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ABSTRACT

Objective: We sought to assess the effect of long-
term exposure to ambient air pollution on the
prevalence of self-reported health outcomes in
Australian women.

Design: Cross-sectional study.

Setting and participants: The geocoded residential
addresses of 26 991 women across 3 age cohorts in
the Australian Longitudinal Study on Women’s Health
between 2006 and 2011 were linked to nitrogen
dioxide (NO,) exposure estimates from a land-use
regression model. Annual average NO, concentrations
and residential proximity to roads were used as proxies
of exposure to ambient air pollution.

Outcome measures: Self-reported disease presence
for diabetes mellitus, heart disease, hypertension,
stroke, asthma, chronic obstructive pulmonary disease
and self-reported symptoms of allergies, breathing
difficulties, chest pain and palpitations.

Methods: Disease prevalence was modelled by
population-averaged Poisson regression models
estimated by generalised estimating equations.
Associations between symptoms and ambient air
pollution were modelled by multilevel mixed logistic
regression. Spatial clustering was accounted for at the
postcode level.

Results: No associations were observed between any
of the outcome and exposure variables considered at
the 1% significance level after adjusting for known risk
factors and confounders.

Conclusions: Long-term exposure to ambient air
pollution was not associated with self-reported disease
prevalence in Australian women. The observed results
may have been due to exposure and outcome
misclassification, lack of power to detect weak
associations or an actual absence of associations with
self-reported outcomes at the relatively low annual
average air pollution exposure levels across Australia.

INTRODUCTION

Ambient air pollution is one of the leading
environmental risk factors in the global
burden of disease.' Current evidence sug-
gests adverse effects of air pollution on

Strengths and limitations of this study

= This is the first Australian national-scale air pol-
lution study examining the effects of long-term
ambient air pollution exposure on chronic mor-
bidity in women.

= Individual-level data on numerous self-reported
medical conditions and confounding variables
were linked to exposure estimates at residential
addresses using a validated national land-use
regression model.

= An inherently low signal-to-noise ratio with
uncertainty in both outcome and exposure meas-
urement may have biased the results towards the
null.

cardiovascular, respiratory, metabolic and
allergic diseases, with outdoor particulate
matter (PM) air pollution responsible for
approximately 3% of global cardiorespiratory
mortality.’

Although air pollution levels in Australia
are considered low in comparison to other
economically  developed nations,”  the
Australian population is concentrated in
major cities where air pollution exposure is
ubiquitous and more likely to be elevated
due to proximity with emissions sources.
Given the large proportion of the population
exposed to air pollution, even small esti-
mated effects would increase the risks of air
pollution-associated morbidity and mortality
in Australia.

Recent systematic reviews and meta-
analyses suggest modest positive associations
between ambient air pollution and cardio-
respiratory and  metabolic  diseases.””’
Short-term air pollution effects have been
extensively studied, especially in relation to
cardiorespiratory  outcomes.  Long-term
effects of cumulative exposure at ambient
levels are less understood despite concern
that chronic exposure increases morbidity
and mortality risk to a greater extent than
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short-term exposure.” In the case of respiratory and
allergic diseases, air pollution is known to result in acute
exacerbations of existing conditions, but there is uncer-
tainty in the role of air pollution in the development of
adult-onset disease.” '

Differential effects of air pollution exposure by gender
have been recorded, with evidence of stronger associa-
tions in women."'™" Differences in male and female
lung architecture and the effects of hormonal status
have been proposed as explanations'®; however, few
studies have limited their attention to women specific-
ally. The aim of this study was to determine if there are
associations between ambient air pollution and the
prevalence of several chronic health conditions among
Australian women. We thus sought to add to the limited
evidence base on the specific effects of long-term expos-
ure to ambient air pollution on women in a relatively
low pollution setting.

METHODS
Australian Longitudinal Study on Women’s Health
The Australian Longitudinal Study on Women’s Health
(ALSWH) is a population-based prospective longitudinal
study that started in 1996 to assess factors that affect the
health of Australian women. Participants were recruited
randomly from the Medicare database (Australia’s uni-
versal healthcare scheme), with deliberate over-
representation of women living in non-urban areas to
account for the marked concentration of the Australian
population in coastal cities.'” Participants are surveyed by
mail every 3 years to collect a self-reported assessment of
their physical and emotional health, health-related beha-
viours, risk factors, and sociodemographic characteristics.
The ALSWH is approved by the research ethics commit-
tees of the University of Queensland and the University
of Newcastle. Further details of the study can be found
online (http://www.alswh.org.au) and in Lee et al’®

The present study focuses on survey responses from
26 991 participants collected in the fourth (2006) and
fifth surveys (2009) of women born between 1973 and
1978 (the ‘younger’ cohort, aged 31-36 years at the later
survey), the fifth (2007) and sixth (2010) surveys of
women born between 1946 and 1951 (the ‘middle-aged’
cohort, aged 59-64 years at the later survey), and the
fiftth (2008) and sixth (2011) surveys of women
born between 1921 and 1926 (the ‘older’ cohort, aged
85-90 years at the later survey). This time frame was
selected to match the availability of exposure data. Only
de-identified data were used for privacy reasons; address
geocoding and exposure assignment were conducted
separately to data analysis, with only alias postcodes avail-
able to the data analyst.

