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ABSTRACT The recent development of sequencing technology allows identification of association between the whole spectrum of genetic
variants and complex diseases. Over the past few years, a number of association tests for rare variants have been developed. Jointly testing for
association between genetic variants and multiple correlated phenotypes may increase the power to detect causal genes in family-based studies,
but familial correlation needs to be appropriately handled to avoid an inflated type | error rate. Here we propose a novel approach for multivariate
family data using kernel machine regression (denoted as MF-KM) that is based on a linear mixed-model framework and can be applied to a large
range of studies with different types of traits. In our simulation studies, the usual kernel machine test has inflated type | error rates when applied
directly to familial data, while our proposed MF-KIM method preserves the expected type | error rates. Moreover, the MF-KM method has increased
power compared to methods that either analyze each phenotype separately while considering family structure or use only unrelated founders from
the families. Finally, we illustrate our proposed methodology by analyzing whole-genome genotyping data from a lung function study.
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ENOME-WIDE association studies (GWASs) have been

widely used to identify common single-nucleotide poly-
morphisms (SNPs) associated with complex human diseases
(Hunter et al. 2007; Wellcome Trust Case Control Consortium
2007; Yeager et al. 2007; Manolio et al. 2008; Hindorff et al.
2009). In a typical GWAS, large numbers SNPs are geno-
typed on hundreds or thousands of subjects, and each SNP is
subsequently tested, one by one, for association with the phe-
notype of interest. However, this traditional single-marker
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association test is not powerful enough to detect rare variants
that confer susceptibility to complex diseases (Li and Leal 2008;
Schork et al. 2009). With the recent development of sequencing
technology, identification of rare susceptibility variants for com-
plex diseases has become feasible, provided that novel statisti-
cal methods are developed to obtain optimal results.

To increase the power to detect association using rare
susceptibility variants, many set-based statistics have been
developed that evaluate the joint effect of a group of rare
genetic variants in a predefined genomic region on the phe-
notype of interest (Morgenthaler and Thilly 2007; Li and Leal
2008, 2009; Madsen and Browning 2009; Han and Pan 2010;
Morris and Zeggini 2010; Price et al. 2010; Lin et al. 2011,
2012, 2013, 2014). One commonly used method is the se-
quence kernel machine-based association test (SKAT) (Wu
etal 2010, 2011; Yan et al. 2014, 2015). SKAT is a powerful,
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flexible, and computationally efficient approach for set-based
association testing. To increase power, this kernel machine (KM)
method assigns weights to each marker and uses the weighted
summation to construct test statistics. In addition, SKAT can
easily include nongenetic covariates. Both linear and nonlinear
kernels may be used to test the genotype-phenotype relation-
ship. Furthermore, SKAT’s test statistic follows a known mixture
of chi-square distributions. Thus, P-values can be quickly com-
puted analytically without performing resampling.

In genetic studies of complex diseases, multiple correlated
phenotypes are often collected. Jointly testing the association
between these correlated phenotypes and genetic variants
may increase the statistical power to detect causal genes un-
derlying complex diseases. Several multivariate approaches
developed for this purpose (Verzilli et al. 2005; Zapala and
Schork 2006; Liu et al. 2009; Zhang et al. 2010a; Maity et al.
2012) have demonstrated improved statistical power to de-
tect susceptibility variants, especially for pleiotropic variants
that influence multiple phenotypes (Zhu and Zhang 2009;
Sivakumaran et al. 2011).

