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Abstract

Rationale: Central airway stenosis (CAS) after lung transplantation
has been attributed in part to chronic airway ischemia; however, little
is knownabout the time course or significance of large airwayhypoxia
early after transplantation.

Objectives: To evaluate large airway oxygenation and hypoxic gene
expression during thefirstmonth after lung transplantation and their
relation to airway complications.

Methods: Subjects who underwent lung transplantation underwent
endobronchial tissue oximetry of native and donor bronchi at 0, 3,
and 30 days after transplantation (n = 11) and/or endobronchial
biopsies (n = 14) at 30 days for real-time polymerase chain reaction of
hypoxia-inducible genes. Patients were monitored for 6 months for
the development of transplant-related complications.

Measurements and Main Results: Compared with native
endobronchial tissues, donor tissue oxygen saturations (StO2) were
reduced in the upper lobes (74.16 1.8% vs. 68.86 1.7%; P, 0.05)

and lower lobes (75.66 1.6% vs. 71.56 1.8%; P = 0.065) at 30
days post-transplantation. Donor upper lobe and subcarina StO2
levels were also lower than the main carina (difference of23.96
1.5 and 24.86 2.1, respectively; P, 0.05) at 30 days. Up-
regulation of hypoxia-inducible genes VEGFA, FLT1, VEGFC,
HMOX1, and TIE2 was significant in donor airways relative to
native airways (all P, 0.05). VEGFA, KDR, and HMOX1
were associated with prolonged respiratory failure,
prolonged hospitalization, extensive airway necrosis, and CAS
(P, 0.05).

Conclusions: These findings implicate donor bronchial hypoxia
as a driving factor for post-transplantation airway complications.
Strategies to improve airway oxygenation, such as bronchial artery
re-anastomosis and hyperbaric oxygen therapy merit clinical
investigation.

Keywords: lung transplantation; bronchial diseases; oximetry; cell
hypoxia; angiogenic proteins

Large airway complications such as central
airway stenosis (CAS) are common after
lung transplantation and are associated with
increased morbidity and mortality (1–5).
The pathophysiology is unclear, but
post-transplantation bronchial oxygen
saturations (StO2) and perfusion are
subnormal (6). Although the native lung
has a dual blood supply from the

pulmonary and bronchial arteries, the
bronchial circulation is routinely sacrificed
at transplantation. As a result, the bronchial
mucosa becomes dependent on oxygen-
poor, low-flow, pulmonary arterial
collaterals. Although studies in dogs suggest
that bronchial collaterals can form as early
as 2 weeks post-transplantation (7, 8), a
human study has found compromised

donor bronchial blood flow for up to 1 year
post-transplantation (6). The extent to
which this physiological defect in large
airway oxygenation is clinically significant
is uncertain (6, 9), but small airway
studies suggest that loss of the airway
microvasculature after lung transplantation
may contribute to rejection and fibrosis
(10–15), which suggests that inadequate
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oxygenation may play a role in large airway
complications as well.

We therefore sought to extend and define
the significance of large airway hypoxia by
measuring endobronchial oximetry and
bronchial epithelial gene expression of
hypoxia-inducible genes in both native and
donor lung bronchial tissues of patients who
underwent lung transplantation. We found
that endobronchial oximetry values were
significantly reduced in donor tissue compared
with native tissue, and that hypoxia-inducible
gene expression was significantly up-regulated
in donor tissues relative to native tissues.
Moreover, patients with the most up-regulated
gene expression profiles displayed significantly
more post-transplantation airway
complications. Some of the results of these
studies have been previously reported in the
form of an abstract (16).

Methods

Study Enrollment
Fifteen patients underwent single orthotopic
lung transplantation (SOLT) (n = 9) or
bilateral orthotopic lung transplantation
(BOLT) (n = 6) at Duke University Medical
Center (Durham, North Carolina) as
described (2, 17). SOLT laterality was
determined by technical considerations,
history of thoracic surgery, size of the chest
cavity, involvement of the underlying lung

disease, and ventilation/perfusion imaging
as appropriate. Subjects were enrolled
between January 2013 and September 2014.
All subjects provided written informed
consent for participation in the study before
transplantation. The study was approved by
the Duke University Institutional Review
Board (IRB #Pro00038323).