Outcome measures

The study examined the self-reported presence of six
diseases with plausible links to air pollution: diabetes
mellitus, heart disease (includes angina, heart attack,

other heartrelated problems), hypertension, stroke,
asthma, chronic obstructive pulmonary disease (COPD;
includes bronchitis and emphysema). We also examined
self-reported symptoms of allergies (includes hay fever
and sinusitis), breathing difficulties, chest pain, and pal-
pitations. We used iron deficiency as a negative control'®
as it is not believed to be associated with ambient air
pollution, but is likely to be affected by the same unob-
served confounders as the outcome-exposure relation-
ships of interest.

Disease data were obtained from survey questions
asking participants whether they had been diagnosed or
treated for the medical condition in question in the pre-
vious 3 years. Responses were dichotomous. Symptom
data were obtained from survey questions asking partici-
pants how often they had experienced a particular
symptom in the previous 12 months. Responses were on
a four-point ordinal scale: never, rarely, sometimes or
often. The symptom frequency response variable was
dichotomised to avoid the subjectivity associated with
the l%i\llgn ordinal scale and reporting heterogeneity
bias.

Exposure data

Ambient air pollution exposures were estimated using a
national satellite-based land-use regression model,
described in detail elsewhere.'” Briefly, it is capable of
capturing 81% of spatial variability in annual mean
ambient NOy levels across Australia, with a prediction
error of 19%. We used NOy as a proxy for ambient air
pollution because it exhibits greater spatial heterogen-
eity than other ambient air pollutants, and is produced
by major ambient pollution sources like motor vehicles
and industrial processes.”’ Exposure estimates were
assigned to geocoded residential addresses, with long-
term ambient air pollution exposure defined as the pre-
dicted annual mean NOs concentration at the place of
residence. We did not have access to comparable
national-scale models for other pollutants.

We also assessed residential proximity to major and
minor roads at the time of survey completion as a proxy
for trafficrelated ambient air pollution. Major and
minor road definitions were based on the Public Sector
Mapping Agencies Australia Limited road classification
hierarchy."” Where an address could not be matched
exactly during geocoding, the next best match was
attempted (eg, next door or same street), and if no
matching street number or name could be located,
matches were made to the postcode centroid. We
assessed the sensitivity of our results to the accuracy of
address geocoding.

For the disease prevalence analysis, a 3-year average
annual NOy exposure was assigned (over the year of the
survey and 2 years prior) to correspond to the 3-year
time period in the survey outcome questions. For the
symptom prevalence analysis, the annual mean NOg
concentration in the year immediately prior to the
survey year was assigned as the exposure. This was
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selected because surveys were conducted at the begin-
ning of the calendar year and variability in annual mean
NOs is negligible in proximate years (correlation coeffi-
cients between the years of the study period were all
greater than 0.99).

Sample selection

The disease questions were asked across all three age
cohorts except in the case of stroke, which was asked
only in surveys of middle-aged and older women. Only
the second of the two surveys for each respondent
(between 2009 and 2011) were used because exposure
estimates were only available between 2006 and 2011,
and exposures were required to correspond to the 3-year
period referred to in the disease questions. The disease
prevalence analysis was thus performed on pooled data
from the fifth survey of the younger cohort, and the
sixth surveys of the middle-aged and older cohorts (see
online supplementary section 1 for further details),
except for the stroke outcome for which data on the
younger cohort were unavailable.

Responses from both surveys of respondents in each
age cohort were included in the symptom analysis.
Allergy and palpitation outcomes were only assessed in
surveys of younger and middle-aged women; chest pain
was assessed in surveys of middle-aged and older
women; and breathing difficulty was assessed across all
three cohorts, but not in survey 4 of younger women.

We restricted the sample to those respondents with no
missing data on the variables used in the analysis to first
exclude respondents with missing outcome, exposure
and postcode data. We then restricted the disease preva-
lence analysis and models which accounted for cluster-
ing by postcode to movement below an arbitrarily
chosen 5 km residential mobility threshold (see online
supplementary table S1). We did this to avoid unduly
excluding participants whose apparent movement over
short distances between surveys was more likely due to
differences in geocoding results rather than an actual
change of residence (we did not have access to residen-
tial addresses for comparison). At the same time, we
wanted to identify participants who had moved during
the preceding 3-year period and were not suitable for
the disease prevalence analyses. We assessed the sensitiv-
ity of our results to this choice of mobility threshold (see
online supplementary section 2 for further details).

