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Abstract

Obstructive sleep apnea (OSA) is characterized by repetitive collapse of the upper airway (UA) 

during sleep and is associated with chronic intermittent hypoxemia, catecholamine surges, and 

sleep disrupt. Multiple pathophysiological risk factors have been identified and contribute to OSA, 

including anatomical abnormalities (elevated UA mechanical load), compromised UA dilators, 

increased loop gain (unstable respiratory control), and decreased arousal threshold. These factors 

may contribute to the pathophysiology of sleep apnea in different individuals and recent evidence 

suggests that treatment may be targeted towards underlying pathophysiological mechanism. In 

some cases, combination therapy may be required to treat the condition.
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1. Introduction

Obstructive sleep apnea (OSA) is a serious condition with major consequences and its 

prevalence is increasing. Obstructive sleep apnea is defined by repetitive collapse of the 

pharyngeal airway during sleep [1], which results in ongoing respiratory effort during 

pharyngeal collapse. This situation is in contrast to central apnea, which occurs with 

minimal or no respiratory effort. The prevalence of OSA has been debated because estimates 

have widely varied, largely because they are dependent upon equipment and the OSA 

criteria used [2]. Young et al. [3] previously estimated that approximately 4% of men and 

2% of women in the United States (US) have at least 5 breathing abnormalities per hour of 
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sleep and excessive daytime sleepiness. More recently, Peppard et al. [4] reported that 13% 

of men and 6% of women in the US have at least 15 breathing events per hour of sleep. 

However, Heinzer et al. [5] recently estimated that, in Switzerland, up to 50% of men from a 

community sample had clinically important OSA (based on an apnea hypopnea index [AHI] 

above 5 events per hour and associated daytime consequences). Reasons for the increasing 

prevalence are complex, but likely reflect the obesity pandemic [6], diagnostic technology 

improvements [2], population aging, and other factors [7]. Similar figures have been 

estimated from other countries [8], even though the prevalence of obesity is generally lower 

than that of the US. Further data are clearly required, particularly given the importance of 

the condition being evaluated.

1.1. Pharyngeal collapse has two major consequences

Narrowing of the pharyngeal lumen leads to disturbances in gas exchange, including 

hypoxemia and hypercapnia, which can have end-organ consequences [9]. In addition, to 

restoring pharyngeal patency, arousals from sleep (plus intermittent hypoxia) lead to sleep 

fragmentation and associated neurocognitive sequelae [10]. Catecholamine surges occur 

with each repetitive apnea, leading to sustained sympathoexcitation over time and 

cardiovascular sequelae, including hypertension [11-13]. Ongoing research is leading to a 

better understanding of OSA causal pathways, including why apnea occurs [14].

2. Pathogenesis and tailored treatment strategies for obstructive sleep 

apnea

The concept of precision or personalized medicine is gaining in popularity [15]. The notion 

that ‘one size fits all’ is being reconsidered with increasing enthusiasm for an individualized 

approach to therapy. A number of endotypes (causal pathways) for OSA have been 

identified. If the underlying mechanisms of each OSA patient could be identified, OSA 

treatments could be targeted to the underlying cause. Traditionally, OSA has been thought of 

as a disease of anatomical compromise coupled with dysfunction in pharyngeal dilator 

muscles during sleep [1]. However, recent evidence suggests that the pathophysiological 

traits underlying apnea are highly variable. Anatomical compromise of the pharyngeal 

airway may be the primary cause of OSA in some patients, but non-anatomical traits, 

including pharyngeal dilator muscle dysfunction, unstable ventilatory control (elevated loop 

gain), or a low arousal threshold from sleep threshold, are important contributors to the 

development of apnea in many patients [16] (Fig. 1). The pharyngeal lumen has been shown 

to be smaller in patients with OSA compared to matched controls, even during wakefulness 

