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Abstract

Rationale and Objectives—We propose a novel single index for the quantification of 

emphysema severity based on an aggregation of multiple computed tomographic features evident 

in the lung parenchyma of smokers. Our goal was to demonstrate that this single index provides 

complementary information to the current standard measure of emphysema, percent emphysema 

(percent low attenuation areas [LAA%]), and may be superior in its association with clinically 

relevant outcomes.

Materials and Methods—The inputs to our algorithm were objective assessments of multiple 

emphysema subtypes (normal tissue; panlobular; paraseptal; and mild, moderate, and severe 

centrilobular emphysema). We applied dimensionality reduction techniques to the emphysema 

quantities to find a space that maximizes the variance of these subtypes. A single emphysema 

severity index was then derived from a parametrization of the reduced space, and the clinical 

utility of the measure was explored in a large cross-sectional cohort of 8914 subjects from the 

COPDGene Study.

Results—There was a statistically significant association between the severity index and the LAA

%. Subjects with more severe chronic obstructive pulmonary disease (higher Global initiative for 

Obstructive Lung Disease stage) tended to have a higher computed tomography severity index. 

Finally, the severity index was associated with clinical outcomes such as lung function and 

provided a stronger association to these measures than the LAA%.

Conclusions—The method provides a single clinically relevant index that can assess the 

severity of emphysema and that provides information that is complimentary to the more 

commonly used LAA%.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is characterized by emphysematous 

destruction of the lung parenchyma. Objective quantification of this process is an important 

part of disease characterization. Standard methods to do this are based upon a densitometric 

assessment of the lung parenchyma where a Hounsfield unit threshold is used to delineate 

emphysematous from nonemphysematous tissue. This measure can be expressed as a 

fraction but is most commonly reported as the percent low attenuation areas (LAA%) (1). 

Although easy to use for correlative investigation, the LAA% does not fully assess the 

heterogeneous nature of emphysema or its subtypes.

The clinical significance of six features that capture the prevalence of emphysema subtypes 

(normal tissue [NT]; paraseptal; panlobular; and mild, moderate, and severe centrilobular 

emphysema) has been previously demonstrated. It has also been shown that these features 

provide complementary information to LAA% (2). However, it becomes increasingly 

difficult to perform regression analysis as the number of features increases. In addition, it is 

difficult to appreciate how a variable mixture of these features results in the same level of 

disease severity. It would therefore be useful to aggregate these multiple features into a 

single measure without losing information about the individual subtypes. However, 

currently available methods for the quantification of emphysema on computed tomography 

(CT) images (3–9) either do not quantify severity based on emphysema subtypes or suffer 

from low performance and inter-scanner variability.

We sought to examine the clinical utility of a continuous measure of emphysema severity 

based on six emphysema subtypes (2). This severity index could be obtained via 

dimensionality reduction of the feature vector that comprises the subtypes (10). Our goal 

was to determine the clinical correlates of this measure and to compare the strength of these 

correlations to those obtained using the standard LAA%. To do this, we leveraged clinical 

and radiological data obtained in the COPDGene Study.

MATERIALS AND METHODS

Population

The COPDGene Study is a multicenter investigation focused on the genetic epidemiology of 

COPD (11). Participants were all current and former smokers with at least 10 pack-years of 

smoking. Subjects with respiratory conditions other than asthma and COPD were excluded 

from participation.

Participants in the COPDGene Study underwent inspiratory and expiratory CT scanning 

(details in the following section) as well as spirometric assessments of lung function before 

and after the administration of a short-acting bronchodilator (12). Such measures of lung 

function included the forced expiratory volume in 1 second (FEV1) and the forced vital 

capacity obtained according to the American Thoracic Society (ATS) / European 

Respiratory Society (ERS) standards. Finally, detailed questionnaire data were obtained 

such as the modified Medical Research Council dyspnea score and the St. George’s 

Respiratory Questionnaire (SGRQ) (13). The modified Medical Research Council dyspnea 
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score is used to rate participants’ shortness of breath ranging from 0 (no dyspnea) to 4 (too 

breathless to leave the house or when dressing or undressing). The SGRQ is commonly 

employed to assess health status, where a higher score connotes lower health status.