Response rates in the ALSWH for the younger cohort
surveys were 71.1% for survey 4 and 61.4% for survey 5;
in the middle-aged cohort, these were 86% for survey 5
and 83% for survey 6; in the older cohort these rates
were 77.4% for survey 5 and 70% for survey 6. Table 1
shows sample composition by survey and cohort, and
online supplementary table S1 shows the derivation of
analytical sample sizes with the number of missing obser-
vations by outcome.

Covariates included as confounders

Covariates included for confounding control included
age group, body mass index (BMI), smoking status,
alcohol intake, physical activity, fruit and vegetable con-
sumption, degree of residential urbanisation or remote-
ness, annual mean temperature, marital status,
educational attainment and self-assessed financial
resources. The definitions used for these covariates are
given in online supplementary section 3. We selected
these confounders on the basis that they may be asso-
ciated with the outcomes of interest and with exposure.
Online supplementary tables S2 and S3 show descriptive
statistics by outcome and covariate for the disease and
symptom data, respectively.

Statistical analysis

Spatial autocorrelation

To partially account for the spatial autocorrelation
observed in the exposure data, respondents were
assumed to be clustered within postcodes. Alias post-
codes were used for privacy reasons, which have a
one-to-one mapping with actual postcodes. Latitude and
longitude data were not available to the analyst due to
confidentiality restrictions which precluded specification
of a model that accounts for spatial autocorrelation
more precisely. Incorporating clustering by postcode
assumes non-zero correlation between women living
within the same postcode area, but not for women living
in different postcodes, regardless of their actual spatial
distance. Women residing in neighbouring postcodes
were assumed independent, even if they were spatially
proximal.

Prevalence of self-reported disease

Relative risks (risk ratios, RRs) were modelled via
Poisson regression with a log link function and robust
error variance, which is known to produce consistent

Total

Table 1 Number of respondents across survey and cohort

Cohort
Response to Younger Middle-aged Older
Only survey 4 1865 (18.5%)
Only survey 5 920 (9.1%) 1112 (10.0%) 1748 (30.1%)
Only survey 6 485 (4.4%) 243 (4.2%)
Both surveys 7280 (72.3%) 9526 (85.6%) 3812 (65.7%)
Total 10065 (100%) 11123 (100%) 5803 (100%)

1865 (6.9%)
3780 (14.0%)

728 (2.7%)
20618 (76.4%)
26991 (100%)
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and efficient estimates of relative risk with binary
data.?! # The model chosen was a population-averaged
model estimated by generalised estimating equations
assuming an exchangeable correlation structure using
the function xtgee in Stata 13.1 (StataCorp, College
Station, Texas, USA). A linear association was assumed
for the NOy exposure and RR estimates are for an IQR
increase. Proximities to major and minor roads were log-
transformed (base 2) as the distribution was concen-
trated near zero and highly right-skewed; thus, estimated
coefficients refer to a doubling in the exposure distance.

Prevalence of self-reported symptoms

ORs were estimated via a two-level mixed logistic regres-
sion with a random intercept that accounts for the
dependence between repeated observations for each
respondent. To partially account for spatial autocorrel-
ation, an additional three-level mixed logistic regression
with random intercepts for both respondent and post-
code was used that accounts for the dependence
between observations at both levels (see online supple-
mentary section 4 for further details). Random
intercepts were assumed to be normally distributed.
Models were estimated by mean-variance adaptive
Gauss-Hermite quadrature using the Stata 13.1 function
melogit. Preliminary models were estimated with 10
quadrature points and the final model was estimated
with 10, 15 and 20 quadrature points to check the stabil-
ity of the results.

Models estimated

We first estimated crude effect estimates and then
second adjusted for confounders and known risk factors.
Known risk factors for each outcome were included as a
minimum: specifically, age cohort and smoking status
were controlled in all models.?> Other confounders were
identified by the ‘change-in-estimate’ rule of thumb;** *°
we required only a relatively small 5% change as effect
estimates were expected to be small. Physical activity and
BMI group were always included in models of diabetes
and cardiovascular outcomes. BMI group was always
included in the asthma model. Alcohol use was always
included in models of hypertension and stroke.
Comorbidities were not considered.

To assess the sensitivity of our results to the accuracy
of address geocoding, we re-estimated the adjusted
model on the subset of respondents with exact matches
between respondent addresses at survey and the geo-
coded national address reference file. Finally, to assess
residual confounding by variables excluded by this pro-
cedure, a further model containing all available covari-
ates was estimated (here termed as a ‘fully adjusted’
model).

