediators
that govern the repair process. Both physiologic and pathogenic activities have been
attributed to a selective number of inflammatory cytokines described below.

Interferon gamma (IFN-vy)

IFN-vy belongs to the type Il IFNs and is secreted by CD4* T helper cells, CD8 cytotoxic T
cells, and natural killer cells (NK) cells38: 39, Recent evidence suggests that macrophages,
dendritic, B and professional antigen presenting cells (APCs) also secrete FN-y40: 41; 42,43,
Mice lacking IFN-vy are born normally, but are more susceptible to bacterial, viral, and
parasitic infections**. IFN-y acts as an antiviral factor and influences a myriad of cellular
and physiological processes. In addition, IFN-y provides cytotoxic immunity by
upregulating the major histocompatibility complex (MHC) class I and class 11 antigens. IFN-
v and IL-12 are the main cytokines that direct the primary response to antigen towards Thl
differentiation, while IL-4 is responsible for directing the antigen response towards a Th2
differentiation. IFN-y stimulates IL-12 production in phagocytes and inhibits 1L-4
secretion?>: 46, The cytokine also primes macrophages for a rapid and elevated response to
lipopolysaccharide (LPS) and toll-like receptor (TLR) agonists*?, and contributes to
multiple M1 macrophage dependent activities that include enhanced pinocytosis, increased
microbial killing activity, induction of the NADPH-dependent phagocyte oxidase (NADPH
oxidase) system, and priming for NO (nitric oxide) production?’.

IFN-y primarily signals through the JAK (Janus kinase)-STAT1 (Signal transducer and
activator of transcription) pathway. The IFN-y receptor comprises of two signal transducing
IFNGR2 chains, with associated signaling machinery, and two ligand binding IFNGR1
chains. Both the IFNGR1 and IFNGR?2 belong to the class 11 cytokine signaling family*8.
When IFN-y binds to its receptor, the receptor associated protein tyrosine kinases, JAK1 and
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JAK?2 are activated*®. This leads to the phosphorylation of STAT1, which then dimerizes
and subsequently translocates to the nucleus, where it binds to its target promoters, including
the pIV promoter of CIITA%, to activate gene expression. The JAK1-STAT1 pathway has
been shown to play prominent roles in myogenesis®l. JAK1 and STAT1 are required for
myoblast proliferation and display a potent anti-differentiation effect, which appears specific
to STATL, as similar activities cannot be reproduced by family members, STAT2, 3, 5A, or
5B.

Numerous studies have also shown that IFN-y influences skeletal muscle homeostasis and
repair®2, Transient administration of exogenous IFN-y following injury has been shown to
improve healing and limit fibrosis®3. This response is consistent with the phenotype that
IFN-y null mice exhibit defective muscle regeneration and development of fibrosis®2.
During early stages of muscle regeneration, IFN-y expression is upregulated in muscle
itself 52 and its levels decline as the regeneration stage transitions from proliferation to
differentiation. Mechanistically, IFN-y improves muscle repair by regulating the migration
of specific immune cells at the site of injury by upregulating chemokine and adhesion
molecules that include chemokine C-C motif ligand 5 (Ccl-5, RANTES) and

Ccl-254 5556 57 and intracellular adhesion molecule (ICAM).

Similar to inflammatory cytokines like TNF, where the effects on skeletal muscle
differentiation appear to be dose dependent®8, IFN-y is also able to impede myogenesis
when administered in high doses in vitro. In addition, IFN-y expression is elevated in mdx
mouse muscles, which is a mouse model for muscular dystrophy, at a time of macrophage-
mediated muscle damage>®. Ablation of IFN-y in the mdx animals improves muscle function
and promotes muscle strength®. These types of studies reinforce the dose dependent effects
of IFN-y and show that at chronic levels this cytokine exhibits anti-myogenic properties.
Recently, the mechanism by which IFN-y inhibits muscle differentiation was resolved. The
cytokine induces the expression of the MHC class |1 transactivator, CIITA, which acts by
directly binding to and inhibiting the function of myogenin®L. The absence of myogenin
function leads to a reduction in muscle specific gene expression and transcription factors
that drive terminal differentiation81: 62: 63 However, in IFN-y treated myotubes, myogenin
expression is unaffected. CIITA mediates the anti-differentiation activity of IFN-y activity
by catalyzing the initial recruitment of a Jumonji family protein JARID2, followed by the
subsequent recruitment of the polycomb repressive complex 2 (PRC2) to the promoters of
muscle specific genes®4. Studies have shown that the PRC2 complexes are silenced during
muscle differentiation8®, However, elevated levels of circulating IFN-y maintain the
expression of PRC2 which silences muscle specific genes by methylating the DNA
associated histone mark, H3K2764,

Interleukin-17 (IL-17)

IL-17A and IL-17F belong to a six-member family of IL-17 cytokines®®. Specialized T cells,
known as Th17 cells, are the primary source of IL-17A and IL-17F in adaptive

immunity®7: 68 However, other sources such as lymphocytes and neutrophils also contribute
to IL-17 production8?, IL-17A, previously termed as CTLAS, signals via surface receptors
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(IL-17R) on target cells. IL-17RA was the first receptor to be identified, followed by the
subsequent identification of IL-17RB, IL-17RC, IL-17RD, IL-17RE70: 7172,