Bronchoscopy
Informed consent was obtained before
each procedure. One subject consented to
endobronchial oximetry but refused
endobronchial biopsy. Vital signs were
monitored before, during, and after the
procedure. Supplemental oxygen was
provided as needed to maintain pulse
oximetry .90%. Lidocaine (1%)
was administered topically for local
anesthesia, and anxiolytics/analgesics
(e.g., midazolam and fentanyl) were
administered intravenously as needed to
achieve moderate sedation.

Endobronchial oximetry was
performed in 11 patients (SOLT = 8,
BOLT = 3) immediately after transplantation
(time 0), and at 3 days and 30 days after
transplantation using a T-stat white light
tissue oximeter (Spectros Corp., Portola
Valley, California) (6, 18). Measurements
were taken at the main carina and at the
upper lobe bronchus, first subcarina, and
lower lobe bronchus of each lung.

Endobronchial biopsies were performed
(n = 14 patients) at the 30-day bronchoscopy
only. Samples were collected from both
donor and native bronchial tissue: in the
SOLT patients (n = 8), endobronchial
biopsies were taken from the donor and
native lung first subcarina; in the BOLT
patients (n = 6), biopsies were taken from
both donor first subcarinae and the native
main carina. In patients with airway necrosis,
biopsies were taken from nearby viable
tissue. The endobronchial biopsy specimens
were labeled numerically for blinding and
placed immediately into RNAlater RNA
stabilization reagent (Qiagen, Venlo, the
Netherlands) and stored at 2808C.

Real-Time Polymerase Chain
Reaction
Total RNA was extracted from the
endobronchial biopsy specimens using the
RNeasy Midi Kit (Qiagen). RNA purity was
confirmed on a 1.2% agarose gel, and the
RNA was reverse transcribed into cDNA
using the ImProm-II reverse transcription
system (Promega, Fitchburg, Wisconsin).

Quantitative real-time polymerase chain
reaction for a set of hypoxia-responsive
genes known to be involved in
vasculogenesis was performed on an
ABI StepOnePlus using gene expression
assays (Applied Biosystems, Waltham,
Massachusetts). Gene expression assay
primers were used to amplify HMOX1,
VEGFA, VEGFC, FLT1 (VEGFR1), KDR
(VEGFR2), GLUT1 (SLC2A1), ANGPT1,
TIE2 (TEK), and TGFB1. 18S rRNA
was used as an endogenous control.
Quantification of gene expression was
determined by the comparative threshold
cycle and relative quantification method.
Each sample was assayed in triplicate. All
mRNA work was performed in a blinded
fashion.

Clinical Outcomes
Patients were monitored for 6 months
after transplantation for several clinical
outcomes, including primary graft
dysfunction (PGD) within 72 hours of
transplant (19), prolonged respiratory
failure (defined as need for re-intubation or
tracheostomy after transplantation), time to
hospital discharge, development of acute
cellular rejection (20), development of
airway necrosis (“limited” necrosis was
defined as an extension of the necrotic
airway plaques to within 2 cm of the
anastomosis, and “extensive” necrosis was
defined as plaque extension .2 cm distal to
the anastomosis and/or involvement of the
lower lobe) (21), development of CAS
(defined as the inability of a 6.2-mm
bronchoscope to traverse the central
airway), and change in spirometry between
30 days and 6 months post-transplantation.