Model comparison was assisted by the quasi-likelihood
under-the-independence-model  information  criter-
ion?® %7 in the models of disease prevalence and
Akaike’s information criterion (AIC) in the models of
symptom  prevalence. Details of goodness-of-fit

assessment are provided in online supplementary
section 5. Power analyses were conducted by simulation
to determine the minimum detectable effect sizes given
our model and sample size. Cls at the 99% level were
used to reduce the risk of type 1 errors.

RESULTS
Exposures
Figure 1 shows distributions of annual mean NO, levels
and distance to roads at survey 5 of the younger cohort
and surveys 6 of the middle-aged and older cohorts. A
high level of spatial autocorrelation was observed in the
NOy data using the Moran’s I statistic (I=0.89, Z=357.1,
p<0.001).

Prevalence of self-reported disease

Table 2 shows crude and adjusted relative risk estimates
for the disease outcomes. Most adjusted RR estimates
were close to unity for the NOy exposure, and the 99%
CIs included unity for all disease outcomes considered
after adjusting for risk factors and confounders.
Similarly, there was no evidence of association between
any of the outcomes considered and residential proxim-
ity to major or minor roads. This was also the case when
restricting the sample to those respondents with exact
matches between address recorded at survey and the
geocoding reference data. Adjusting for all available cov-
ariates did not suggest any residual confounding by the
additional available variables and minimal change in
precision of the estimated effects. Sensitivity analyses of
the 5km threshold for residential mobility suggested
that the results were not affected by moving the thresh-
old above or below 5km (see online supplementary
figures S1 and S2). Furthermore, no associations were
observed with iron deficiency (as a negative control),
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Figure 1 Box plots of annual mean NO, levels and distance

to roads at survey 5 of the younger cohort and surveys 6 of
the middle-aged and older cohorts.
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Table 2 Relative risk of self-reported disease with an IQR increase in the 3-year mean NO, concentration or a doubling in the distance to a major or minor road

Fully adjusted Exact geocoding
Crude model Adjusted model* modelt subsample*
N RR (99% CI) N RR (99% Cl) N RR (99% Cl) N RR (99% CI)

Diabetes

3-year mean annual NO, (3.7 ppb) 14563 0.79 (0.70 to 0.89) 12443 1.04 (0.91 to 1.20) 12177 1.04 (0.90 to 1.20) 9738 1.00 (0.85 to 1.18)

Distance to major road (doubling) 14563 1.04 (1.00 to 1.07) 12940 0.99 (0.95 to 1.04) 12177 0.99 (0.95 to 1.04) 10103 0.99 (0.93 to 1.05)

Distance to minor road (doubling) 14563 1.11 (1.07 to 1.15) 12940 0.99 (0.95 to 1.04) 12177 0.98 (0.94 to 1.02) 10103 0.94 (0.87 to 1.02)
Heart disease

3-year mean annual NO, (3.7 ppb) 14563 0.85 (0.77 to 0.93) 12452 0.94 (0.85 to 1.04) 12177 0.88 (0.76 to 1.01) 9739 0.90 (0.80 to 1.00)

Distance to major road (doubling) 14563 1.03 (1.00 to 1.05) 12940 1.01 (0.97 to 1.05) 12177 1.01 (0.97 to 1.05) 10103 1.01 (0.96 to 1.06)

Distance to minor road (doubling) 14563 1.11 (1.08 to 1.15) 12940 0.98 (0.95 to 1.02) 12177 0.98 (0.94 to 1.01) 10103 1.01 (0.93 to 1.09)
Hypertension

3-year mean annual NO5 (3.7 ppb) 14563 0.83 (0.78 to 0.87) 12395 0.97 (0.92 to 1.01) 12177 0.99 (0.94 to 1.05) 9687 0.96 (0.91 to 1.01)

Distance to major road (doubling) 14563 1.03 (1.02 to 1.05) 12880 1.00 (0.98 to 1.02) 12177 1.00 (0.98 to 1.02) 10048 1.00 (0.98 to 1.02)

Distance to minor road (doubling) 14563 1.12 (1.10 to 1.14) 12880 1.01 (0.99 to 1.02) 12177 1.00 (0.99 to 1.02) 10048 1.01 (0.98 to 1.04)
Stroke

3-year mean annual NO, (3.3 ppb) 10402 0.99 (0.80 to 1.22) 8518 0.83 (0.58 to 1.19) 8384 0.74 (0.51 to 1.09) 6916 0.73 (0.49 to 1.09)

Distance to major road (doubling) 10402 0.96 (0.89 to 1.05) 8964 1.01 (0.90 to 1.14) 8384 1.02 (0.90 to 1.16) 7252 1.06 (0.91 to 1.24)

Distance to minor road (doubling) 10402 0.98 (0.89 to 1.08) 8964 0.98 (0.88 to 1.10) 8384 0.99 (0.88 to 1.11) 7252 1.13 (0.94 to 1.35)
Asthma