IL-17 mainly mediates immune function by stimulating the production of pro-inflammatory
cytokines TNF-a, IL-6, IL-1B, and chemokines C-X-C motif ligand 1 (CXCL1), C-C- motif
ligand 2 (CCL2), CCL7, CCL20, as well as matrix metalloproteinase 3 and 9 (MMP3 and
9)73: 74, Albeit its importance in protecting the host from invasive pathogens, similar to IFN-
v, dysregulated IL-17 production can result in excessive cytokine production and chronic
inflammation leading to tissue damage and autoimmunity. The IL-17 family has been
implicated in several autoimmune diseases including multiple sclerosis (MS), RA and
inflammatory bowel disease’® 76, Recent studies have shown that IL-17 mRNA is elevated
in muscle biopsies from Duchenne muscular dystrophy (DMD) patients suggesting a
possible pathogenic role’”.

Interleukin-6 (IL-6)

IL-6 is a pleiotropic cytokine which controls and coordinates multiple immune responses’8.
IL-6, unlike other cytokines has a unique property of exerting both pro and anti-
inflammatory effects depending on the local tissue mileu of the immune cells and the micro
environment’®. The 1L-6 family of cytokines includes 1L-11, IL-31, IL-27, leukemia
inhibitory factor (LIF), oncostatin M (OSM), ciliary inhibitory factor (CNTF),
andcardiotropin-1 (CT-1)7°. In classical IL-6 signaling, IL-6 exerts its signaling activities by
binding to the membrane bound IL-6R receptor on the target cells. Subsequently, IL-6/
IL-6R complex associates with a membrane glycoprotein receptor and a signal transduction
subunit, gp130, which homodimerizes to allow signal initiation and activation of the JAK-
STATS3, PI3K and ERK signaling pathways8% 81, The membrane bound IL-6 receptor,
however, is expressed on selected cells such as neutrophils, macrophages, hepatocytes, and
some T cells. IL-6 signaling can also occur in trans via gp130 and the soluble IL-6 receptor
(sIL-6R). The trans signaling is critical for lymphocyte trafficking during inflammation,
regulation of adhesion molecule expression on endothelial cells, and T cell proliferation
during colon cancer82: 83: 84, Studies have shown that an upregulation in circulating levels of
IL-6 enhances fat oxidation and improves glucose uptake.

Increasing evidence suggests that muscle cells are a source of IL-6. This cytokine is detected
in a contracting skeletal muscle after 30 minutes of exercise®>: 8: 87, In cultured C2C12
myoblasts, 1L-6 mRNA knockdown reduces muscle specific gene expression®8. I1L-6 has
also been identified as an essential regulator of muscle stem cell mediated hypertrophy89: 90,
IL-6 deficient mice exhibit severe muscle atrophy and loss of IL-6 results in proliferation
and migration defects in myoblasts possibly due to reduced activation of STAT38. In cases
of muscle injury, IL-6 levels dramatically increase, but in control animals the levels return to
normal unlike the age matched mdx mice, which exhibit persistently higher levels of 1L-6%1.
In its heightened state, 1L-6 has been linked to muscle wasting and chronic inflammation in
madx mice. Although the underlying mechanism remains to be elucidated, chronic levels of
IL-6 have been shown to decrease the pro-myogenic factor, IGF-1 by directly acting on the
liver and muscle IGF-192. Elevated levels of IL-6 have also been associated with arthritis,
Crohn’s disease, and other inflammatory diseases®3: 94,
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Interleukin-4 (IL-4)

IL-4 is produced by NK, activated T, mast, basophils, and eosinophil cells. This cytokine
regulates a variety of immune functions including isotype switching in B cells and
differentiation of T cells®® %, |L_-4 also induces the expression of MHC class Il molecules
and downregulates the expression of pro-inflammatory cytokines, TNF-a, and IL-197: 98: 99,
IL-4 signals through two distinct cell surface receptor complexes IL-4R type |, specific for
IL-4 and IL-4R type 2, which is shared by 1L-13100, Both IL-4 and IL-13 utilize the JAK-
STAT signaling pathway for signal transduction. However, IL-4Ra associates with JAK1
and JAK3 while IL-13Ra associates with JAK2 and not JAK3. During signal initiation, IL-4
binds to its receptor, IL-4Ra, which gets autophosphorylated. This leads to the
phosphorylation of JAK, which in turn phosphorylates and activates STAT6.
Phosphorylated STAT6 dimerizes, migrates to the nucleus, and binds to the consensus
sequences located in the promoters of IL-4 target genes191. A second signaling pathway that
can be activated by IL-4 through the IRS family of proteins is the phosphatidylinositol 3-
kinase (PI3K) pathway. Binding of IL-4 to IL-4Ra leads to autophosphorylation of IL-4Ra.
IRS proteins get recruited to IL-4Ra and then get phosphorylated. Tyrosine phosphorylated
IRS proteins in turn associate with cytoplasmic signaling molecules containing SH2
domains including the p85 subunit of PI3K leading to the activation of the catalytic subunit
of PI3K, p11010%: 102