Family-based designs have been used widely in association
studies of complex traits (Falk and Rubinstein 1987; Ott 1989;
Terwilliger and Ott 1992; Spielman et al. 1993). Although
GWASs with unrelated samples often employ general linear
models for quantitative phenotypes, this approach can lead to
inflated type I error rates in family-based studies if familial
correlation is ignored. In family-based studies, a linear mixed
model including a random covariate with polygenic effects can
account for familial correlations and thus is preferable to a
general linear model. In family-based studies, the covariance
of random polygenic effects among all subjects is proportional
to their kinship coefficients. Linear mixed models with a kinship
matrix have been applied commonly in family-based GWASs
(Almasy and Blangero 1998; Rabinowitz and Laird 2000; Yu
et al. 2006; Kang et al. 2010; Zhang et al. 2010b). More re-
cently, SKAT has been extended to test for quantitative pheno-
types in family-based samples by including a kinship matrix
(Schifano et al. 2012; Chen et al. 2013; Oualkacha et al. 2013).

Here we develop a new test for gene-based association
between rare variants and multiple correlated phenotypes for
family-based samples. The recently published MFQLS statistic
(Won et al. 2015) is for family-based multivariate association
analysis with multiple variants, but it is specifically for com-
mon variants. Our proposed method, which uses KM regres-
sion and is denoted as MF-KM (for multivariate family data
using kernel machine regression), is based on a linear mixed-
model framework and can be applied to a large range of
studies with different types of traits, such as longitudinal
studies. In our simulation studies, we show that a usual KM
test (Maity et al. 2012) (M-KM, considering the correlation
among multiple phenotypes) has inflated type I error rates
when applied directly to familial data. In contrast, our MF-
KM method preserves the expected type I error rates when
employed in family-based samples. Moreover, the MF-KM
method has increased power compared to methods that either
analyze each phenotype separately (F-KM, which considers

1330 Q. Yan et al.

family structure) or use only unrelated founders (M-KM-ind).
Finally, we illustrate our proposed methodology by analyzing
whole-genome genotyping data from a lung function study.

Materials and Methods
KM regression in a linear mixed-model framework

For KM regression in a linear mixed-model framework on a
data set containing n people, we assume that the n X 1 vector
of the quantitative trait y follows a linear mixed model:

y=XB+Gy+u+e

where X is an n X p covariate matrix, B is a p X 1 parameter
vector for fixed effects (an intercept and p — 1 covariates), G is
ann X q genotype matrix for g genetic markers in the region
of interest, y is a g X 1 vector for the random effects of genetic
markers, u is an n X 1 vector for the random effects of any
correlation (e.g., multiple phenotypes or familial structure),
and g is an n X 1 vector for the random error. The random
effect -y is assumed to follow a normal distribution with mean
zero and variance W, so the null hypothesis we are inter-
ested in testing is Hy: y = 0, which is equivalent to testing Ho:
7 = 0. A variance component score test known as the locally
most powerful test can be used to test this Hy, (Wu et al.
2011). The error € and the random effects u are also assumed
to follow normal distributions and are uncorrelated with
each other and with vy. To be specific, we assume that

v ~ N(0,7W)
u ~ N(0, K)
¢ ~ N(0,021)

where W is a g X g diagonal matrix with predefined weights
for each variant [such as \/w; = B(MAF;,1,25) (Wu et al.
2011)], Kis an n X n covariance matrix, and a-% is the error
variance component.

Under these assumptions, the variance of the quantitative
phenotype y can be described as

Var(y) = TGWG' + K+ 021 =3,

Under the null hypothesis, the estimates are

3 =K+ail

B= (x'iflx)flx’ifly

Following the same rationale as in previous derivations of the
score statistic (Zhang and Lin 2003; Liu et al. 2007; Kwee
et al. 2008), we have the test statistic

Q= (y-XB) S Gwa'S (y-Xp) 0

where ﬁ is the vector of estimated fixed-effect coefficients of
covariates under Hy, and . is the estimated covariance matrix



of y under H,. The statistic Q is a quadratic form of (y — Xﬁ)
and follows a mixture of chi-square distributions, although
some of the parameters are estimated (Yuan and Bentler
2010; Schifano et al. 2012) under Hy. Thus, the P-values
can be calculated using different algorithms, such as the
moment-matching method (Satterthwaite 1946; Liu et al.
2007), the Davies exact method (Davies 1980), or Kuonen’s
saddlepoint method (Kuonen 1999). In this work, we chose
to use the Davies method.