[17-19]. Using sophisticated measurements of pharyngeal mechanics that were independent 

of neuromuscular activity, Isono et al. [20] showed that the upper airway of patients with 

OSA is more prone to collapse than matched individuals without OSA. Additionally, 

because of compensatory reflex mechanisms, upper airway muscle tone has been shown to 

be higher in people with OSA compared to people without OSA. Using quantitative 

electromyography, Mezzanotte et al. [21,22] showed that the genioglossus (a major upper 

airway dilator muscle) is highly active in awake patients with OSA so that to maintain the 

pharyngeal patency during wakefulness. However, with the onset of sleep, there is a fall in 

dilator muscle activity, which leads to pharyngeal collapse in patients who are anatomically 

Shin et al. Page 2

Respir Investig. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predisposed to this [23-25]. Recent studies suggest that the noradrenergic system is critical 

for augmented genioglossus activity during wakefulness and that intermittent hypoxia is a 

critical stimulus in mediating this effect [26]. Instability in ventilatory control (elevated loop 

gain) is also thought to be an important factor [27-31]. This traditional model of OSA 

pathogenesis has been conceptually helpful in advancing knowledge, but data are 

increasingly showing that mechanisms underlying OSA are highly variable.

2.1. Critical closing pressure

Based on pharyngeal anatomy, the critical closing pressure (Pcrit) quantifies the propensity 

of the pharyngeal airway to collapse[32,33]. Individuals with a highly positive Pcrit require 

a high transmural pressure to open the airway and have a highly collapsible airway. In 

contrast, people with a markedly negative Pcrit require substantial subatmospheric pressure 

to close the airway and have a relatively rigid or sturdy pharyngeal airway [34]. 

Interestingly, Pcrit values only account for about 20–25% of OSA pathogenesis variance, 

emphasizing the importance of non-anatomical variables in OSA development [35]. In other 

words, Pcrit values have considerable overlap between patients with OSA and matched 

controls [36]. This finding suggests that other factors must be considered when explaining 

why some people have OSA and others do not. Therapies involving anatomical 

manipulation, such as uvulopalatopharyngoplasty, are expected to benefit patients with 

compromised anatomy, particularly at the velopharynx level. However, patients with apnea 

predominantly caused by other factors might experience no major benefit from the surgery 

[37-40].

2.2. Upper airway reflex

Highly variable upper airway reflexes have been observed among the population [23,41-43]. 

The negative pressure reflex refers to the robust activation of pharyngeal dilator muscles in 

response to suction or sub-atmospheric pressure. This phenomenon is thought to be a 

protective reflex, which serves to maintain pharyngeal patency in the context of a collapsing 

perturbation. The upper airway reflex is attenuated during sleep (as compared to 

wakefulness), but the level of activity is also highly variable across individuals. Furthermore, 

some evidence supports upper airway dilator muscle activation with respiratory stimuli, 

which may yield robust pharyngeal dilator muscle activation during stable sleep [44-47]. For 

example, a combination of mechanoreceptor (negative pressure) and chemoreceptor (CO2) 

stimuli have been shown to activate pharyngeal dilator muscles during stable sleep if the 

stimuli are present in sufficient magnitude for adequate duration. If a drug were available to 

augment negative pressure reflex activity, this approach could be helpful for the subset of 

patients who have attenuated reflexes during sleep [25]. Patients with robust reflex activity at 

baseline are likely to have no major benefit from this pharmacological approach. On the 

other hand, an augmented negative pressure reflex may destabilize ventilatory control 

because a strong reflex may produce exaggerated upper airway muscle activity and 

ventilatory instability in response to stimuli. This situation could theoretically lead to 

increased apnea in certain patients [48-50]. Therefore, selecting patients who may benefit 

from therapy that targets upper airway reflex augmentation may be a viable approach. 

