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Abstract

Obstructive sleep apnea (OSA) is characterized by repetitive collapse of the upper airway (UA)
during sleep and is associated with chronic intermittent hypoxemia, catecholamine surges, and
sleep disrupt. Multiple pathophysiological risk factors have been identified and contribute to OSA,
including anatomical abnormalities (elevated UA mechanical load), compromised UA dilators,
increased loop gain (unstable respiratory control), and decreased arousal threshold. These factors
may contribute to the pathophysiology of sleep apnea in different individuals and recent evidence
suggests that treatment may be targeted towards underlying pathophysiological mechanism. In
some cases, combination therapy may be required to treat the condition.
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1. Introduction

Obstructive sleep apnea (OSA) is a serious condition with major consequences and its
prevalence is increasing. Obstructive sleep apnea is defined by repetitive collapse of the
pharyngeal airway during sleep [1], which results in ongoing respiratory effort during
pharyngeal collapse. This situation is in contrast to central apnea, which occurs with
minimal or no respiratory effort. The prevalence of OSA has been debated because estimates
have widely varied, largely because they are dependent upon equipment and the OSA
criteria used [2]. Young et al. [3] previously estimated that approximately 4% of men and
2% of women in the United States (US) have at least 5 breathing abnormalities per hour of
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sleep and excessive daytime sleepiness. More recently, Peppard et al. [4] reported that 13%
of men and 6% of women in the US have at least 15 breathing events per hour of sleep.
However, Heinzer et al. [5] recently estimated that, in Switzerland, up to 50% of men from a
community sample had clinically important OSA (based on an apnea hypopnea index [AHI]
above 5 events per hour and associated daytime consequences). Reasons for the increasing
prevalence are complex, but likely reflect the obesity pandemic [6], diagnostic technology
improvements [2], population aging, and other factors [7]. Similar figures have been
estimated from other countries [8], even though the prevalence of obesity is generally lower
than that of the US. Further data are clearly required, particularly given the importance of
the condition being evaluated.

1.1. Pharyngeal collapse has two major consequences

Narrowing of the pharyngeal lumen leads to disturbances in gas exchange, including
hypoxemia and hypercapnia, which can have end-organ consequences [9]. In addition, to
restoring pharyngeal patency, arousals from sleep (plus intermittent hypoxia) lead to sleep
fragmentation and associated neurocognitive sequelae [10]. Catecholamine surges occur
with each repetitive apnea, leading to sustained sympathoexcitation over time and
cardiovascular sequelae, including hypertension [11-13]. Ongoing research is leading to a
better understanding of OSA causal pathways, including why apnea occurs [14].

2. Pathogenesis and tailored treatment strategies for obstructive sleep

apnea

The concept of precision or personalized medicine is gaining in popularity [15]. The notion
that “‘one size fits all’ is being reconsidered with increasing enthusiasm for an individualized
approach to therapy. A number of endotypes (causal pathways) for OSA have been
identified. If the underlying mechanisms of each OSA patient could be identified, OSA
treatments could be targeted to the underlying cause. Traditionally, OSA has been thought of
as a disease of anatomical compromise coupled with dysfunction in pharyngeal dilator
muscles during sleep [1]. However, recent evidence suggests that the pathophysiological
traits underlying apnea are highly variable. Anatomical compromise of the pharyngeal
airway may be the primary cause of OSA in some patients, but non-anatomical traits,
including pharyngeal dilator muscle dysfunction, unstable ventilatory control (elevated loop
gain), or a low arousal threshold from sleep threshold, are important contributors to the
development of apnea in many patients [16] (Fig. 1). The pharyngeal lumen has been shown
to be smaller in patients with OSA compared to matched controls, even during wakefulness
[17-19]. Using sophisticated measurements of pharyngeal mechanics that were independent
of neuromuscular activity, 1sono et al. [20] showed that the upper airway of patients with
OSA is more prone to collapse than matched individuals without OSA. Additionally,
because of compensatory reflex mechanisms, upper airway muscle tone has been shown to
be higher in people with OSA compared to people without OSA. Using quantitative
electromyography, Mezzanotte et al. [21,22] showed that the genioglossus (a major upper
airway dilator muscle) is highly active in awake patients with OSA so that to maintain the
pharyngeal patency during wakefulness. However, with the onset of sleep, there is a fall in
dilator muscle activity, which leads to pharyngeal collapse in patients who are anatomically
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predisposed to this [23-25]. Recent studies suggest that the noradrenergic system is critical
for augmented genioglossus activity during wakefulness and that intermittent hypoxia is a
critical stimulus in mediating this effect [26]. Instability in ventilatory control (elevated loop
gain) is also thought to be an important factor [27-31]. This traditional model of OSA
pathogenesis has been conceptually helpful in advancing knowledge, but data are
increasingly showing that mechanisms underlying OSA are highly variable.