KM for quantitative traits in multivariate family
data (MF-KM)

The Q statistic derived in Equation (1) can be extended
to handle quantitative traits in multivariate family data,
denoted as MF-KM. Here the null hypothesis is that the group
of genetic variants is not associated with any traits. For sim-
plicity of illustration, we consider a data set containing m
individuals and two correlated phenotypes. Under the null
hypothesis, Hyo: T = 0, the model with correlation among
phenotypes and familial structure is

y=Xp+h+e

where y is a vector of quantitative trait [i.e., y = V11, Y12, Y21,
Y22, - - -, Ym1, Ym2), where m is the number of individuals], X
is the fixed effects of covariates, h is the random effect of
correlated phenotypes corresponding to the polygenic contri-
bution, and ¢ is the random effect of correlated phenotypes
corresponding to the random environmental contribution. In
our notation, we do not explicitly distinguish families that
can be handled implicitly by the kinship matrix in the variance
of h. Since we consider two correlated phenotypes (Bauman
et al. 2005),
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where ® is twice the m X m kinship matrix obtained either
from familial relationship or genome-wide data, ® is the
Kronecker product, and o2,, 0%,, 0612, 0%, 02,, and 012
represent the polygenic variances of the first and second
phenotypes, the polygenic covariance between the two
phenotypes, the environmental variances of the first and
second phenotypes, and the environmental covariance be-
tween the two phenotypes, which can be estimated from
the data by using classic optimization methods such as the
Nelder-Mead method (Nelder and Mead 1965) or the quasi-
Newton method (Broyden 1969; Fletcher 1970; Goldfarb
1970; Shanno 1970), and then the test statistic Q can be
constructed.

O

O
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Figure 1 Pedigree structures used in simulation studies.

Simulation study

Simulation of sample genotypes: We simulated sample
genotypes based on a pool of 10,000 haplotypes over a
200-kb chromosome from a calibrated coalescent model
(Schaffner et al. 2005) with linkage disequilibrium (LD)
structure mimicking the European ancestry. We simulated
family data using two different family structures (Figure 1).
First, we simulated 300 trio families with father, mother,
and one child (Figure 1A) by randomly selecting 1200 hap-
lotypes as the parents’ haplotypes. The offspring haplotypes
were generated by randomly transmitting one of the two
haplotypes of the father and the mother to the child. Simi-
larly, we simulated 100 three-generation families with two
grandparents, two independent parents who marry into the
families, two dependent parents as the offspring of grand-
parents, and four children (Figure 1B) by randomly picking
two haplotypes for each founder and then randomly picking
haplotypes to be transmitted to their descendants. Then we
randomly selected 30 rare variants [mean allele frequency
(MAF) < 0.05] from the simulated family data over the
200-kb region as one genotype data set. We generated
100 such genotype data sets in the analysis for each of the
two family structures.

Type I error rate: To measure type I error rates, for each of
the 100 genotype data sets, we simulated 100 sets of a
two-dimensional (2D) null phenotype independently of
the genotypes. For each trio family, the vector of six
quantitative phenotypes for family i was generated via
the model

y; =0.05-X3; +0.5-Xy; +¢;

where Xj; is a continuous covariate generated from a normal
distribution with mean 50 and standard deviation 5 that re-
peats twice to mimic two phenotypes for each individual. In
other words, one single value is drawn from the distribution
for one individual, and this value is assigned to both the
individual’s phenotype vectors. Xp; is a dichotomous covari-
ate generated from a Bernoulli distribution with probability
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Table 1 Type | error rates of different statistics: multivariate family KM (MF-KM), family KM ignoring
the phenotype correlation (F-KM) for the first and second phenotypes, multivariate KM ignoring
familial structure (M-KM), M-KM using founders (M-KM-ind), and Fisher's method combining the
F-KM p-values for the first and second phenotypes (Fisher-F-KM).