Clinical and radiological data from 8914 (87%) out of 10,300 COPDGene subjects were 

included in this analysis. Brigham and Women’s Hospital obtained approval from the 

Partners Human Research Committee, and all subjects provided written informed consent, 

allowing the use of CT data in this study. An initial training set consisting of the first 2500 

subjects of the COPDGene cohort was used to build the model of emphysema severity, 

which was then tested in the remaining 6414 subjects. There were 102 never-smoking 

controls in the sample. Table 1 provides a description of the training and testing sets across 

the Global Initiative for Obstructive Lung Disease (GOLD) stages of disease severity. 

GOLD stage 0 or at risk indicates absence of COPD, and GOLD stages 1–4 indicate mild, 

moderate, severe, and very severe disease, respectively.

A subset of the testing data was used for severity score validation. To this end, 40 subjects 

were selected in such a way that they represent the broad range of emphysema severity as 

defined by the LAA% measure in COPDGene (between 2% and 61%). Patient distributions 

are 4, 1, 5, 16, and 14 for GOLD stages 0, 1, 2, 3, and 4, respectively.

CT Protocols

Volumetric CT scans were acquired from multiple sites in supine position and without 

intravenous contrast. Several different scanners were used, with the following protocols: 120 

kV peak, 200 mA, and 0.75-mm slice thickness for Siemens scanners; 120 kV peak, 400 

mA, and 0.625-mm slice thickness for General Electric scanners; and 120 kV peak, 440 mA, 

and 0.9-mm slice thickness for Philips scanners. Scans acquired at full inspiration were used 

in the study. Full inspiration was controlled as per the COPDGene Study protocol (11). The 

full details of the acquisition parameters for the COPDGene Study can be found in 

Reference (14).

Emphysema Subtype Features

Input for the emphysema severity model included six parenchymal subtypes (normal, mild, 

moderate, and severe centrilobular emphysema, panlobular, and paraseptal emphysema). 

The six subtypes are classified in the following manner (2): First, we obtain training data for 

each of the subtypes, which consists of square CT regions. For each region of interest, we 

build a feature vector consisting of a local density histogram obtained using kernel density 

estimation. We then classify each new CT scan by subdividing it into regions of interest, and 

then comparing the local histogram of each region to those in the training data using the 

Least Absolute Deviations (L1) norm. We select the subtype with the highest frequency 

from the five nearest training neighbors as determined by the distance metric (k-nearest 

neighbor classification). A representative example of axial CT images and a range of 

severities for these subtypes are provided in Figure 1.
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Severity Index From CT Image Information

A detailed description of the derivation of the severity index is provided as supplementary 

material. Briefly, we began by extracting the CT-based features that correspond to the 

prevalence of each of the six emphysema subtypes from the training set of 2500 subjects. 

Principle components analysis (15) was then performed on those features to extract the first 

three components and reduce the dimensionality of the data. The result is depicted 

graphically in Figure 2(a). Visual inspection of this boomerang-like shape suggested that 

much of the variance of the original data was maintained and that emphysema severity 

progression (from mild to severe) is based in part on the prevalence of NT. We therefore 

clustered the data according to prevalence of NT and learned a two-dimensional (2D) space 

from the six-dimensional original space by maximizing the separation between clusters 

using linear discriminant analysis (LDA) (16) (Fig 2(b)). Visual inspection of the 2D 

embedded space suggested that the shape can be modeled by a second-order polynomial 

curve to form a parametric description of that space.

The resulting dispersion obtained in 2D space suggested that emphysema progression might 

follow unique paths for each individual. To investigate this, we defined an emphysema 

severity curve for each COPDGene subject. To do so, we build our model with multiple 

curves that span the dispersion. We first divide our original severity space into four groups 

based on the distance along the normal to the curve, n, in 2D space. The intuition is that the 

closer to 0 the n value is for a given model, the closer the data are to the derived model. For 

each group, we derive a new model from the subset of training points that belong to that 

group. We choose to split our space into four groups because it maximizes separability 

between disease models all while providing an adequate amount of training data per model. 