Statistical Analysis
Grouped data were normally distributed and
expressed as mean6 SEM, except where
specified. Differences between groups were
analyzed using the unpaired Student’s t test,
Wilcoxon signed-rank test, or the Mann-
Whitney U test based on normality testing
(Prism 6, GraphPad Software, Inc., San
Diego, California or Microsoft Excel,
Redmond, Washington). All P values are
two-tailed, and P, 0.05 was accepted as
significant. Using 80% power to detect
significant differences, 13 patients per group
were needed to detect a 5% (absolute)
difference in StO2, and 10 per group were
needed to detect a two-fold change in gene
expression between native and donor tissues.

At a Glance Commentary

Scientific Knowledge on the
Subject: Bronchial circulation is not
routinely re-anastomosed during lung
transplantation, which leaves donor
airways hypoxemic, although the
clinical significance of this is unknown.

What This Study Adds to the
Field: Donor airways displayed a
greater epithelial hypoxic response and
significant up-regulation of hypoxia-
responsive genes at 30 days post-
transplantation. Hypoxic gene
expression was most pronounced in
patients with prolonged respiratory
failure, airway necrosis, and central
airway stenosis, implicating poor
bronchial oxygenation as a significant
factor in post-transplantation airway
complications.
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For comparisons that were underpowered,
trends were noted for P< 0.1.

Results

Patient characteristics are shown in Table 1.
Patient age (mean6 SD) was 63.96 9.2

years. There were 11 men (73%) and
4 women (27%). The most common
indication for transplantation was
interstitial lung disease (n = 14) due to
idiopathic pulmonary fibrosis (IPF) (n = 9),
connective tissue disease–associated usual
interstitial pneumonia (n = 1), nonspecific
interstitial pneumonia (n = 1), sarcoidosis

(n = 1), IPF and chronic obstructive
pulmonary disease (n = 1), or IPF and
chronic thromboembolic pulmonary
hypertension (n = 1). One patient had cystic
fibrosis. Six patients (40%) underwent
BOLT and nine patients (60%) underwent
SOLT. Donor age (mean6 SD) was 396
13.5 years, and cold and warm ischemic

Table 1. Subject Characteristics

Subject ID Age Sex Lung Disease Donor Lung Donor Age Cold Ischemic Time (min) Warm Ischemic Time (min)

001 68 M IPF Right 39 202 48
002 69 M IPF Left 39 260 48
003 72 F UIP/CTD Right 34 692 44
004 61 M IPF Left 52 252 51
005 72 M IPF Right 26 377 56
006 72 M IPF Right 39 160 74
007 65 M IPF Right 50 n/a n/a
008 68 M IPF Right 31 294 47
009 66 M IPF Right 19 253 56
010 74 F IPF Bilateral 67 250 32
011 63 M IPF/COPD Bilateral 61 441 37
012 39 F CF Bilateral 44 339 44
013 52 F Sarcoid Bilateral 39 370 38
014 60 M IPF/CTEPH Bilateral 63 333 47
015 57 M NSIP Bilateral 63 140 39

Definition of abbreviations: CF = cystic fibrosis; COPD = chronic obstructive pulmonary disease; CTD = connective tissue disease; CTEPH= chronic
thromboembolic pulmonary hypertension; ID = identification number; IPF = idiopathic pulmonary fibrosis; n/a = data not available; NSIP =
nonspecific interstitial pneumonia; Sarcoid = sarcoidosis; UIP = usual interstitial pneumonia.

Table 2. Subject Outcomes

Subject ID

Prolonged
Respiratory

Failure

Primary Graft
Dysfunction

Score
Days to

Discharge
Days to

Rejection*
Rejection
Grade

Airway
Necrosis

Stenosis
Present

%Change
in FVC †

%Change
in FEV1

†

001 No 0 42 72 A2Bx Limited Yes 29 28
002 No 0 11 29 A2B0 None No 16 23
003 No 0 16 29 A1B0 Limited No 24 20
004 Reintub, trach 2 26 No

rejection
n/a Extensive Yes 40 61

005 No 2 16 24 A1B0 Limited No 221 228
006 No 0 11 33 A1B0‡ Limited No 15 17
007 No 1 11 27 A1B0 Limited No 35 34
008 No 1 6 94 A1B0 Extensive No 33 25
009 No 0 7 No