Hypoglossal nerve stimulation was recently approved for augmenting upper airway dilator 

muscle activity and improving upper airway mechanics [51-55]. Selecting patients for 
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hypoglossal nerve stimulation is a complex process and is still being debated. However, 

there is likely a subset of patients who will respond to this intervention more than others. In 

theory, patients with an attenuated reflex may be most amenable to hypoglossal nerve 

stimulation since those with robust reflexes likely have other abnormalities contributing to 

OSA.

3. Elevated loop gain (unstable ventilatory control)

Elevated loop gain, or unstable ventilatory control, has been recognized and accepted as a 

potential pathogenic mechanism for both obstructive and central sleep apnea. Loop gain is 

an engineering term used to define the stability or instability of a negative feedback control 

system. Loop gain can be calculated as the ventilatory response divided by the ventilatory 

stimulus. A system with a high loop gain is prone to instability and a system with a low loop 

gain is intrinsically stable. One way to understand negative feedback control is to consider 

an analogy describing the regulation of room temperature. An example of a system with a 

high loop gain is an overly sensitive thermostat or too powerful furnace [56], these system 

properties would lead to marked fluctuations in room temperature. For ventilation, an 

increase in ventilation that occurs with apnea or hypopnea determines the loop gain of the 

system. For control of breathing, the system maintains PCO2 of 40 mmHg. If the system 

would have a high loop gain it would lead to marked fluctuations in response to slight CO2 

changes [57]. Fluctuations in output from the brainstem central pattern generator are 

characteristic of central apnea and result in Cheyne Stokes breathing [58]. However, 

oscillations in central output are also important in obstructive apnea. For example, central 

pattern generator output to the diaphragm also provides concomitant innervation to the 

hypoglossal nerve and thus determines upper airway muscle activity. The upper airway 

would theoretically be at risk for collapsing or closing when central pattern generator output 

to the hypoglossal nerve is at its nadir. Thus, elevated loop gain is likely important in both 

obstructive and central apnea, with underlying pharyngeal mechanics likely playing a major 

role in determining how the disease is clinically expressed [59-61].

Ventilation during non-rapid eye movement (NREM) sleep relies mainly on chemical 

feedback control, but ventilation during REM sleep is dependent on more variable non-

chemical factors. Therefore, loop gain during the REM stage is relatively difficult to 

measure because of methodological issues, which need further investigation. It can be 

supposed that loop gain is quite low during REM sleep based on resolution of Cheyne 

Stokes breathing and periodic breathing during REM sleep [62]. Other factors, including 

upper airway dilator muscle tone, may be more critical than control of breathing during 

REM sleep. Thus, differences in sleep apnea severity among sleep stages may provide clues 

regarding the underlying pathophysiologic features of an individual. This information may 

be valuable to consider when tailoring treatment strategies for OSA.

Therapies that can alter loop gain are available. For example, oxygen therapy and 

acetazolamide have both been used to treat various forms of central apnea and periodic 

breathing [63-66]. These agents can lower loop gain via various mechanisms and may 

benefit patients who have apnea associated with an elevated loop gain. Current clinical trials 

remain small, but some data support the idea that therapy to lower loop gain is efficacious in 
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a predefined subset of OSA patients. Moreover, ongoing efforts are focusing on estimating 

loop gain using clinically available data obtained with polysomnography. This innovation 

would lessen the need for complicated overnight physiology studies to determine the optimal 

therapy for each individual [67].

4. Arousal threshold

Another important factor in OSA pathogenesis is the arousal threshold. The respiratory 

arousal threshold is defined as the intrathoracic pressure level at which a given individual 

wakes from sleep. Some patients have a high arousal threshold (sleep through major stimuli) 

and other patients have a low arousal threshold (wake up easily) [68,69]. For the case of 

ventilation, pharyngeal negative pressure is considered to be a critical stimulus for triggering 

arousal from sleep. On average, individuals with OSA have a higher arousal threshold than 

those without OSA, which presumably developed over time as a compensatory mechanism 

[70]. Indeed, continuous positive airway pressure (CPAP) therapy can lower arousal 

threshold. This finding supports the idea that OSA leads to an elevation in arousal threshold. 