In muscle cells, induction of IL-4 by NFATc2 has been shown to promote myoblast fusion
possibly by increasing the expression of cell adhesion193, In fact, IL-4 has been shown to
regulate the expression of ICAM1 on myoblastsl%4 and vascular cell adhesion molecule
1(VCAM-1), which is required for myotube formation in vitro in smooth muscle cells®0: 105,
IL-4 is expressed during early stages of muscle injury and is a dominant regulator of
alternative macrophage (M2) activation that increases during the later stages of the muscle
injury and promotes efficient muscle regenerationl96: 107 ||-4 also facilitates muscle
regeneration by controlling the functions of FAPS26. Stimulation with 1L-4 directs the FAPs
to proliferate as fibroblasts and support myogenesis by clearing out necrotic debris. In the
absence of IL-4, FAPs differentiate into adipocytes, resulting into fatty degeneration of
skeletal muscleZ®. Muscle biopsies from patients suffering from idiopathic in ammatory
myopathies show an upregulation in IL-4 gene and mRNA expression108; 109; 110,

Interleukin-10 (IL-10)

IL-10 also known as CSIF (cytokine synthesis inhibitory factor) was discovered through a
screen for factors that inhibited cytokine production by Thi cells!12, IL-10 signals through
IL-10R and IL-10R2 receptors, which belong to the interferon family12: 113 _-10R1
(IL-10Ra) is expressed constitutively on most hemopoietic cells and exhibits an induced
expression in non-hemopoietic cellst14: 115/ 116:117 1| _10R2 (IL-10p) is expressed on most
tissues!13: 118 [ jke IFN-v, IL-10 signals mainly through the JAK-STAT pathway with
STAT3 being indispensible for 1L-10 signaling in all IL-10 responsive cells119: 120,

IL-10 is primarily known for its function in inhibiting the pro-inflammatory cytokines such
as IFN-y, TNF-a and IL-6121, [L-10 also inhibits the production of CSF, IL-1a, IL-1,
IL-12,1L-18, G-CSF, M-CSF, GM-CSF, as well as C-C and C-X-C cytokines12, IL-10
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converts the cytolytic M1 macrophages to the more regenerative M2c phenotype, which
express markers like CD206, arginase, IL-4a, and CD163122: 123:124;125/126 || .10 has a
direct effect on muscle cells. Muscle cells express IL-10 independent of the myeloid cell
population that resides in the muscle2’. The role of IL-10 in inhibiting the pro-
inflammatory cytokines could be deemed protective as IL-10 rescues the block on myogenin
by IGF-1, which is induced by TNF-a12°, IL-10 also prevents TNF-a induced
phosphorylation of JINK and prevents upregulation of IL-6 expression by TNF-a in
myoblasts128 129 all of which are considered anti-myogenic signals.

In an injured muscle, IL-10 is key in directing the switch between M1 to M2
macrophages30. A recent study from the Tidball lab demonstrated that the expression of
IL-10 and its receptor are elevated in mdx mice at the onset of pathology as well as during
the regeneration phase31, Therefore, unlike pro-inflammatory cytokines described above
whose activities switch from pro to anti-myogenic in a dose dependent manner, persistent
levels of IL-10, as shown in mdx mice, remain anti-inflammatory and pro-regenerative, a
feature of this cytokine that might be exploited for therapy.

Transforming growth factor- beta (TGF-B)

The multifaceted TGF- superfamily is crucial is regulating normal physiology and has also
been described in a plethora of studies as a contributor to pathogenesis'32:133 The TGF-B
superfamily consists of various signaling molecules including isoforms of TGF-§3 (1 to 3),
Bone morphogenic proteins (BMPs 1 to 20), growth and differentiation factors (GDFs),
activins (A and B) and inhibins (A and B)133, TGF1-B is synthesized as a precursor
molecule which eventually upon getting cleaved into a mature, but inactive form, complexes
with a portion of the precursor peptide known as the latency associated peptide (LAP)134,
This inactive TGF1-B-LAP complex associates with latent TGF binding proteins (LTBPS),
which release TGF1-8 from the ECM. For the initiation of signal transduction, TGF1-8
binds to its receptor, TGF1-BR type Il or ALK (activin like kinase receptor) 1 or ALK5,
which leads to the phosphorylation of two receptor-associated Smads, Smad2 and Smad3.
Phosphorylated Smad2 and Smad3 proteins then heterodimerize with a common mediator
Smad, Smad4, which as a Smad2/3 -Smad4 complex, translocates to the nucleus to activate
the transcription of its target genes by cooperatively associating with other transcriptional
factors and coactivators13®. Apart from this canonical signaling pathway, TGF-B also signals
in a non-canonical manner, which is Smad independent. Induction of this pathway leads to
Ras and TGF-p activated kinase 1(TAKZ1) activation, which subsequently stimulates the
MAPK kinases, p38/JNK 136, Activation of the MAPK pathway however, can occur by both
Smad dependent and independent fashion indicating that a possible cross talk exists between
the TGF-B canonical and non-canonical signaling pathways36: 137 The TGF-B signaling is
negatively regulated by the Smads, Smad6 and Smad7 or by a ubiquitin proteasomal
degradation pathway mediated by Smad ubiquitin regulatory factors (SMURFs)138. |n
skeletal muscle, perhaps the most extensively studied ligand of TGF-$ family is myostatin.
Myostatin binds to the activin receptor type 1l A (ActR-11A),ActR-11B, or ALK 4 or 5. Both
the pathways converge in the activation of Smad2 and 3 followed by the dimerization with
Smad4139, Interestingly, Smad7, the inhibitor of the TGF-B/Myostatin signaling displays
pro-myogenic functions through its interactions with MyoD1140,
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Studies have shown that TGF-f inhibits skeletal muscle differentiation and also modulates
proliferation of satellite cells141: 142: 143 Smad3, which is the key mediator of the inhibitory
effects of TGF-B on myogenesis, physically interacts with MyoD1 to inhibit MyoD1
dependent transactivationl4L. Furthermore, TGF-B not only inhibits the transactivation
properties of MyoD1, but also inhibits the transcription of MyoD1144. TGF-f has also been
shown to block the transcriptional activity of myogenin and thereby inhibit muscle
differentiationl45. Studies also demonstrate that TGF-f is upregulated in the skeletal muscle
post-injury or following exercise. TGF-f is thought to participate in the inflammatory
response involved in muscle repair and plays a key role in promoting the transformation of
myoblasts into fibrotic tissue. This role of TGF-f as a driver of fibrosis is repeated in
numerous pathologies, such as in idiopathic pulmonary fibrosis. This disease is
characterized by the accumulation of inflammatory infiltrate and increased collagen
deposition resulting in loss of alveolar architecture. Lung biopsies from these patients show
activated fibroblasts expressing collagen and fibronectin and alveolar macrophages
expressing excessive levels of TGF-B protein and mMRNAL46,