rejection
n/a Limited No 8 7

010 Trach 3 88x No
rejection

n/a Limited No Not avail Not avail

011 No 0 12 30 A1B0 Limited No 22 228
012 Trach 3 117 No

rejection
n/a Extensive Yes 30 24

013 No 0 18 99 A1B0 Limited No 44 56
014 Reintub 3 72 No

rejection
n/a Extensive No 22 2

015 Reintub 1 27 92 A2B0 Extensive No 3 212

Definition of abbreviations: ID = identification number; n/a = not applicable; Not avail = data not available; reintub = reintubation; trach = tracheostomy.
*Up to 6 months post-transplantation.
†Change between approximately 1 month post-transplantation and 6 months post-transplantation.
‡Ischemia-reperfusion injury also present.
xPatient died on hospital day 88.
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times were 311.66 138.3 and 47.26 10.4
minutes, respectively.

Patient outcomes are shown in Table 2.
Eight patients developed PGD within the
first 72 hours of transplantation, and five
developed prolonged respiratory failure
requiring reintubation and/or tracheostomy
placement. Median time to hospital
discharge after transplantation was 16 days
(interquartile range, 23.5 d). Median time

to the first episode of acute cellular
rejection was 31.5 days (interquartile range,
58 d), and ranged in severity from minimal
(A1) to mild (A2). One patient had no
airway necrosis, nine developed limited
necrosis, and five had extensive airway
necrosis involving the lower lobe (21). Two
patients with extensive necrosis and one
with limited necrosis developed CAS. The
percent change in FVC and FEV1 was
19.96 4.8% and 13.86 7.2%, respectively;
four patients displayed no improvement
(,12% increase) or worsening of both FVC
and FEV1.

To investigate signs of hypoxia in
donor bronchi, we serially measured
endobronchial tissue StO2 in the bronchial
epithelium of the upper lobe, subcarina,
and lower lobe in donor lungs (SOLT and
BOLT groups), corresponding native lung
sites (SOLT group only), and in native
main carina (SOLT and BOLT groups).
Bilateral lobar/subcarina StO2
measurements in BOLT patients were
averaged. In a few patients, reliable
oximetry measurements could not be
obtained at one or more sites because of
blood or necrotic plaques in the airways.
Compared with native upper lobe bronchi,
absolute StO2 levels of the donor upper
lobe bronchi were significantly reduced
immediately after transplantation (65.26
4.1%, n = 10 vs. 72.56 3.1%, n = 8; P,
0.05) and at 30 days post-transplantation
(68.86 1.7%, n = 11 vs. 74.16 1.8%, n = 8;
P, 0.05). We noticed a trend for reduced
absolute StO2 levels in donor lower lobe
bronchi at 30 days (71.56 1.8%, n = 11 vs.
75.66 1.6%, n = 8; P = 0.065) (Figures
1A–1C). The StO2 changes over time for
individual patients are shown in Figure E1
in the online supplement. Among the
subset of SOLT patients with paired donor
and native bronchial StO2 measurements,
the “contralateral StO2 difference” (donor
minus native) was less than zero in
the upper lobes at 0 and 30 days post-
transplantation (29.86 3.3 and 26.16
2.2, respectively; n = 8 at each time point;
P, 0.05) and displayed a trend in the
lower lobes at 30 days post-transplantation
(22.96 1.3, n = 8; P = 0.069) (Figure 2A).
StO2 levels at the native main carina (above
the anastomosis) were also compared with
those of the donor bronchi (below the
anastomosis) in all patients (SOLT and
BOLT groups). The “anastomosis StO2
difference” (donor minus main carina) was
less than zero in the donor upper lobe

(28.86 4.3 points, n = 10; P, 0.05)
and the donor subcarina (24.46 1.4,
n = 7; P, 0.05) immediately after
transplantation, and in the donor upper
lobe and subcarinal mucosa at 30 days after
transplantation (23.96 1.5, n = 10, and
24.86 2.1, n = 8, respectively; P, 0.05)
(Figure 2B).