a =0.05 « =0.01 « = 0.005 « = 0.001
Trios MF-KM 0.0497 0.0108 0.0051 0.0014
F-KM pheno1 0.0511 0.0113 0.0057 0.0007
F-KM pheno2 0.0473 0.0103 0.0051 0.0012
M-KM 0.0861 0.0211 0.0125 0.0031
M-KM-ind 0.0497 0.0108 0.0047 0.0011
Fisher-F-KM 0.0796 0.0285 0.0192 0.0072
Three generations MF-KM 0.0503 0.0105 0.0049 0.0010
F-KM pheno1 0.0519 0.0104 0.0049 0.0010
F-KM pheno2 0.0496 0.0104 0.0051 0.0010
M-KM 0.1270 0.0384 0.0222 0.0062
M-KM-ind 0.0495 0.0094 0.0051 0.0011
Fisher-F-KM 0.0830 0.0292 0.0200 0.0078

Inflated P-values are shown in the boldface font.

0.5, which is also repeated twice for two phenotypes for each
individual; e; follows a multivariate normal distribution with
mean vector 0 and covariance matrix Var(y;)
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where 02,, 02,, 02, and o2, were set to 1, and the covari-
ances o2 and og1z were set to 0.8. The phenotypes for all
the subjects were generated in the same way, and the 100 sets
of simulated phenotypes for each of the 100 genotype data
sets were used to evaluate the type I error rates. In the sce-
nario of families with three generations, the phenotypes were
generated in an analogous way, but the kinship matrix ®; was
more complicated. Both the fixed-effects and variance param-
eters were assumed to be unknown when analyzing the sim-
ulated data, and they can be estimated from the simulated
data.

When analyzing the family data, we compared the per-
formance of the MF-KM method to four other approaches:
(1) family KM ignoring the correlation between traits ap-
plied to the first and second phenotypes separately (F-KM),
(2) multivariate KM without considering familial struc-
ture (M-KM), (3) M-KM using independent founders
(M-KM-ind), and (4) Fisher’s method (Fisher 1950) com-
bining the P-values of F-KM applied to the first and second
phenotypes, treating the two phenotypes as independent
(Fisher-F-KM).

Power evaluation: To evaluate power, we used the same
genotypes as described earlier, but we let the phenotypes be
associated with the genotypes. We compared the MF-KM
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method with F-KM and M-KM-ind. The quantitative pheno-
types for one family were generated via the model:

yi= 0.05X;; + 0.5X5; + BlGli + ,Bszi + o+ BiGyi T e

where Xj; and X,; are the same as described earlier,
G, Gy, ..., Gy are the genotypes of causal SNPs, and
B1,Ba, - .., B are effect sizes of the causal SNPs. We consid-
ered that 30% and 20% of all variants were disease-
susceptibility variants and that e; was determined the same
as for the evaluation of type I error rates. Furthermore,
B1,Ba, .., B were set to c|log;MAF;| in order to assign large
weights to rare variants, where ¢ = 0.4 was chosen such that
when MAF = 0.0001,8 = 1.6 (Wuetal. 2011). Because the
KM regression could handle both risk and protective variants,
we also considered that one-third of the causal variants were
protective, which meant that 8 = — c|log;,MAF;| (i.e., 20%
disease variants and 10% protective variants and 13% dis-
ease variants and 7% protective variants). The phenotypes
for all families were generated in the same manner, and these
100 sets of phenotypes for each of the 100 genotype data sets
in each family scenario were used to evaluate the power.

Data availability

The MF-KM algorithms have been implemented in R (http://
www.r-project.org/) and the source code is available at
(http://www.pitt.edu/~qiyl7/Softwares.html). File S1 con-
tains the R program for MF-KM, README of the program and
illustrative examples.