3-year mean annual NO, (3.7 ppb) 14563 0.96 (0.89 to 1.05) 13660 0.99 (0.91 to 1.08) 12177 0.97 (0.86 to 1.10) 10658 0.95 (0.86 to 1.06)

Distance to major road (doubling) 14563 1.00 (0.97 to 1.03) 13660 1.00 (0.98 to 1.03) 12177 1.00 (0.97 to 1.03) 10658 1.01 (0.97 to 1.05)

Distance to minor road (doubling) 14563 1.00 (0.98 to 1.03) 13660 1.00 (0.97 to 1.03) 12177 1.01 (0.98 to 1.04) 10658 1.01 (0.95 to 1.07)
COPD

3-year mean annual NO5 (3.7 ppb) 14563 1.02 (0.92 to 1.13) 14480 0.96 (0.83 to 1.09) 12177 1.00 (0.86 to 1.17) 11294 0.92 (0.78 to 1.09)

Distance to major road (doubling) 14563 1.01 (0.97 to 1.04) 14489 1.01 (0.97 to 1.04) 12177 1.01 (0.98 to 1.05) 11295 1.00 (0.95 to 1.06)

Distance to minor road (doubling) 14563 0.99 (0.96 to 1.02) 14489 0.99 (0.95 to 1.02) 12177 1.00 (0.95 to 1.04) 11295 0.96 (0.89 to 1.04)
Iron deficiency—negative control

3-year mean annual NO, (3.7 ppb) 14563 1.17 (1.09 to 1.26) 14563 1.04 (0.96 to 1.12) 12177 1.04 (0.98 to 1.16) 11355 1.02 (0.93 to 1.12)

Distance to major road (doubling) 14563 0.95 (0.93 to 0.97) 14563 0.98 (0.96 to 1.00) 12177 0.99 (0.97 to 1.01) 11355 0.98 (0.94 to 1.02)

Distance to minor road (doubling) 14563 0.93 (0.91 to 0.95) 14563 1.00 (0.98 to 1.03) 12177 1.01 (0.98 to 1.04) 11355 1.01 (0.95 to 1.07)
Sample size (N) and RRs with 99% Cls in parentheses.
*Adjusted for known risk factors and identified confounders, specifically: diabetes models adjusted for cohort, BMI group, smoking status, physical activity, and additionally highest qualification
and residential remoteness in the NO, model; heart disease models adjusted for cohort, BMI group, smoking status, physical activity and additionally highest qualification in the NO, model;
hypertension models adjusted for cohort, BMI group, smoking status, physical activity, alcohol use and additionally highest qualification in the NO, models; stroke models adjusted for cohort,
BMI group, smoking status, physical activity, alcohol use, and additionally highest qualification, marital status, and residential remoteness in the NO, model; asthma models adjusted for cohort,
smoking status and BMI group; COPD models adjusted for cohort and smoking status, and additionally residential remoteness in the NO, model; iron deficiency models adjusted for cohort only.

TAdjusted for all available covariates.
BMI, body mass index; COPD, chronic obstructive pulmonary disease; RR, risk ratio.
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suggesting our results were not affected by unobserved
confounding. Power simulations suggested that the
models of stroke prevalence and most NOg models may
not have sufficient power to detect weak associations
close to unity (see online supplementary tables S4

and SH).

Prevalence of self-reported symptoms

Table 3 shows crude and adjusted ORs for the symptom
outcomes. Again there was no evidence of association
between annual mean NOs levels, or residential proxim-
ity to major or minor roads, and any of the symptoms
considered after adjusting for risk factors and confoun-
ders. This was also the case when adjusting for all avail-
able covariates, when the analytical sample was restricted
to those respondents with exact matches between
address recorded at survey and the geocoding reference
data, and when three-level models were estimated which
account for clustering by postcode. The findings were
stable when using 10, 15 or 20 integration points for the
adaptive Gauss-Hermite quadrature.

Spatial autocorrelation

The estimated within-postcode correlations in the
disease prevalence models were negligible (<0.012 in
absolute value in all cases), suggesting little benefit in
estimating this additional parameter. Within-postcode
correlations were also of negligible magnitude in the
symptom prevalence models (<0.01 in absolute value in
all cases), and there was negligible difference in AIC
when comparing the three-level models with their corre-
sponding nested two-level models, suggesting no cluster-
ing by postcode.

DISCUSSION

This is the first Australian national-scale air pollution
study focusing on the effects of long-term ambient air
pollution exposure on chronic morbidity in women. We
linked individuallevel data on self-reported symptoms
and diseases (and confounding variables) to residential
exposure estimates from a validated land-use regression
model and accounted for spatial clustering of respon-
dents. We found no evidence of associations between
self-reported diabetes, heart disease, hypertension,
stroke, asthma, COPD or self-reported symptoms of aller-
gies, breathing difficulties, chest pain or palpitations and
ambient NOy air pollution exposure or residential prox-
imity to roads after adjusting for known risk factors and
confounders.