Because endobronchial oximetry values
were moderately lower in donor mucosa
than in native mucosa, we selected a set of
hypoxia-inducible genes associated with
vasculogenesis for measurement in
endobronchial biopsy specimens taken at
30 days after transplantation. Due to the
limited RNA sample, not every transcript
could be measured for every patient.
Absolute mRNA levels for KDR (VEGFR2),
ANGPT1, GLUT1, and TGFB1 were not
statistically different between donor and
native tissues, but expression of VEGFA,
FLT1 (VEGFR1), VEGFC, TIE2 (TEK), and
HMOX1 mRNA was significantly increased
in donor tissues relative to native tissues (all
P, 0.05) (Figure 3 and Figure E2). The
calculated ratios of donor to native gene
expression in paired samples revealed a
trend for increased TIE2 (TEK) (n = 5) and
VEGFC (n = 5) expression (both P = 0.062),
and significant elevations in VEGFA
(n = 14), FLT1 (VEGFR1) (n = 11), and
HMOX1 (n = 11) expression (all P, 0.05)
(Figure 4).

To investigate the relationships
between gene expression and patient
outcomes, we compared the ratios of donor/
native mRNA expression to predefined
clinical parameters. We did not find
associations between mRNA levels and
older donor age (.55 yr), longer cold
ischemic time (.300 min), acute
rejection, or changes in spirometry after
transplantation (data not shown), but we
did find significant associations between
mRNA expression and the development of
post-transplantation airway complications.
Specifically, patients with prolonged
postoperative respiratory failure
(i.e., requiring re-intubation or
tracheostomy) displayed significantly
higher donor/native gene product ratios
for VEGFA (4.06 0.8, n = 5 vs. 1.56 0.3,
n = 9) and KDR (VEGFR2) (4.16 1.3, n = 4
vs. 0.66 0.1, n = 5) than did patients who were
successfully extubated after transplantation
(both P, 0.05). In addition, patients with
PGD scores of 2 or 3 (19) showed a trend
for higher KDR expression compared with
patients scoring 0 or 1 (3.56 2.9, n = 3 vs.
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Figure 1. Absolute tissue oxygen saturations
(StO2) of native (open circles) and donor (solid
circles) (A) upper lobe, (B) first subcarina, and
(C) lower lobe bronchi in individual patients at
0, 3, and 30 days after single or bilateral lung
transplantation. N = 6–11 patients per group per
time point. Bars represent means. *P , 0.05
calculated by the unpaired Student’s t test.
There was also a trend for reduced absolute StO2
levels in donor lower lobe bronchi at 30 days
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P = 0.065).

ORIGINAL ARTICLE

Kraft, Suliman, Colman, et al.: Donor Bronchial Hypoxia and Airway Complications 555



1.56 2.1, n = 6; P = 0.053). Furthermore,
patients with prolonged hospital stays
(defined as >15 d) displayed significantly
higher HMOX1 expression (11.56 4.2,
n = 5 vs. 1.96 0.4, n = 6; P, 0.05)
and trends for higher VEGFA and KDR
(VEGFR2) expression (both P< 0.1) than
patients discharged within 15 days of
transplantation. We also found significantly
higher VEGFA (3.76 1.0, n = 5 vs. 1.76
0.3, n = 9) and KDR (VEGFR2) (4.16 1.3,
n = 4 vs. 0.76 0.1, n = 5) mRNA expression
in adjacent viable mucosa in patients with
extensive airway necrosis (both P, 0.05)
and higher VEGFA expression in patients
who developed CAS (4.86 1.2, n = 2 vs.
2.06 0.4, n = 12; P, 0.05) (Figure 5).