An example of a model with four curves is shown in Figure 2(b).

Once the model is built, we can compute the severity for a new patient CT. We first project 

the emphysema subtype feature vector corresponding to the CT onto the LDA 2D space and 

obtain a 2D point pLDA. For each of the four curves, the curve-specific severity is then 

defined as the arc-length along the curve from the upper left point, refered to as origin in 

Figure 2(b), to the reference point on the curve. The origin is considered the point of mildest 

emphysema. The reference point on the curve is defined as the projection onto the curve 

along the polynomial normal of pLDA.

Finally, we obtain a patient-specific disease curve passing through pLDA in LDA space by 

interpolating over the four curves using the value of n. The final severity index S is then 

defined as the arc-length along the interpolated curve. This implies that the higher the arc-

length, the further we are from the origin along the curve, the higher the severity. A software 

implementation of this algorithm is available on-line as part of the Chest Imaging Platform 

(http://chestimagingplatform.org/) under cip_python/phenotypes/emphysema_severity.py.

Statistical Analysis

Data are presented as means and standard deviations or medians and interquartile ranges 

where appropriate. Linear associations were assessed using Spearman correlation 

coefficients. P values less than 0.05 were considered statistically significant.
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The distributions of LAA% and S across GOLD stages were compared by performing trend 

analysis based on the Wilcoxon rank sums test and by computing the coefficient of 

variation. The association between LAA% and S by GOLD stage was obtained via a linear 

regression.

We compared the proposed measure to expert scores using trend analysis based on the 

Wilcoxon rank sums test. For each of the 40 test cases, two expert clinicians assigned an 

emphysema severity score by consensus. The score ranges between the values of 0 and 4, 

where 0 is the lowest severity (no emphysema) and 4 is the highest severity (severe 

emphysema).

Univariate and multivariate regression models were performed to measure associations 

between our measure and each of the following clinical measures: FEV1, distance walked, 

and SGRQ. These associations were compared to ones obtained using LAA%. For the 

multivariate models, a priori models based on clinical knowledge are used1 in the models for 

distance walked and SGRQ, and adjusted for age, gender, race, height, smoking status, and 

number of pack-years in the model for FEV1.

RESULTS

Analysis of Severity

Figure 3 shows the distribution of S and LAA% across GOLD stages. Trend analysis shows a 

steady increase in S along GOLD stages with significant differences across the GOLD stages 

(p < 0.0001). Table 2 shows the coefficient of variation of both S and LAA% measures 

across GOLD stages. The coefficient of variation of LAA% is considerably higher than that 

of S for all the GOLD stages, suggesting a much higher dispersion. For both S and LAA%, 

the coefficient of variation decreases as the GOLD stage increases.

Figure 4 shows the coefficient of determination (R-squared) across GOLD stages following 

a linear regression between LAA% and S. An overall R-squared value of 0.654 is obtained 

between LAA% and S, and a value of 0.666 is obtained between log(LAA%) and S. The 

coefficient of determination is generally increasing across GOLD stages. An analysis of 

variance shows a linear association between LAA% and S for each of the GOLD stages (p < 

0.0001).

Figure 5 shows the distribution of S andd LAA% by visual assessment score. Trend analysis 

shows a steady increase in both S and LAA% along expert index values and significant 

differences in both S (p < 0.001) and LAA% (p < 0.0001) across expert index values.

Associations With Outcomes

Figure 6 shows a plot of the distribution of FEV1, an important indicator of COPD, and S, 

the proposed severity measure. A regression line fit in red shows a predictable downward 

trend (R-squared = 0.24).

1We adjusted for age, gender, race, body mass index, smoking status, number of pack-years, and FEV1.
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Table 3 shows results of regression models for each of the outcomes and including either S 

or LAA%. For both S and LAA%, statistically significant associations are found with each of 

the outcomes (p < 0.0001). However, for each of the outcomes, the adjusted R-squared is 

higher in the case of our proposed S compared to LAA%. This suggests that, prior to 

adjusting for confounding factors, more of the variation in the outcome is explained by our 

proposed measure than by LAA%.