Comparison with other studies

Diabetes mellitus type 2

Although experimental evidence suggests a role for air
pollution in the aetiology of diabetes, epidemiological
evidence linking air pollution and diabetes prevalence is
limited and mixed.*® Our results are consistent with one
of two recent systematic reviews and meta-analyses of

cross-sectional studies: Janghorbani et a* found no asso-
ciation while Balti et al* suggested exposure to ambient
NOg air pollution may be associated with a modest
increase in diabetes prevalence. Both reviews relied on a
different set of two out of three available cross-sectional
studies, of which two found no association'' * and the
third observed a positive association.”®> We were unable
to exclude participants with type 1 diabetes in the
middle-aged and older cohorts, which may have diluted
our observed effects. However, the overwhelming major-
ity of cases in these age groups in our data set are type 2
diabetes.

Respiratory and allergic outcomes

It is well known that air pollution exacerbates symptoms
in individuals already suffering from asthma and allergic
conditions;” '° 3! %2 however, the role that air pollution
plays in the development of asthma and allergies is less
clear.” ' Recent systematic reviews and meta-analyses
suggest an association between increases in ambient
NO, air pollution and asthma incidence,” but not
community-level prevalence.”> Few studies of within-
community prevalence have looked at adult asthma,32
with some of those conducted to date reporting positive
associations®* ¥ and others, consistent with our study,
reporting no association.*® ¥ Our findings are also sup-
ported by a recent Tasmanian study that found no asso-
ciations between adult asthma prevalence and
trafficrelated pollution.®® In the case of allergic
disease, our results are consistent with those of
Pujades-Rodriguez et al® but not with results of
Cesaroni et aP® who observed an association between
rhinitis prevalence and various trafficrelated indicators
or Lindgren et al,35 who observed associations between
allergic rhinitis (hay fever), proximity to traffic and
exposure to nitrogen oxides (NOx). A limitation of our
analysis was the lack of information with which to separ-
ate allergic from non-allergic asthma,'%and the broad
categorisation of allergies, hay fever and sinusitis as one
outcome when the underlying conditions may have
varying subtypes and aetiologies.

The evidence for long-term air pollution effects on
COPD prevalence is also not conclusive, despite the
existence of biologically plausible mechanisms and well-
established evidence that air pollution affects lung func-
tion and exacerbates pre-existing COPD.* ** Our results
are consistent with two recent meta-analyses: associations
between NOs exposure and chronic bronchitis symp-
toms were not observed in the European Study of
Cohorts for Air Pollution Effects'' or in a systematic
review of the effect of outdoor PM air pollution on
COPD prevalence.”” Moreover, the majority of cross-
sectional studies reviewed by Schikowski et af*® observed
no association. In contrast, NOy and PM exposure were
both associated with a higher risk of COPD in a study of
German women,*® while proximity to busy roads and
long-term NOx exposure were associated with a higher
risk of selfreported COPD and chronic bronchitis
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Table 3 ORs of self-reported symptoms with an IQR increase in the annual mean NO, concentration or a doubling in the distance to a major or minor road

Fully adjusted

Exact geocoding

Adjusted

Crude model Adjusted model* modelt subsample* 3-level model*
N OR (99% Cl) N OR (99% Cl) N OR (99% Cl) N OR (99% CI) N OR (99% Cl)

Allergies

Annual mean NO, 35797 1.02 (0.92to 1.13) 35496 0.87 (0.76 to 1.01) 30410 0.87 (0.76 to 1.01) 23821 0.89 (0.77 to 1.04) 23268 0.85 (0.73 to 1.00)
(3.7 ppb)

Distance to major 35797 1.00 (0.97 to 1.03) 35676 1.01 (0.98 to 1.04) 30410 1.02 (0.98 to 1.05) 23834 1.01 (0.97 to 1.06) 23288 1.01 (0.97 to 1.04)
road (doubling)

Distance to minor 35797 0.98 (0.95to0 1.01) 35676 1.01 (0.98to 1.04) 30410 1.02 (0.98 to 1.05) 23834 0.96 (0.91 to 1.01) 23288 1.01 (0.97 to 1.06)
road (doubling)

Breathing difficulty

Annual mean NO, 35457 0.94 (0.87 to 1.02) 31202 1.05 (0.96 to 1.15) 27257 1.09 (0.97 to 1.23) 21252 1.02 (0.92to 1.13) 23760 1.05 (0.95 to 1.16)
(3.4 ppb)