GDF11 and myostatin are two highly related TGF-$ family members, but have very distinct
biological functions. GDF11 is more widely expressed and was recently identified for its
‘rejuvenating’ effects on skeletal muscle, suggesting that restoring systemic GDF11 levels
may help prevent age related dysfunction in micel4’. Myostatin however negatively
regulates skeletal muscle mass during development. The myostatin gene is expressed in the
heart, skeletal muscle, and adipose tissue. Mice homozygous null for myostatin exhibit
hypermusculature due to increased muscle mass. Myostatin null animals also show
decreased fat, increased muscle strength and change in fiber type distribution leaning more
towards type b fibers148, In aged mice, short-term inhibition of myostatin enhances muscle
regeneration and satellite cell activation. Not surprisingly, overexpression of myostatin leads
to excessive muscle wasting, similarly to that observed in cancer cachexial4®.

There is another distant and divergent member of the TGF-B family known as GDF15 (also
known as macrophage inhibitory cytokine (MIC-1)) that plays a role during chronic
inflammation50. Elevated circulatory levels of MIC-1 are found in chronic inflammatory
diseases like atherosclerosis and RA indicating endothelial activation and vascular
inflammation5%: 152 |n patients with acute myocardial infarction, enhanced levels of
GDF15 have been reported which are correlated with inflammatory biomarkers193: 154,
GDF15 deficiency inhibits the progression of atherosclerosis and regulates IL-6 and TGF-3
dependent inflammatory responses!®®: 156, However, studies have revealed that GDF15 also
has broad anti-inflammatory and immune suppressive properties®’.

Tumor Necrosis Factor-a (TNF-a)

TNF-a, also known as cachectin is a prototypic ligand of the TNF super family. It plays
central roles in inflammation, apoptosis and immune system development. TNF-a is
produced by a wide variety of immune and epithelial cells1®® and activates a number of
signaling pathways that mediate cell type specific, pleotrophic responses. At least 3 major
pathways are activated by TNF-a including activation of ¢-Jun terminal kinase (JNK) and
activator protein-1 (AP1), stimulation of apoptosis via TNF-a receptor complex, and Fas
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associated protein with death domain (FADD) and activation of NF-xB, which is a primary
mediator of transcriptional control and catabolic signaling. TNF-a signaling can be
mediated by TNFR1 or TNFR2. Binding of TNF-a to its receptor, initiates a IKK-y
dependent signaling cascade that activates the inactive p50/p65 heterodimer and causes its
translocation into the nucleus where it decreases the expression of the pro-myogenic
transcription factor, MyoD159,

In skeletal muscle, TNF-a influences satellite cell proliferation and accelerates the G1to S
phase transition162, Administration of neutralizing antibodies against TNF-c to mdx mice
increases the number of Pax7*ve cells and decreases the inflammation based activation of
p38/MAPK signaling63, The observed increase in Pax7 expression is due to the inhibition
of association of the repressive PRC2 complex subunits with Pax7 promoter163,

TNF-a stimulates the production of catabolic cytokines and induces anorexia. In dystrophic
muscle, elevated levels of TNF-a inhibit the regenerative potential of satellite cells by
epigenetically silencing Notch 1164, TNF-a has been attributed to a number of inflammatory
diseases like COPD and is associated with loss of muscle mass in COPD patients16°,

Tumor Necrosis Factor Like Weak Inducer of Apoptosis (TWEAK)