Results
Simulation of the type I error rate

Table 1 lists the empirical type I error rates of MF-KM, F-KM
for the first phenotype, F-KM for the second phenotype,
M-KM, M-KM using founders (M-KM-ind), and Fisher’s
method combining the P-values of F-KM applied to the first
and second phenotypes (Fisher-F-KM) at « levels of 0.05,
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Figure 2 QQ plots of the P-values from the simulations for type | error rate, with 95% pointwise confidence band (gray area) that is computed under
the assumption of the P-values being drawn independently from a uniform [0, 1] distribution.

0.01, 0.005, and 0.001 for trio families and families with
three generations. The results indicate that the type I error
rate is inflated when the M-KM, which ignores familial struc-
ture, is applied to correlated samples, even though the cor-
relation between phenotypes is modeled. The type I error
rate is also inflated when Fisher-F-KM is applied, treating
the two correlated phenotypes as independent. In contrast,
F-KM, MF-KM, and M-KM-ind retain the correct type I error
rates. From the quantile-quantile (QQ) plots in Figure 2, we
can see similar patterns. The P-values are roughly uniformly
distributed for MF-KM, F-KM, and M-KM-ind, which indicates
that they control type I error rates well, while the type I error
rate is inflated for the M-KM applied to correlated samples
and for Fisher-F-KM. Comparing the scenarios with two fam-
ily structures, the inflation of the M-KM is more severe as the
number of correlated samples per family increases.

Statistical power comparison

Because M-KM and Fisher-F-KM have inflated type I error
rates for related samples, we only investigated the power of
MF-KM, F-KM, and M-KM-ind. As shown in Figure 3, the
power of MF-KM is consistently higher than that of F-KM
(which uses only one phenotype) and M-KM-ind. This is
expected because MF-KM makes full use of the data, while,
in contrast, F-KM uses only one phenotype at a time, and
M-KM uses unrelated founders to preserve correct type I error
rates. In the simulation studies, the covariances 012 and o1
between two phenotypes were set to 0.8. In addition, we
varied og12 and o1z so as to study the effect of the correla-
tion between phenotypes on the power. As shown in Support-
ing Information, Figure S1, the results indicate that MF-KM
assuming equal genetic effects on both phenotypes performs
best when the correlations between phenotypes are low to

moderate and phenotypes have the same direction of genetic
effects and have similar effect size, and MF-KM assuming
nonequal genetic effects on both phenotypes performs best
when the correlations between phenotypes are moderate to
high and phenotypes have different effect size and/or have
different direction of effects.

Analysis of genome-wide lung function data

To evaluate the performance of our statistic on a real data set,
we applied the method to data from a lung function study
(Chen et al. 2014, 2015) to carry out gene-based genome-
wide association tests of the correlated lung function pheno-
types forced expiratory volume in 1 sec. (FEV;) and forced
vital capacity ratio (FEV,/FVC). The data contain 578 Costa
Rican subjects with and without chronic obstructive pulmo-
nary disease (COPD), including 316 samples from 13 fami-
lies, with 464 subjects being genotyped. The 72 subjects with
unconfirmed COPD were excluded. The detailed recruit-
ment criteria are described elsewhere (Chen et al. 2014). A
genome-wide panel of 658,502 SNPs was genotyped, includ-
ing 591,381 common variants (MAF = 0.05) and 67,121 rare
variants (MAF < 0.05). We assigned rare variants to a gene if
they were located within a 5-kb flank of the gene on either
side. In the end, 7064 genes were used in the analysis. We
analyzed the association between the correlated two-dimensional
FEV,; and FEV,/FVC phenotypes and each of the 7064 genes
comprised of rare variants using MF-KM adjusting for age, gen-
der, height, and COPD status. The COPD status was included as a
covariate to control for potential ascertainment effects because
the samples were recruited according to COPD status. In our data
set, the Pearson correlation between FEV; and FEV,/FVC s 0.57.
In the final analysis, 398 genotyped subjects with full pheno-
types were used, but there are still missing genotypes. To
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Figure 3 Power of multivariate family KM (MF-KM), family KM ignoring the phenotype correlation (F-KM) for the first and second phenotypes,
multivariate KM without considering familial structure (M-KM), and M-KM using founders (M-KM-ind) under significance levels of 0.05 and 0.01.