Distance to major 35457 1.04 (1.01to 1.06) 33618 1.00 (0.98 to 1.03) 27257 1.01 (0.98 to 1.04) 22857 1.01 (0.97 to 1.06) 24814 1.02 (0.98 to 1.05)
road (doubling)

Distance to minor 35457 1.08 (1.05to 1.10) 33618 0.99 (0.97 to 1.02) 27257 1.00 (0.97 to 1.03) 22857 0.97 (0.92 to 1.02) 24814 0.99 (0.95 to 1.03)
road (doubling)
Chest pain

Annual mean NO, 28194 0.96 (0.88to 1.05) 23315 0.96 (0.87 to 1.06) 20823 1.00 (0.87 to 1.15) 16279 0.90 (0.80 to 1.01) 17868 0.94 (0.84 to 1.06)
(3.2 ppb)

Distance to major 28194 0.98 (0.9510 1.02) 23315 1.00 (0.96 to 1.04) 20823 1.00 (0.96 to 1.04) 16279 0.94 (0.98 to 1.10) 17868 1.02 (0.97 to 1.07)
road (doubling)

Distance to minor 28194 0.98 (0.95to0 1.01) 23315 1.00 (0.96 to 1.03) 20823 0.99 (0.95to 1.02) 16279 0.97 (0.90 to 1.05) 17868 0.99 (0.94 to 1.04)
road (doubling)

Palpitations

Annual mean NO, 35809 0.80 (0.74t0 0.87) 31176 0.99 (0.91 to 1.08) 30412 1.00 (0.90 to 1.12) 20917 0.96 (0.87 to 1.07) 20935 0.96 (0.85 to 1.07)
(3.7 ppb)

Distance to major 35809 1.04 (1.02to 1.06) 33062 1.00 (0.98 to 1.03) 30412 1.01 (0.98 to 1.03) 22167 1.01 (0.97 to 1.04) 21669 1.02 (0.98 to 1.05)
road (doubling)

Distance to minor 35809 1.08 (1.05to 1.10) 33062 1.00 (0.97 to 1.02) 30412 0.99 (0.97 to 1.02) 22167 1.00 (0.96 to 1.05) 21669 0.98 (0.94 to 1.02)

road (doubling)

Sample size including repeated observations (N) and ORs with 99% Cls in parentheses; models are two-level models unless specified otherwise.
*Adjusted for known risk factors and identified confounders, specifically: models of allergies adjusted for cohort and smoking status and additionally residential remoteness in the NO, model;
models of breathing difficulty symptoms adjusted for cohort and smoking status, and additionally highest qualification in the NO, model; models of chest pain symptoms adjusted for cohort, BMI
group, smoking status and physical activity; models of palpitations symptoms adjusted for cohort, BMI group, smoking status, physical activity and additionally highest qualification in the NO,

model.

tAdjusted for all available covariates.

BMI, body mass index.
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symptoms in a Swedish study.’* Inconsistencies in find-
ings between these cross-sectional studies are thought to
be due to differences in exposure measurement, mis-
classification, migration and heterogeneous assessment
of confounders.*

Cardiovascular outcomes

The adverse effects of PM air pollution on cardiovascu-
lar health are established™ and the consensus of pub-
lished evidence suggests a causal association between air
pollution and cardiovascular disease even at concentra-
tions below existing air quality standards.*> *° While
long-term effects on mortality due to PM have been well
documented, the evidence for effects on cardiovascular
morbidity have been less consistent.® *” In contrast to
our findings for heart disease, positive cross-sectional
associations have been observed with long-term expos-
ure to PM™ and high traffic exposure.* Cross-sectional
associations with NOgy pollution are less understood,
with some studies reporting positive associations” and
others no association.”’ Experimental studies suggest
low cardiovascular toxicity of NOy at ambient concentra-
tions”® °® and inconsistencies in findings between obser-
vational studies are thought to be due to exposure to
co-pollutants or the combined effects of pollutant
mixtures.**

Although trafficrelated pollution has been associated
with increases in blood pressure,54 55 few studies of long-
term exposure to ambient air pollution and hyperten-
sion prevalence have been conducted. The effect of air
pollution on blood pressure is considered a potential
mechanism that may explain the established association
between ambient air pollution and cardiovascular
disease.”® °° Our results are consistent with several previ-
ous studies that observed no association between hyper-
tension prevalence and exposure to NOs or PM
pollution,” °° but are inconsistent with the positive asso-
ciation with PM exposure observed by Johnson and
Parker,” and the inverse association with exposure to
NOx observed by Sgrensen et al® The differences in
findings between studies are thought to be due to differ-
ential diagnostic criteria or misclassification of hyperten-
sion cases which are often undiagnosed™ °°; however,
the latter is unlikely to be relevant in Australia where
blood pressure measurement is frequent and
widespread.