The cytokine tumor necrosis factor like weak inducer of apoptosis (TWEAK) is a member
of the TNF superfamily. TWEAK is initially synthesized as a 249-amino-acid protein
comprising of a C-terminal extracellular domain, a transmembrane domain, and a N-
terminal intracellular domain, which gets proteolytically cleaved at its C terminal domain
into an soluble form168, The soluble form trimerizes and functions as a homo trimer. While
the specific conditions for the existence of both the forms of TWEAK have not been
understood, TWEAK is fully functional both in its cell surface associated transmembrane
form and its soluble form166, TWEAK has been detected as a membrane anchored protein in
IFN-y activated human monocytes®’ and in human CD4* cells168,

TWEAK binds to the fibroblast growth factor inducible 14 (Fn-14) receptor, which also
belongs to the TNF superfamily of receptors and is characterized as a type la transmembrane
receptor lacking a cytoplasmic death domain6% 170, The unprocessed TWEAKR/Fn-14
contains a 27-aa N terminal signal peptide sequence and a highly hydrophobic region which
functions as a plasma membrane spanning domain. The mature form of TWEAKR/Fn-14,
which is produced after proteolytic cleavage is predicted to be 102 aa in length, making it
the smallest member of the TNF family of receptors6: 170, Both the human and murine
forms Fn14 contain a highly conserved 29 aa cytoplasmic tail and a putative TRAF binding
sitel’1,

In cultured C2C12 myotubes, treatment with TWEAK leads to a reduction of MyHC,
possibly through an upregulation of the muscle specific E3 ubiquitin ligases MuRF1 and
MAFbx in a dose dependent mannerl72. In mice, the treatment with TWEAK results in
reduction in body weight and fiber cross sectional area compared to the littermates?2.
Furthermore, transgenic overexpression of full-length TWEAK cDNA using a muscle
creatine kinase promoter shows severe muscle wasting172,
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The TWEAK-Fn14 axis regulates a number of physiological processes like apoptosis,
proliferation, differentiation, cell survival and angiogenesis. In various cell types including
skeletal muscle, TWEAK has been shown to activate NF-xB, p44/p42 MAPK, JNK, and
AP-1. However, the TWEAK-Fn14 axis is also often linked to the pathogenesis of systemic
lupus, neuro inflammation, cardiac dysfunction, RA, MS, and a number of cancers 166,
Increased expression of TWEAK is also associated with the induction of fibrosis and a
broad pro-inflammatory and cell death/tissue-damaging activity’3. This could be through
its direct action on fibroblasts and their progenitors, or the cooperation of TWEAK with
other cytokines that become upregulated during various disease states’1.

The TWEAKI/Fn14 pathway is well known for its involvement in modulating inflammation
in auto immune and chronic inflammatory disorders. TWEAK induced pro-inflammatory
responses stimulate the expression of chemokines, cytokines, adhesion molecules and
MMPs, from endothelial, epithelial, and other non hematopoetic cell types 174, TWEAK can
also cooperate with other pro-inflammatory cytokines like TNF-a and IL-17, to name a few,
to augment inflammatory responsel?3: 175, In addition to TWEAK, a variety of Fn14
inducing stimuli like IFN-y, TNF-a and IL-1f have been recently identified which could
very well explain the diverse outcomes derived by the TWEAK-Fn14 pathway, alone or in
combination with other cytokines166.

Inflammatory disorders leading to muscle loss

Chronic obstructive pulmonary disorder (COPD)

COPD is one of the leading causes of morbidity and mortality all around the world.
Primarily, COPD is a respiratory disease and is diagnosed based on abnormal lung function
and symptoms such as dyspnea and chronic cough production. However, along with the
symptoms described above, COPD presents itself with a low-grade systemic inflammation,
which results in skeletal muscle dysfunction.

The idea that skeletal muscle dysfunction could be an impairment in patients with COPD
was first described in a study by Killian et. al’76, in which the exercise capability in patients
with COPD was tested. Approximately 40% of the COPD patients exhibited early
termination of exercise due to symptoms of leg fatigue, which was far greater than their
rating of shortness of breath at the end of the exercise study. In addition to contributing to a
reduced ability to exercise, decreased health status and diminished muscle function, muscle
wasting is a determinant to morbidity in COPD, independent of the pulmonary disorders.
Muscle wasting in COPD has been demonstrated as the loss of fat free mass at the whole
body level and also at the level of the extremities!’’. In addition to the depletion of muscle
mass, fiber type switching from type I to type Il occurs resulting in decreased muscle
oxidative capacity. This switch not only reduces endurance,1’® but also accelerates muscle
atrophy7°. Over the last two decades, research has focused on identifying the potential
triggers of muscle wasting in COPD. Based on biochemical and immunohistochemical
studies a number of factors have been identified as potential causes for muscle wasting in
COPD. These include malnutrition, hypoxemia, disuse and inflammation. Low physical
activity or a sedentary life style are common in COPD patients180. Inactivity and/or muscle
disuse are well known triggers for muscle atrophy. Hypoxemia, i.e. reduced arterial oxygen
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tension is prevalent in COPD patients. Currently, most of the evidence implying that
hypoxemia and subsequent tissue hypoxia can trigger muscle wasting is purely based on
observations made from healthy patients and experimental models. Studies in
mountaineering expeditions in which subjects are exposed to high altitudes and hypoxia are
reported to have decreased muscle mass!8! and reduced muscle fiber size despite of physical
activity®2, While being a potential trigger, the precise mechanisms by which hypoxemia
induces muscle atrophy are still unknown. Malnutrition is reported in at least one third of the
patients with COPD and the severity advances with the progression of the disease. Some
data demonstrate that the positive effects of nutritional supplementation lead to preservation
of fat free mass in COPD patients. However, for most patients increasing energy intake
alone does not rescue muscle atrophy. The protein synthetic rate presumably goes down
during starvation, which is supported by one study83, but follow up reports have argued
against such a mechanism84: 185 \While malnutrition, hypoxemia, and inactivity have all
been linked to muscle wasting in COPD, more recent attention has shifted to the relation
between cachexia and inflammation.