Discussion

In evaluating the airway hypoxic response in
patients undergoing lung transplantation,
we detected lower oxygen saturations in
donor bronchial mucosa from the time of
transplantation that persisted for at least
30 days post-transplantation. In conjunction,
hypoxia-responsive genes (e.g., VEGFA) were
significantly up-regulated in donor airways,
which was associated with substantially
greater post-transplantation morbidity,

including prolonged respiratory failure,
prolonged hospital stay, more severe airway
necrosis, and the development of CAS.

As the only solid organ transplanted
without surgical anastomosis of the arterial
circulation, the lung’s conducting airways
would be expected to be at risk for
complications. The bronchial arterial
circulation is critical for normal
mucociliary clearance, airway lining fluid
composition, and bronchial temperature
and nourishment (22–24). Its disruption
at the time of transplantation has been
postulated to increase the risk of airway
complications, such as necrosis, infection,
and bronchiolitis obliterans syndrome
(6, 10–15, 24–26). Although several studies
have presented circumstantial evidence of
airway microvascular insufficiency linked to
airway fibrosis (10–12), the first direct
measurements of airway oxygenation after
lung transplantation by Dhillon and
colleagues demonstrated significantly
reduced StO2 levels in large airway mucosa
of the donors (6). Murine studies using
orthotopic tracheal transplantation have
also supported these observations (10,
13–15). Our study was the first to serially
measure StO2 in patients, which in
conjunction with the published murine
studies (13, 14), indicated that although

donor airway oxygenation might recover
slightly over the first month after
transplantation, donor airways remain
significantly hypoxic relative to native
airways. The upper lobes in particular were
hypoxic, which might be due to their
intrinsically higher ventilation/perfusion
ratio. Our endobronchial StO2
measurements were slightly higher than
those obtained by Dhillon and colleagues
(z67% vs. z60%) (6) for unknown
reasons. There might be institutional
differences in surgical anastomoses
or donor selection, differences in
supplemental oxygen administration during
bronchoscopies, and/or differences in
timing of the measurements (0–30 days
after lung transplantation in our study vs.
1–12 months in the Dhillon and colleagues
study). The magnitude of the differences
between donor and native airway StO2 was
similar between the two studies (,10%
absolute difference), suggesting precision in
our oximetry data. We also did not know
whether this modest reduction in donor
endobronchial StO2 was large enough to
cause clinically significant changes in the
airway mucosa (9). However, our data
indicated that even this small reduction in
StO2 was enough to activate hypoxic gene
expression in donor bronchial epithelium,
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which was a biomarker for clinically
significant airway complications. Clearly,
these associations require further prospective
validation; however, the oxygen levels of the
donor airways were measured by T-stat
oximeters, which measure bronchial
mucosal capillary hemoglobin saturation,
and might have been disproportionately
influenced by higher oxygen diffusion rates
from the airways during supplemental
oxygen administration. In addition, although
not tested in this study, any bronchial
mucosa oxygen deficit might be exaggerated
by cardiopulmonary stresses, such as
anemia, hypoperfusion, infection, or even
exercise after lung transplantation.

The cell’s main transcriptional responses
to hypoxia are generated by activation of
hypoxia-inducible factor-1a (HIF-1a), a
constitutive and constitutively degraded
transcription factor that is stabilized by low
cytosolic oxygen tensions. After stabilization,
the protein heterodimerizes and translocates
to the nucleus to activate transcription of
hypoxia-responsive genes (27, 28). HIF-1a
activation is critical to the early airway
hypoxia response, and its overexpression
after orthotopic tracheal transplantation in
mice can restore airway microvasculature

and prevent chronic rejection and airway
fibrosis (15, 29–31). We did not measure
HIF-1a protein levels directly due to its
instability and the limited quantities of the
endobronchial biopsy specimens, but instead
measured the mRNA expression of HIF-
1a–dependent genes, such as VEGFA.
VEGFA is critical for vascular endothelial cell
proliferation, differentiation, mobilization,
and survival (32, 33), and its expression
together with the expression of FLT1
receptor (VEGFR1) are increased in donor
bronchial tissues relative to native tissues. In
contrast to FLT1, KDR expression was not
induced by hypoxia, but rather displayed
heterogeneity, perhaps representing two
populations (high and low). These findings
are consistent with known hypoxic
regulation of FLT1 but not KDR (34), and
suggest VEGFA and FLT1 expression may be
useful markers for large airway hypoxia.