2.1. Critical closing pressure

Based on pharyngeal anatomy, the critical closing pressure (Pcrit) quantifies the propensity
of the pharyngeal airway to collapse[32,33]. Individuals with a highly positive Pcrit require
a high transmural pressure to open the airway and have a highly collapsible airway. In
contrast, people with a markedly negative Pcrit require substantial subatmospheric pressure
to close the airway and have a relatively rigid or sturdy pharyngeal airway [34].
Interestingly, Pcrit values only account for about 20-25% of OSA pathogenesis variance,
emphasizing the importance of non-anatomical variables in OSA development [35]. In other
words, Pcrit values have considerable overlap between patients with OSA and matched
controls [36]. This finding suggests that other factors must be considered when explaining
why some people have OSA and others do not. Therapies involving anatomical
manipulation, such as uvulopalatopharyngoplasty, are expected to benefit patients with
compromised anatomy, particularly at the velopharynx level. However, patients with apnea
predominantly caused by other factors might experience no major benefit from the surgery
[37-40].

2.2. Upper airway reflex

Highly variable upper airway reflexes have been observed among the population [23,41-43].
The negative pressure reflex refers to the robust activation of pharyngeal dilator muscles in
response to suction or sub-atmospheric pressure. This phenomenon is thought to be a
protective reflex, which serves to maintain pharyngeal patency in the context of a collapsing
perturbation. The upper airway reflex is attenuated during sleep (as compared to
wakefulness), but the level of activity is also highly variable across individuals. Furthermore,
some evidence supports upper airway dilator muscle activation with respiratory stimuli,
which may yield robust pharyngeal dilator muscle activation during stable sleep [44-47]. For
example, a combination of mechanoreceptor (negative pressure) and chemoreceptor (CO5)
stimuli have been shown to activate pharyngeal dilator muscles during stable sleep if the
stimuli are present in sufficient magnitude for adequate duration. If a drug were available to
augment negative pressure reflex activity, this approach could be helpful for the subset of
patients who have attenuated reflexes during sleep [25]. Patients with robust reflex activity at
baseline are likely to have no major benefit from this pharmacological approach. On the
other hand, an augmented negative pressure reflex may destabilize ventilatory control
because a strong reflex may produce exaggerated upper airway muscle activity and
ventilatory instability in response to stimuli. This situation could theoretically lead to
increased apnea in certain patients [48-50]. Therefore, selecting patients who may benefit
from therapy that targets upper airway reflex augmentation may be a viable approach.
Hypoglossal nerve stimulation was recently approved for augmenting upper airway dilator
muscle activity and improving upper airway mechanics [51-55]. Selecting patients for
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hypoglossal nerve stimulation is a complex process and is still being debated. However,
there is likely a subset of patients who will respond to this intervention more than others. In
theory, patients with an attenuated reflex may be most amenable to hypoglossal nerve
stimulation since those with robust reflexes likely have other abnormalities contributing to
OSA.

3. Elevated loop gain (unstable ventilatory control)

Elevated loop gain, or unstable ventilatory control, has been recognized and accepted as a
potential pathogenic mechanism for both obstructive and central sleep apnea. Loop gain is
an engineering term used to define the stability or instability of a negative feedback control
system. Loop gain can be calculated as the ventilatory response divided by the ventilatory
stimulus. A system with a high loop gain is prone to instability and a system with a low loop
gain is intrinsically stable. One way to understand negative feedback control is to consider
an analogy describing the regulation of room temperature. An example of a system with a
high loop gain is an overly sensitive thermostat or too powerful furnace [56], these system
properties would lead to marked fluctuations in room temperature. For ventilation, an
increase in ventilation that occurs with apnea or hypopnea determines the loop gain of the
system. For control of breathing, the system maintains PCO, of 40 mmHg. If the system
would have a high loop gain it would lead to marked fluctuations in response to slight CO»
changes [57]. Fluctuations in output from the brainstem central pattern generator are
characteristic of central apnea and result in Cheyne Stokes breathing [58]. However,
oscillations in central output are also important in obstructive apnea. For example, central
pattern generator output to the diaphragm also provides concomitant innervation to the
hypoglossal nerve and thus determines upper airway muscle activity. The upper airway
would theoretically be at risk for collapsing or closing when central pattern generator output
to the hypoglossal nerve is at its nadir. Thus, elevated loop gain is likely important in both
obstructive and central apnea, with underlying pharyngeal mechanics likely playing a major
role in determining how the disease is clinically expressed [59-61].

Ventilation during non-rapid eye movement (NREM) sleep relies mainly on chemical
feedback control, but ventilation during REM sleep is dependent on more variable non-
chemical factors. Therefore, loop gain during the REM stage is relatively difficult to
measure because of methodological issues, which need further investigation. It can be
supposed that loop gain is quite low during REM sleep based on resolution of Cheyne
Stokes breathing and periodic breathing during REM sleep [62]. Other factors, including
upper airway dilator muscle tone, may be more critical than control of breathing during
REM sleep. Thus, differences in sleep apnea severity among sleep stages may provide clues
regarding the underlying pathophysiologic features of an individual. This information may
be valuable to consider when tailoring treatment strategies for OSA.