Findings show that COPD is characterized by the elevation of inflammatory factors such as
IL-6, TNF-a, IL-8, and C-reactive protein. In addition, COPD patients also show evidence
of elevated expression of adhesion molecules in plasma and bronchoalveolar fluids, as well
as an increase in the generation of ROS186, Possibly, muscle wasting in COPD results from
bursts of ROS in combination with inflammatory cytokines. How downstream factors such
as NF-xB are involved in COPD-induced muscle loss remains controversial. The variable
levels of NF-kB that have been reported in COPD patients may reflect the different stages of
disease progression that involve both stable and severe muscle loss. Results from animal
models of COPD appear more consistent that NF-xB is activated and associated with acute
pulmonary inflammation where there is a connection with muscle atrophy, but further
evidence is required to validate the role of inflammatory factors and NF-xB in this
pathology.

arthritis (RA)

Rheumatoid arthritis is a chronic, autoimmune, debilitating disease that generally occurs
within the fourth and sixth decade of life. The disease is more common in men than women.
RA is primarily characterized by joint pain, swelling, stiffness, and accompanied by skeletal
muscle wasting. RA is also characterized by sustained inflammatory synovitis18. Persistent
synovial inflammation results in bone erosion and cartilage damage, due to the loss of
functionality in individuals affected by RA188, Although RA is classified as a multi-system
disease, inflammatory cytokines are recognized as key mediators in its pathology.

The synovial membrane in patients with RA is characterized by hyperplasia, increased
vascularity, and infiltration of inflammatory cells, primarily of CD4* T cell originl88,
Antigen activated CD4" T cells stimulate monocytes, macrophages, and synovial fibroblasts
to release pro-inflammatory cytokines, IL-1, IL-6, IL-18 and TNF-a188, which for the most
part can be detected in the synovial fluid of RA patients 189, Furthermore TNF-a and IL-1
act as potential stimulators of mesenchymal cells that release MMPs to destroy tissue and at
the same time inhibit the production of TIMPs, inhibitors of MMPs%0, Transgenic mice
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over expressing TNF-a, spontaneously develop inflammatory arthritis®2. In vitro studies
with synovial cultures from RA patients demonstrate that blocking TNF-a with antibodies
drastically reduces the expression of pro-inflammatory cytokines'®2. This suggests that
inhibition of TNF-a might have a more global effect in treatment of RA than neutralizing
other cytokines.

IL-18 is another cytokine elevated in synovial fluids and synovial tissues of patients with
RA. Within the RA joint, IL-18 contributes to the inflammatory process by stimulating
leukocyte extravasation through the upregulation of endothelial adhesion molecules193: 194
and the release of chemokines!® from RA synovial fibroblasts through activation of NF-«B.
Additionally, 1L-18 acts synergistically with IL-12 to induce production of IFN-y from T
cells further aggravating joint inflammation and cartilage destruction. IL-32 is another
inducer of pro-inflammatory cytokine produced from lymphocytes that infiltrate severely
inflamed synovial tissues in patients with RA, and intensity of 1L-32 staining correlates
disease severity19. In mice models of inflammatory arthritis, studies have shown that
recombinant 1L-32 injections in naive mice result in joint swelling and infiltration of
inflammatory infiltrates19. However, similar injections in TNF-a deficient mice did not
show the same phenotype, suggesting that the ability of IL-32 to induce joint inflammation
is in part dependent on TNF-a167. Due to its close relationship with TNF-a, 1L-32 is being
considered as a potential target for therapies against RA.

IL-6 has been regarded as a key player in promoting joint and systemic inflammation and
inducing immunological abnormalities in RA. IL-6 promotes muscle wasting and joint
destruction in RA by activating release of adhesion molecules and inducing the secretion of
monocyte chemoattractant protein 1 (MCP-1) and 1L-8197: 198 |L-6 and IL-1 can
synergistically enhance the production of MMPs from synovial cells, which leads to joint
and cartilage destruction99. Also, in synovial fibroblasts, 1L-6 induces the secretion of
vascular endothelial growth factor (VEGF), which leads to enhanced angiogenesis and
vascular permeability of the synovial tissue2%0. The pathological effect of IL-6 has been well
documented in animal models. Collagen induced arthritis is an established model for RA in
which an injection of type Il collagen in mice causes an immune response directed at
connective tissue. In this model, activated T cells produce augmented amounts of Thl and
Th17 cytokines. Suppression of 1L-6 through gene knockout experiments reduces cytokine
production and ameliorates the symptoms of RA20L: 202 |nhibiting IL-6 by antibody or gene
deletion has yielded similar results in other models of RA203. Such results are consistent
with findings documenting elevated levels of IL-6 in the serum and synovial fluid of RA
patients204,