Long-term air pollution exposure has been associated
with stroke hospitalisations and mortality,”® and there is
growing evidence that it has an impact on the develop-
ment of carotid arteriosclerosis which is a precursor of
stroke.” However, limited evidence has been presented
for an association with stroke prevalence. Consistent
with our finding, Dong et al'* and Forbes et aP!' observed
no association with ambient NOy air pollution among
Chinese or English women, respectively, whereas associa-
tions with PM pollution were observed by Dong et al, but
not by Forbes et al. Brauer™ suggests a limitation in
studies that fail to separate ischaemic from

haemorrhagic stroke, as air pollution is considered to
variably affect the underlying pathophysiological
mechanisms.

Limitations

Our results should be considered in the context of the
following limitations. Although the ALSWH study and its
self-report data have been extensively documented and
validated, the study was not conceived as an air pollution
study. Moreover, rural areas which typically have low air
pollution levels are considerably over-represented in the
ALSWH, and the use of subjectspecific sampling
weights was precluded by our choice of methodology.
While our NO, data have been validated,'” we were not
able to assess the validity of our road proximity variables.

Several avenues of exposure misclassification may be
present. First, as this is a cross-sectional study of disease
prevalence rather than incidence, there is uncertainty in
the degree to which exposure preceded the outcomes
observed. However, high correlation was observed
between annual average pollution levels in successive
years during the study period. Second, we defined an
arbitrary threshold for residential mobility between
surveys of 5 km. Even with the analysis limited to move-
ment below the threshold, exposures may be misclassi-
fied for some respondents. However, sensitivity analyses
revealed no appreciable change in our estimates with
thresholds of 1-10 km. Lastly, we did not account for
occupational and transportrelated exposures, nor
indoor sources of NOy such as unflued gas stoves and
heaters. We believe that each of these avenues of expos-
ure misclassification could be non-differential and that
the likely consequences are effects that are biased
towards the null. A further source of potential bias
towards the null may be the uncertainty inherent in
exposure estimates from our land-use regression
model.” In addition, prevalence studies may be affected
by exposure-induced migration patterns, with susceptible
individuals moving to lower exposure areas.”” ©!

As the study was based on self-reported assessment of
health status and health-related variables, there may be
misclassification in the outcome and covariate data.
Undiagnosed and untreated cases may not have been
reported, and there may have been misreporting of diag-
noses or sensitive health-related characteristics such as
weight, level of physical activity and alcohol use.
However, validation studies of ALSWH self-report data
suggest substantial agreement with hospital records for
diabetes and to a reasonable degree, for heart disease
and stroke.®? The validity of self-reported height, weight
and physical activity have also been assessed and con-
firmed by previous studies.”” ®* Although we were able
to adjust for a wide array of potential confounders,
residual confounding may nonetheless exist due to the
coarse resolution of some covariates such as smoking. In
addition, we were not able to assess the effects of traffic
noise and therefore, cannot rule out residual confound-
ing by exposure to noise.
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As spatial autocorrelation was observed in the NOg
exposure, we accounted for clustering by postcode.
While this assumption allows for non-zero correlation
between women living within the same postcode, it does
not allow for correlation between spatially proximal
women living in differing postcodes. An inability to com-
pletely account for spatial autocorrelation may be a
source of bias in our study. However, there appeared to
be minimal clustering by postcode based on the magni-
tude of the estimated within-postcode correlation.

Although we concentrated on exposure to ambient
NOy as a marker for combustion-derived air pollution,
individuals are exposed to a mixture of pollutants.
However, we also analysed residential proximity to roads
as a marker for the diverse mix of traffic-related ambient
air pollution and our conclusions remain unchanged.
Finally, as we studied the relationship between long-term
exposure to ambient air pollution and chronic morbidity
in women, our results cannot be extrapolated to the
short-term effects of ambient air pollution or general-
ised to effects in men.

CONCLUSION

We observed no evidence of association between esti-
mated long-term ambient NOs exposure and self-
reported diseases (diabetes, heart disease, hypertension,
stroke, asthma, COPD) and symptoms (allergies, breath-
ing difficulties, chest pain, palpitations) in a cohort of
26 991 Australian women born in 1921-1926, 1946-1951
and 1973-1978. The observed results may be due to an
inherently low signal-to-noise ratio with uncertainty in
both outcome and exposure measurement, and therefore
the potential for misclassification which may have biased
the results towards the null; lack of power to detect
modest NOy effect sizes for some health conditions; or
may reflect an absence of effects at the relatively low
annual average NOgy levels observed in Australia.
Nonetheless, several of our findings are consistent with
those observed in other work. Our study adds to the
limited evidence base on the long-term effects of ambient
NOg air pollution and traffic exposure on chronic cardio-
respiratory, metabolic and allergic conditions in women.
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