Table 4 shows results of the multivariate regression models controlling for the covariates. A 

total of 6220 subjects were used in this analysis (thus excluding normal subjects). We show 

the two covariates of interest: S and LAA%. Adjusted R-squared values are predictably 

higher when both S and LAA% are included in the model compared to the univariate models. 

Statistically significant associations are found between S and LAA% and each of the clinical 

outcomes (p < 0.0001). These associations show that our measure is a statistically significant 

predictor of the outcomes after adjusting for all the covariates and for LAA%. This shows the 

added benefit of our measure as it provides significant complementary information to LAA% 

and significantly improves associations with clinical indicators of disease severity.

DISCUSSION

We proposed a single emphysema severity measure that aggregates information from 

multiple features used to classify emphysema subtypes. Dimensionality reduction techniques 

were used to obtain a 2D space that consists of a linear combination of the original six 

dimensions. We then computed the proposed emphysema severity measure on 6414 patients 

and compared the proposed measure to LAA%. Trend analysis showed an increase in both 

LAA% and S along GOLD stages, predictably showing that cases in later stages of disease 

tend to have more severe emphysema. LAA% was found to have a larger dispersion than S 

when stratified by GOLD, suggesting higher variability in that measure for a given disease 

stage. We found a wider range in the later disease GOLD stages for LAA% compared to 

earlier stages, whereas the S tended to exhibit less variation across the disease spectrum. 

This resulted in a decrease in the coefficient of variation across disease stages for both LAA

% and S, due to the fact that the coefficient of variation is normalized by the mean. We 

looked at the coefficient of determination between LAA% and S across GOLD stages. S 

correlates well with LAA% for more advanced stages of disease, and less well for earlier 

stages of disease. The particularly small interval for LAA% for the lower GOLD stages 

suggests that S might have a higher sensitivity in detecting early disease stages.

Both S and LAA% were shown to have significant associations with expert analysis of 

severity. A few outliers were observed for both measures, where the measure is high when 

compared to the expert index. It must be noted that expert manual measurements can suffer 

from variability. Itra-rater repeat measurements were obtained for the expert classifications, 

and a kappa coefficient of 0.792 was obtained. In addition, expert classifications were done 

by looking at extra-pulmonary manifestations in addition to the lungs to obtain a global idea 

of disease. However, both LAA% and S are computed only in the parenchymal area and do 

not take contextual information into account. Thus, based on our knowledge about expert 

classification, we can hypothesize that an effective emphysema classification scheme would 

be able to leverage additional contextual information about the patient.
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Univariate regression analysis showed that a better model fit was obtained for all outcomes 

when only our proposed measure was used as opposed to LAA%. Multivariate regression 

analysis showed that although LAA% is a predictor of disease outcome, S is an independent 

predictor of disease outcome after adjusting for LAA%. This suggests that our proposed 

severity measure is of added value to LAA%, as it provides significant complementary 

information. This complementary information can help better characterize disease severity. 

We speculate that the complementary information that our severity measure provides is 

specific to what each subtype contributes to the severity of emphysema as a whole. 

Associations were particularly low between the 6-minute walk and both S and LAA%. The 

models have not been able to explain the variability for this measure perhaps due to the fact 

that the variability of the measure itself is inherently high, as it is dependent on the patient’s 

effort. For these reasons, parenchymal measures may never explain more of the variability 

of the 6-minute walk for the reasons stated previously. In fact, distance walked and SGRQ 

have shown weak associations with severity measures in the literature (17,18). We believe 

that finding an emphysema severity measure that would improve these models is beneficial 

because both distance walked and SGRQ are important indicators of the patient’s outcome. 

In spite of the high variability in both distance walked and SGRQ, our proposed severity 

measure has still been able to describe more of the variance in the models obtained. 

Although clearly, more work needs to be done to further improve these models.

Variation in scanned lung volumes can have an effect on intensity-based emphysema 

measures such as S and LAA%. We tested the extent of this effect by performing regression 

analysis on a subset of the COPDGene population that has been scanned twice. The details 

of this analysis can be found in section 2 of the supplementary material. Although no 

statistically significant associations were found between change in volume and change in 

resulting LAA% or S, higher associations were found between change in volume and change 

in resulting LAA%. We can, however, still see intra-subject variability in our proposed 

measure across the scans. We plan to study the reasons behind this variability as part of 

future work.