However, a definable subset, roughly one third of OSA patients, have a low arousal 

threshold and may potentially be amenable to manipulation [71]. This subgroup of OSA 

patients is somewhat poorly defined because they may represent an earlier manifestation of 

the disease (i.e., before elevated arousal threshold has developed) and/or may have a 

different underlying genetic predisposition. Furthermore, Yanauchi [62] recently showed 

that patients with NREM predominant OSA have greater decreases in ventilation and 

dynamic changes of PaCO2 in the transition from awake to NREM sleep. This finding may 

be helpful in identifying the clinical sub-group that should undergo treatment to stabilize 

ventilatory control by raising arousal threshold.

A pharmacological approach to raising the arousal threshold has been suggested, but 

outcome data remain limited. Trazodone and eszopiclone may be effective in raising the 

arousal threshold [72-74], which may allow the accumulation of respiratory stimuli (e.g., 

CO2 and negative intrapharyngeal pressure) to reach a sufficient magnitude to activate 

dilator muscles without triggering arousal. On the other hand, raising arousal threshold may 

be deleterious in patients with unresponsive upper airway dilators because substantial 

hypoxemia may occur prior to arousal from sleep. Several studies have found that raising 

arousal threshold improves AHI in some patients. Fortunately, a theoretical deterioration in 

patients with OSA and worsening desaturations have not been observed. These findings 

suggest that combination therapy may be required for the treatment of sleep apnea by 

addressing more than one underlying pathophysiological mechanism. Future multicenter 

clinical trials are needed to assess the impact of various pharmacological interventions on 

OSA clinical outcomes.

5. Impact of comorbidities

Many comorbidities are associated with OSA, including hypertension, diabetes, chronic 

obstructive pulmonary disease, aging, impaired ventricular function, obesity, and others. 

These systemic factors also need to be considered when developing individualized treatment 

plans. These conditions represent OSA risk factors and any mechanistic approach to OSA 
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therapy must account for the fact that predisposing factors underlying apnea may vary based 

on predisposing factors. For example, if neuromyopathy could predispose diabetic patients 

to sleep apnea, then therapeutic measures that address upper airway dilator muscle function 

may be more effective than those that target other mechanisms. In addition, these factors 

may impact the consequences of OSA. Therefore, one approach to minimizing the impact of 

OSA may include addressing measures to reduce apnea complications. For example, 

antioxidant therapy has been suggested to ameliorate oxidative stress caused by frequent 

arousal and intermittent hypoxemia and potential treatment to minimize apnea complication 

in selected individuals.

6. Summary

A critical expansion of OSA knowledge has occurred over the past several years, allowing a 

mechanistic treatment approach to be considered. Although CPAP has transformative 

benefits for some OSA patients, some patients struggle with adherence to therapy or avoid 

the diagnosis entirely due to concerns for the eventual therapy. Because of the pathogenesis 

of OSA is multifactorial, the treatment of OSA should focus on the underlying causes of for 

each OSA patient. More research is needed to bring mechanistic treatment approaches from 

the research setting to the clinical setting and to discover new treatment approaches.
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Fig. 1. 
Risk factors, pathogenic mechanisms, and treatments for obstructive sleep apnoea Risk 

factors for obstructive sleep apnoea have long been recognised, but novel pathogenic 

mechanisms have now been detected in patients with the disorder. Although CPAP is the 

current treatment of choice irrespective of underlying cause, treatments based on tackling 

individual pathogenic mechanisms might prove a successful alternative approach in the 

future. CPAP=continuous positive airway pressure. MAD=mandibular advancement device. 

UPPP=uvulopalatopharyngoplasty. HGNS=hypoglossal nerve stimulation. Figure adapted 

from Jordan and colleagues, by permission of Elsevier.
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