handle these, we assigned them to the homozygous reference
genotype. In this test, we assumed that the phenotype is
caused by rare genetic variants, and thus Wu’s weight (Wu
et al. 2011) was applied to give rarer variants larger effect
sizes. The Manhattan plots of P-values for genes from MF-KM
and F-KM are shown in Figure 4. In these plots, the location of
each gene is determined by the location of its first marker.
Using the MF-KM statistic, two genes, COL6A6 and RBM16
(marginally), were found to be significantly associated with
the joint phenotype of FEV; and FEV;/FVC at an « level of
7 X 10~° (which is the Bonferroni-corrected significance
level). Using F-KM, these two genes also were found to be
associated with FEV; alone. COL6A6 includes 7 rare variants
of 31 genetic variants, and RBM16 includes 2 rare variants of
29 genetic variants. The rare alleles in both COL6A6 and
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RBM16 seem to be associated with a higher risk for lung
function because more individuals with a higher proportion
of rare alleles are in the low FEV; and FEV,/FVC area (the
black area in Figure 5) than in the high FEV; and FEV;/FVC
area (the red area in Figure 5). Moreover, COL6A6
(chr. 3: 130,274,178-130,400,888) is in the COPD-related re-
gions based on the Rat Genome Database (RGD) (Shimoyama
et al. 2015). There are two known COPD-related regions,
COPD14 H (chr. 3: 36,484,119-175,785,038) and COPD16 H
(chr. 3: 49,418,084-198,022,430).

Discussion

Family-based study designs have been used widely in inves-
tigating complex diseases, and hundreds of thousands of
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Rare Alleles Load across 7 Rare Variants in COL6A6

A
* O rare alleles
* 1 rare alleles
» 2 rare alleles
3 rare alleles
= 4 rare alleles
-« T
S
L=
g - - 1.0 g
o w
) w
]
3 ~ 7 1 I %
Ed . .
g /""_““.'"l‘.'.'. Figure 5 Three-dimensional plots
« =7 A1 of FEV,, FEV,/FVC, and rare allele
s - — load (each point represents a
- el .
o o210 # v subject) for (A) COL6AG (the total
0 1 _¢2 3 number of rare alleles for each
19 rare ?Ilelesm 23 subjects subject is the sum of rare alleles
Proportion=0.83 across seven rare genetic variants
in this gene) and (B) RBM16 (the
total number of rare alleles for
B Rare Alleles Load across 2 Rare Variants in RBM16 each subject is the sum of rare
alleles across two rare genetic
variants in this gene). The black
* O rare alleles LT
« 1 rare alleles parallelogram indicates the low
» 2 rare alleles FEV; and FEV,/FVC area; the red
bbbt vod parallelogram indicates the high
FEV, and FEV,/FVC area.
< T
4
w
- 10 S
>
w
w

Rare Alleles Load
2

5 rare alleles in 23 subjects
Proportion=0.22

FEV1

genetic variants, both common and rare, have been genotyped
with advances in high-throughput sequencing technology.
Thus, appropriate statistical methods are needed for analyz-
ing data from these studies while accounting for potential
pleiotropic effects. Therefore, here we developed the MF-
KM statistic using a linear mixed-model framework to ana-
lyze multivariate data with quantitative traits in family-based
studies.

MF-KM shares the advantages of other set-based methods,
such as improved power and reduced multiple testing by
jointly testing a set of genetic variants. Our simulation stud-
ies show that MF-KM preserves the desired type I error rates.
When multiple phenotypes are available, we show that
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MF-KM achieves higher power than commonly used alternate
methods. Based on our simulation results, we believe that MF-
KM provides a good option for genetic analysis of multivariate
data in family-based studies.