In contrast to the cytoprotective effects
of VEGF, it is also known that VEGFA
over-expression is associated with the
development of bronchiolitis obliterans
syndrome (35–37) and PGD (38, 39). In this
study, higher VEGFA expression was found
in patients who developed prolonged
respiratory failure, severe airway necrosis,

and CAS, and displayed a trend in patients
with prolonged hospitalization after
transplantation. A similar pattern was
observed for KDR, which in addition to
effecting pro-survival VEGFA signaling
also mediates VEGFA-induced vascular
permeability (32, 33). In addition, KDR
expression trended higher in patients with
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more severe PGD (PGD score >2). Overall,
these findings support earlier observations of
the opposing effects of VEGFA in promoting
both tissue angiogenesis and tissue edema,
and highlight KDR expression as a
potentially useful marker for large airway
complications after lung transplantation.

Tissue hypoxia also activates HMOX-1
gene expression both early and late (40) via
HIF-1a binding (41), but this gene is also
activated by inflammation and pro-oxidants
(42). We found significantly higher
HMOX-1 expression in donor bronchial
tissue relative to native bronchial tissue, and
patients with the highest levels had more
severe large airway necrosis and significantly

prolonged hospitalizations post-
transplantation. Thus, endobronchial
HMOX-1 expression might serve as a
biomarker for persistent ischemic,
inflammatory, and/or oxidative stresses after
transplantation, similar to previous
observations in patients with bronchiolitis
obliterans and acute rejection (43). However,
HMOX-1 is crucial for coordinating cellular
repair programs, such as the counter-
inflammatory response and mitochondrial
biogenesis (42), and is also associated with
good allograft survival (44). Therefore,
the increased endobronchial HMOX-1
expression observed here is also consistent
with a cytoprotective response and

impending tissue repair. This distinction will
require confirmation in additional studies.

The following limitations may temper
the interpretation of our findings. First, that
the association of the expression of hypoxia-
responsive genes with airway complications
after lung transplantation does not address
the causes of these transcriptional changes,
which could be due to other factors
(e.g., respiratory failure). However, the
differences between native and donor tissues
implicate local processes (e.g., cellular
hypoxia) that predominate over systemic
ones (e.g., respiratory failure). A second
issue is that comparing gene expression
between native and donor tissues represents
the expression profiles of two different
individuals (donor and recipient) and may
therefore reflect genetic variability between
donor and recipient rather than tissue
response to the extracellular environment.
Nevertheless, our findings in this
hypothesis-driven study were consistent
enough to implicate hypoxia at the very least
as a contributing factor to the development
of airway complications and invites further
prospective investigation.

In summary, patients undergoing lung
transplantation display low donor airway StO2
at multiple sites in the lungs accompanied by
selected hypoxia-responsive gene expression
over the first month post-transplantation.
Elevated levels of VEGFA and KDR mRNA
were associated with increased post-
transplantation respiratory complications,
including prolonged respiratory failure,
extensive airway necrosis, and CAS. Although
these associations do not demonstrate cause
and effect, the consistency of the findings
does suggest bronchial hypoxia as a clinically
significant factor in airway complications.
Strategies to preserve the bronchial
circulation during lung transplantation, such
as bronchial artery revascularization, may
reduce airway complications (45, 46),
but these strategies require validation.
Alternatively, intermittent oxygenation of
ischemic bronchial tissues with postoperative
hyperbaric oxygen therapy may improve
anastomotic healing and reduce CAS (47, 48),
and is currently undergoing investigation at
our institution (NCT02363959). n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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