Therapies that can alter loop gain are available. For example, oxygen therapy and
acetazolamide have both been used to treat various forms of central apnea and periodic
breathing [63-66]. These agents can lower loop gain via various mechanisms and may
benefit patients who have apnea associated with an elevated loop gain. Current clinical trials
remain small, but some data support the idea that therapy to lower loop gain is efficacious in
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a predefined subset of OSA patients. Moreover, ongoing efforts are focusing on estimating
loop gain using clinically available data obtained with polysomnography. This innovation
would lessen the need for complicated overnight physiology studies to determine the optimal
therapy for each individual [67].

4. Arousal threshold

Another important factor in OSA pathogenesis is the arousal threshold. The respiratory
arousal threshold is defined as the intrathoracic pressure level at which a given individual
wakes from sleep. Some patients have a high arousal threshold (sleep through major stimuli)
and other patients have a low arousal threshold (wake up easily) [68,69]. For the case of
ventilation, pharyngeal negative pressure is considered to be a critical stimulus for triggering
arousal from sleep. On average, individuals with OSA have a higher arousal threshold than
those without OSA, which presumably developed over time as a compensatory mechanism
[70]. Indeed, continuous positive airway pressure (CPAP) therapy can lower arousal
threshold. This finding supports the idea that OSA leads to an elevation in arousal threshold.
However, a definable subset, roughly one third of OSA patients, have a low arousal
threshold and may potentially be amenable to manipulation [71]. This subgroup of OSA
patients is somewhat poorly defined because they may represent an earlier manifestation of
the disease (i.e., before elevated arousal threshold has developed) and/or may have a
different underlying genetic predisposition. Furthermore, Yanauchi [62] recently showed
that patients with NREM predominant OSA have greater decreases in ventilation and
dynamic changes of PaCO,, in the transition from awake to NREM sleep. This finding may
be helpful in identifying the clinical sub-group that should undergo treatment to stabilize
ventilatory control by raising arousal threshold.

A pharmacological approach to raising the arousal threshold has been suggested, but
outcome data remain limited. Trazodone and eszopiclone may be effective in raising the
arousal threshold [72-74], which may allow the accumulation of respiratory stimuli (e.g.,
CO» and negative intrapharyngeal pressure) to reach a sufficient magnitude to activate
dilator muscles without triggering arousal. On the other hand, raising arousal threshold may
be deleterious in patients with unresponsive upper airway dilators because substantial
hypoxemia may occur prior to arousal from sleep. Several studies have found that raising
arousal threshold improves AHI in some patients. Fortunately, a theoretical deterioration in
patients with OSA and worsening desaturations have not been observed. These findings
suggest that combination therapy may be required for the treatment of sleep apnea by
addressing more than one underlying pathophysiological mechanism. Future multicenter
clinical trials are needed to assess the impact of various pharmacological interventions on
OSA clinical outcomes.

5. Impact of comorbidities

Many comorbidities are associated with OSA, including hypertension, diabetes, chronic
obstructive pulmonary disease, aging, impaired ventricular function, obesity, and others.
These systemic factors also need to be considered when developing individualized treatment
plans. These conditions represent OSA risk factors and any mechanistic approach to OSA
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therapy must account for the fact that predisposing factors underlying apnea may vary based
on predisposing factors. For example, if neuromyopathy could predispose diabetic patients
to sleep apnea, then therapeutic measures that address upper airway dilator muscle function
may be more effective than those that target other mechanisms. In addition, these factors
may impact the consequences of OSA. Therefore, one approach to minimizing the impact of
OSA may include addressing measures to reduce apnea complications. For example,
antioxidant therapy has been suggested to ameliorate oxidative stress caused by frequent
arousal and intermittent hypoxemia and potential treatment to minimize apnea complication
in selected individuals.

6. Summary

A critical expansion of OSA knowledge has occurred over the past several years, allowing a
mechanistic treatment approach to be considered. Although CPAP has transformative
benefits for some OSA patients, some patients struggle with adherence to therapy or avoid
the diagnosis entirely due to concerns for the eventual therapy. Because of the pathogenesis
of OSA is multifactorial, the treatment of OSA should focus on the underlying causes of for
each OSA patient. More research is needed to bring mechanistic treatment approaches from
the research setting to the clinical setting and to discover new treatment approaches.
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Fig. 1.
Risk factors, pathogenic mechanisms, and treatments for obstructive sleep apnoea Risk

factors for obstructive sleep apnoea have long been recognised, but novel pathogenic
mechanisms have now been detected in patients with the disorder. Although CPAP is the
current treatment of choice irrespective of underlying cause, treatments based on tackling
individual pathogenic mechanisms might prove a successful alternative approach in the
future. CPAP=continuous positive airway pressure. MAD=mandibular advancement device.
UPPP=uvulopalatopharyngoplasty. HGNS=hypoglossal nerve stimulation. Figure adapted
from Jordan and colleagues, by permission of Elsevier.
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