More than two thirds of the people with RA suffer from loss of skeletal muscle mass or
‘rheumatoid cachexia’, a term coined by James Paget in 1873. Unlike the general definition
of cachexia, which includes wasting of skeletal muscle and adipose tissue, rheumatoid
cachexia is defined as a loss of body cell mass, predominantly in the skeletal muscle and
with no or little weight loss in the presence of increased or stable fat mass2%°. While precise
mechanisms for the cause are still under investigation, it is believed that elevated levels of
pro-inflammatory cytokines are one of the leading causes of rheumatoid cachexia. TNF-a
and IL-1 likely act as central mediators of muscle wasting in RA2%6, Studies in rat models of
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adjuvant arthritis297 show that TNF-a blockade alone rescues the loss of skeletal muscle,
suggesting that TNF-a functions as an important contributor of cachexia in RA, but is also
likely not the sole mediator. In support of this notion, inhibition of both IL-1 and TNF-a is
more effective in reducing muscle wasting in cachexia2%8 than individual blockage alone,
thus reinforcing the concept that IL-1 and TNF-a act synergistically to promote cachexia in
RA208_

TNF-a has also been shown to reduce the action of peripheral insulin, which might be
another mechanism by which this cytokine contributes to cachexia?%% 210, Another peculiar
characteristic of patients with RA is that they exhibit elevated resting energy expenditure?1L.
Generally, under normal conditions, there is a balance between the rate of protein
degradation and the rate of protein synthesis?12. This balance regulates important
physiological functions and enables adaptation to physiological and environmental cues. In
RA, chronic inflammation alters this balance towards net protein catabolism causing an
increase in the resting energy expenditure2!1, a net efflux of amino acids from muscle to the
liver, and an increase in the synthesis of acute phase proteins, fibrinogen and CRP, the sum
of which is predicted to lead to cachexia.

Effective therapies for RA have concentrated on targeting the cytokines that mediate
rheumatoid cachexia. For example, Tocilizumab, a humanized anti-1L-6 receptor antibody,
is already in clinical trials?13. Patients treated with Tocilizumab alone or in combination
with methotrexate exhibit significant improvements?14, TNF-a blocking antibodies like
D2E7215 or Infliximab?186 or the decoy receptor, Etanercept?l’: 218 all demonstrate some
form of clinical improvement for RA. In addition, in a randomized, double blind, placebo
controlled trial of patients with RA, treatment with recombinant human IL-1 receptor
antagonist resulted in moderate clinical improvement and decreased progression of erosions
as assessed by radiography21°. A drawback of using an IL-1 receptor antagonist
therapeutically is its short half-life (6 hours)229, which demands frequent injections and high
concentrations. As opposed to the responses obtained with blocking IL-1, IL-6, and TNF,
clinical trials undertaken to target IL-4 and 1L-10188 have met with limited benefit.

Inflammatory myopathies (Myositis)

Idiopathic inflammatory myopathies are autoimmune muscle disorders that involve
inflammation of the muscle or the surrounding tissues such as blood vessels that supply
blood to the muscles. Another term used to describe inflammatory myopathies is myositis-
‘myo’ meaning muscle and ‘itis’ meaning inflammation. These myopathies are considered
to be auto immune in origin, due to their predominance of T and B cells in the affected
muscle, the over expression of MHC class | and 1l molecules by muscle cells, and the
association with myositis specific auto antibodies. Nevertheless, the exact nature of the
antigens mediating these myopathies remains to be defined. Inflammatory myopathies are
classified into three main types, polymyositis, inclusion body myositis, and
dermatomyositis. Although each subtype presents with their own distinct clinical features,
there are some common symptoms shared among all three subtypes including progressive
muscle weakness, muscle atrophy, and vasculature damage surrounding muscle fibers.
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Progressive muscle weakness leads to additional symptoms such as shortness of breath,
difficulty in swallowing and speaking, heart arrhythmias, and fatigue.

Polymyositis (PM) and inclusion body myositis (IBM)

PM (‘inflammation of many muscles’) is generally regarded as a prototypic T cell mediated
autoimmune myopathy whereas IBM on the other hand is classified by a more peculiar
pattern of muscle wasting, longer clinical course, and a T cell dominant auto immune
response in combination with myofiber degeneration. The degeneration aspect is
characterized by the appearance of vacuoles in muscle cells, deposition of abnormal
proteins, and filamentous inclusions, from which IBM derives its name. The existence of
PM as a separate entity is controversial given the frequent coexistence of PM and

IBM?221: 222 The controversy relates to whether PM occurs as a muscle specific disease or
an autoimmune disorder, given the similarities between IBM and PM and the more frequent
occurrence of IBM223,

In both PM and IBM, CD8* T cells are thought to be the primary effector cells causing
muscle damage and weakness224, CD8* T cells proliferate and differentiate locally in the
muscle. Because muscle presents antigen, these cells are targeted by autoinvasive CD8* T
cells to induce their turnover 225: 226: 227 Thjs is thought to occur through the secretion of
MCP1 by the T cells to recruit monocytes228, which in turn express pro-inflammatory
cytokines like TNF-a, IFN-y and IL-1 to induce a toxic effect on skeletal muscle cells 229,
Yet another pro-inflammatory cytokine, macrophage inhibitory factor (MIF), is elevated in
PM and thought to contribute to the turnover of muscle230.