Changes in scanner can also have an effect on emphysema severity measures. We tested 

such effects by performing regression analysis between the outcomes and both S and LAA%, 

and adding scanner to the covariates. Details of the analysis can be found in section 3 of the 

supplementary material. We found better associations between the outcomes and our 

measure compared to LAA% after correcting for scanner, and less association between S and 

scanner compared to LAA%, although there were statistically significant associations 

between some outcomes and scanner when both S and LAA% are included in the model. 

Further mitigation of the effect of scanner on our measure is the subject of ongoing work.

One limitation of the work is that the automatic emphysema classification scheme that was 

used has low classification success rates for certain disease subtypes when compared to 

expert classification (2). In particular, mild centrilobular emphysema was classified with 

lower success rates than the remaining subtypes. However, we chose this classification 

scheme based on its speed, simplicity, ease of implementation, and overall competitive 

performance. When compared to other available methods, its performance was shown to be 

superior even for the more poorly classified subtypes. More importantly, emphysema 
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classifications using the chosen method have shown novel associations in a recent genome-

wide association study of emphysema phenotypes (19).

CONCLUSIONS

We proposed a method to compute a single emphysema severity measure from CT image-

based quantities representing emphysema subtypes. We obtained a manifold from the 

image-based quantities and used dimensionality reduction to map these quantities onto the 

severity space. We compared associations between the proposed metric and clinical COPD 

quantities and those obtained using standard densitometry as a binary classifier of 

emphysema (LAA%). We showed statistically significant associations between our proposed 

measure and each of the clinical measures analyzed in this study (P < .0001), and better 

associations when our proposed measure is compared to percent emphysema. We also 

showed that our measure is an independent predictor of the clinical outcomes and provides 

significant complementary information to LAA%. The proposed measure provides a way to 

compare emphysema severity across a population all while showing associations with 

clinical outcomes. Future works include exploring methods that would further mitigate the 

effect of scanner on the characterization of severity, the effect of changes in lung volume on 

our proposed measure, different dimensionality reduction methods, and extending the 

measure to three-dimensional space to further improve the associations between the measure 

and the clinically relevant outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LAA% percent low attenuation areas

COPD chronic obstructive pulmonary disease

FEV1 forced expiratory volume in 1 second

CT computed tomography

SGRQ St. George’s Respiratory Questionnaire

2D two-dimensional
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Figure 1. 
Computed tomography (CT) slices (top row) and their corresponding emphysema 

classification (bottom row). Slices from three patients are shown and range from mild (left) 

to severe (right). The emphysema classes have the following color codes: normal 

parenchyma is red, paraseptal emphysema is green, panlobular emphysema is blue, mild 

centrilobular emphysema is yellow, moderate centrilobular emphysema is cyan, and severe 

centrilobular emphysema is purple. (Color version of figure is available online.)
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Figure 2. 
Derivation of the severity measure S from the local histogram emphysema space. The data 

are projected onto the two spaces shown. Cyan, black, blue, green, and red represent cases 

with Global Initiative for Obstructive Lung Disease (GOLD) stages 0, 1, 2, 3, and 4, 

respectively; magenta is for cases with reduced forced expiratory volume in 1 second 

(FEV1) and forced vital capacity (FVC). (Color version of figure is available online.)
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Figure 3. 
Distribution of S and percent low attenuation areas (LAA%) across Global Initiative for 

Obstructive Lung Disease (GOLD). A gray line shows the mean over all the data.
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Figure 4. 
R2 between percent low attenuation areas (LAA%) and S across Global Initiative for 

Obstructive Lung Disease (GOLD) stages.
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Figure 5. 
Distribution of S and percent low attenuation areas (LAA%) across expert scores. A gray line 

shows the mean over all the data.
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Figure 6. 
Distribution of forced expiratory volume in 1 second (FEV1) and S for the testing data. 

(Color version of figure is available online.)
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