The computational time required to implement the MF-
KM method depends on sample size, the number of genetic
variants, and the complexity of the model being tested under
the null hypothesis. In fact, the computational time of fitting a
model under the null hypothesis may not be critical when
performing a genome-wide study. Because MF-KM is a score
test, the estimates of fixed-effects coefficients and the co-
variance matrix under the null hypothesis are independent
of the genetic variants. Therefore, the linear mixed model



under the null hypothesis only needs to be fitted once. The B
and 3, then can be saved and reused to construct test statistics
for all the genes. Therefore, the total computational time is
greatly reduced. However, processing genes takes most of the
computational time. If the number of markers in a gene is
large, inverting the large matrix is still computationally in-
tensive. One way to handle this would be to further group
their variants into subgroups such as common or rare non-
synonymous or synonymous coding variants, as in our pre-
vious work (Yi et al. 2011), and to also use LD blocks if the
subgroups are still large. In addition, we may use fast algo-
rithms proposed for linear mixed models, such as EMMA/
EMMAX (Kang et al. 2010; Zhang et al. 2010b), TASSEL (Zhang
et al. 2010b), and others (Lippert et al. 2011; Svishcheva
et al. 2012; Zhou and Stephens 2012, 2014), which would
make our approach faster and more efficient. Although the
null model needs to be fitted only once for a genome-wide
study, different initial values may need to be tried so as to
find the maximum-likelihood estimates (MLEs) because
the Nelder-Mead method or other optimization methods
find the local maximum. Thus, the computational time
also depends on the number of different initial values be-
ing tried.

Although the MF-KM method requires certain assump-
tions, the framework is general and flexible. For example,
nongenetic covariates can be easily incorporated; M-KM is
a special case of MF-KM where only unrelated samples are
involved. Although kinship coefficients can be obtained di-
rectly from the pedigree, if genome-wide genotypes are avail-
able, it may be more advantageous to use genetic markers to
estimate the kinship coefficients among individuals (Balding
and Nichols 1995; Lynch and Ritland 1999; Ritland 2005; Yu
et al. 2006; Kang et al. 2010; Liu et al. 2011). Using the
estimated kinship coefficients allows us to handle any rela-
tionship, known or unknown, in the samples. In behavioral
and psychological studies, familial correlation is influenced
not only by genetics but also by shared environment, which
needs to be considered in addition to kinship coefficients
(McGue and Bouchard 1998; Turkheimer and Waldron
2000; Hallmayer et al. 2011). In the presence of a shared
environment, our proposed test statistic could yield inflated
type I errors, and this could be controlled by including an
extra random intercept within families in the null model,
but model complexity increases accordingly. In our lung func-
tion study, the shared-environmental influence is not as-
sumed. Although we have only studied the performance of
a linear kernel here, it would be straightforward to use a
nonlinear kernel within the flexible KM regression frame-
work when a nonlinear association between a disease and
genetic variants is assumed.
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Figure S1. Power of multivariate family KM (MF-KM) assuming equal (blue curves)
and non-equal (purple curves) genetic effects, and family KM ignoring the phenotype
correlation (F-KM) for the first (red curves) and second (green curves) phenotypes across
different assigned covariances at the significance level of 0.05. (A) 30% risk causal SNPs,
same causal SNPs for both phenotypes, same direction of genetic effects and same effect
size; (B) 20% risk and 10% protective causal SNPs, same causal SNPs for both
phenotypes, same direction of genetic effects and same effect size; (C) 30% risk causal
SNPs, the variants are only associated with phenotype 1; (D) 30% risk causal SNPs,
different causal SNPs for both phenotypes, same direction of genetic effects and same
effect size; (E) 30% risk causal SNPs, same causal SNPs for both phenotypes, opposite
direction of genetic effects and same effect size; (F) 30% risk causal SNPs, same causal
SNPs for both phenotypes, same direction of genetic effects and the effect size of
phenotype 1 is twice that of phenotype 2.
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