Dermatomyositis (DM)

DM is characterized by the presence of a typical DM rash on the face (heliotrophe rash),
hand, elbows (Gottron’s papules), and torso?3L. DM can be classified into various subgroups
based on its childhood or adult forms (Juvenile DM or adult DM), or based on whether it is
associated with malignancy or a part of an overlapping syndrome (Cancer associated DM).
DM can be further classified based on cutaneous manifestations and the severity of muscle
weakness (DM with systemic manifestations or amyopathic DM)231: 232:233 DM is thought
to be initiated by the activation of the complement pathway leading to depletion of muscle
fibers 229, However, how the complement pathway is activated in DM, is still unknown. One
notion is that immunoglobins accumulate on intramuscular capillaries, which causes the
activation of the complement cascade, and in turn triggers the production of pro-
inflammatory cytokines and chemokines. These pro-inflammatory molecules, then
upregulate adhesion molecules on endothelial cells that go on to stimulate B, T, and
dendritic cells, leading to muscle necrosis?2% 232 This inflammatory cascade within the
perivascular and perimysial mileu is comprised of B and CD4* T helper cells, IFN-y
producing Th1 cells, IL-17 secreting Th17 cells, and IFN-a producing dendritic cells234: 235,
IL-17 is believed to be one of the factors responsible for upregulating MHC class |
molecules in muscle cells as well as for facilitating the migration of mononuclear cells to
muscle cells236,
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In summary, while there are other causal factors to muscle wasting chronic inflammatory
diseases, pro-inflammatory cytokines act as major contributors to muscle loss in these
diseases (Fig. 1). While therapies targeting the cytokines are already in clinical trials, efforts
are being focused on generating more efficient strategies to better target and reduce the
deleterious effects of inflammation in these diseases.

The concept of skeletal muscle and myokines

The term “‘myokine’ was initially coined to strictly include proteins that were secreted by
skeletal muscle cells. Nevertheless, the recent extended definition of a myokine includes
proteins that are synthesized by skeletal muscle tissue and exert either paracrine or autocrine
effects®”. Chronic diseases like type 2 diabetes, cardiovascular diseases, colon cancer, breast
cancer, to name a few, have highly different phenotypical presentations23’. However, they
share a few common pathogenic mechanisms such as physical inactivity. Chronic systemic
inflammation goes hand in hand with physical inactivity, independent of obesity238.
Evidence suggests that physical inactivity can lead to visceral fat, which can result in obesity
and health consequences. Obesity coupled with lack of exercise subsequently results in
activation of inflammatory pathways that lead to deleterious effects such as neuro
degeneration, atherosclerosis, and development of insulin resistance. It has been long known
that adipose tissue can function as an endocrine organ to release pro-inflammatory factors to
promote obesity induced cardiovascular diseases and metabolic disorders. Recent studies
have introduced the concept of ‘myokines’ which are released by skeletal muscle cells and
predominantly function to counter the pro-inflammatory factors released by adipocytes23°.

To date, IL-6 is perhaps the best recognized myokine. IL-6 was shown to be released in high
amounts from contracting skeletal muscle following prolonged exercise, without exhibiting
prominent muscle damage24. Besides IL-6, FGF2 can also be secreted from cultured
C2C12 myoblasts?41, but whether this factor qualifies as bonafide myofiber releasing
myokine awaits further study. Although muscle derived IGF-1 is not detected in circulation,
it is considered a myokine that functions in regulating muscle hypertrophy in an autocrine/
paracrine manner, in response to exercise?42 243, Several activities of IGF-1 are regulated
by muscle derived IGFBPs (IGF- binding proteins), which modulate IGF-1 availability and
biological activity?44. The cytokine, 1L-15, also falls in the myokine category due to its
anabolic activity on muscle cells and its possible role in reducing adipose tissue mass as part
of a muscle, fat cross-talk?43. Similar to IL-6, IL-15 is elevated in skeletal muscle cells post-
exercise. Interestingly, administering IL-15 has also been found to improve glucose
homeostasis and insulin resistance in obese mice246. Additional myokines include Fstl1
(also known as TSC36), which when secreted from skeletal muscle, exhibits an anti-
apoptotic activity on endothelial cells?4” through an Akt-eNOS signaling pathway?47. This
can be manifested under conditions of ischemic stress, where the addition of Fstl1 has been
seen to accelerate revascularization?47.

The myokine field is one that continues to emerge (reviewed in23% 248) as more recent
candidates, such as IL-7, myonectin, and BDNF, have been proposed to be produced from
skeletal muscle cells and act in a paracrine and autocrine fashions to maintain skeletal
muscle homeostasis.
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Figure 1. The drivers of muscle wasting in chronic inflammatory diseases
The figure depicts the inflammatory cytokines that contribute to muscle wasting. The degree

of involvement of a particular cytokine is denoted by the width of individual arrows. Due to
elevated expression of cytokines in these diseases, the balance is tipped towards
hypercatabolism resulting in loss of muscle mass
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