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Abstract

Rationale and Objectives—We propose a novel single index for the quantification of
emphysema severity based on an aggregation of multiple computed tomographic features evident
in the lung parenchyma of smokers. Our goal was to demonstrate that this single index provides
complementary information to the current standard measure of emphysema, percent emphysema
(percent low attenuation areas [LAA%]), and may be superior in its association with clinically
relevant outcomes.

Materials and Methods—The inputs to our algorithm were objective assessments of multiple
emphysema subtypes (normal tissue; panlobular; paraseptal; and mild, moderate, and severe
centrilobular emphysema). We applied dimensionality reduction techniques to the emphysema
quantities to find a space that maximizes the variance of these subtypes. A single emphysema
severity index was then derived from a parametrization of the reduced space, and the clinical
utility of the measure was explored in a large cross-sectional cohort of 8914 subjects from the
COPDGene Study.

Results—There was a statistically significant association between the severity index and the LAA
%. Subjects with more severe chronic obstructive pulmonary disease (higher Global initiative for
Obstructive Lung Disease stage) tended to have a higher computed tomography severity index.
Finally, the severity index was associated with clinical outcomes such as lung function and
provided a stronger association to these measures than the LAA%.

Conclusions—The method provides a single clinically relevant index that can assess the
severity of emphysema and that provides information that is complimentary to the more
commonly used LAA%.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is characterized by emphysematous
destruction of the lung parenchyma. Objective quantification of this process is an important
part of disease characterization. Standard methods to do this are based upon a densitometric
assessment of the lung parenchyma where a Hounsfield unit threshold is used to delineate
emphysematous from nonemphysematous tissue. This measure can be expressed as a
fraction but is most commonly reported as the percent low attenuation areas (LAA%) (1).
Although easy to use for correlative investigation, the LAA% does not fully assess the
heterogeneous nature of emphysema or its subtypes.

The clinical significance of six features that capture the prevalence of emphysema subtypes
(normal tissue [NT]; paraseptal; panlobular; and mild, moderate, and severe centrilobular
emphysema) has been previously demonstrated. It has also been shown that these features
provide complementary information to LAA% (2). However, it becomes increasingly
difficult to perform regression analysis as the number of features increases. In addition, it is
difficult to appreciate how a variable mixture of these features results in the same level of
disease severity. It would therefore be useful to aggregate these multiple features into a
single measure without losing information about the individual subtypes. However,
currently available methods for the quantification of emphysema on computed tomography
(CT) images (3-9) either do not quantify severity based on emphysema subtypes or suffer
from low performance and inter-scanner variability.

We sought to examine the clinical utility of a continuous measure of emphysema severity
based on six emphysema subtypes (2). This severity index could be obtained via
dimensionality reduction of the feature vector that comprises the subtypes (10). Our goal
was to determine the clinical correlates of this measure and to compare the strength of these
correlations to those obtained using the standard LAA%. To do this, we leveraged clinical
and radiological data obtained in the COPDGene Study.

MATERIALS AND METHODS

Population

The COPDGene Study is a multicenter investigation focused on the genetic epidemiology of
COPD (11). Participants were all current and former smokers with at least 10 pack-years of
smoking. Subjects with respiratory conditions other than asthma and COPD were excluded
from participation.

Participants in the COPDGene Study underwent inspiratory and expiratory CT scanning
(details in the following section) as well as spirometric assessments of lung function before
and after the administration of a short-acting bronchodilator (12). Such measures of lung
function included the forced expiratory volume in 1 second (FEV;) and the forced vital
capacity obtained according to the American Thoracic Society (ATS) / European
Respiratory Society (ERS) standards. Finally, detailed questionnaire data were obtained
such as the modified Medical Research Council dyspnea score and the St. George’s
Respiratory Questionnaire (SGRQ) (13). The modified Medical Research Council dyspnea
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score is used to rate participants’ shortness of breath ranging from 0 (no dyspnea) to 4 (too
breathless to leave the house or when dressing or undressing). The SGRQ is commonly
employed to assess health status, where a higher score connotes lower health status.

Clinical and radiological data from 8914 (87%) out of 10,300 COPDGene subjects were
included in this analysis. Brigham and Women’s Hospital obtained approval from the
Partners Human Research Committee, and all subjects provided written informed consent,
allowing the use of CT data in this study. An initial training set consisting of the first 2500
subjects of the COPDGene cohort was used to build the model of emphysema severity,
which was then tested in the remaining 6414 subjects. There were 102 never-smoking
controls in the sample. Table 1 provides a description of the training and testing sets across
the Global Initiative for Obstructive Lung Disease (GOLD) stages of disease severity.
GOLD stage 0 or at risk indicates absence of COPD, and GOLD stages 1-4 indicate mild,
moderate, severe, and very severe disease, respectively.

A subset of the testing data was used for severity score validation. To this end, 40 subjects
were selected in such a way that they represent the broad range of emphysema severity as
defined by the LAA% measure in COPDGene (between 2% and 61%). Patient distributions
are 4,1,5, 16, and 14 for GOLD stages 0, 1, 2, 3, and 4, respectively.

CT Protocols

Volumetric CT scans were acquired from multiple sites in supine position and without
intravenous contrast. Several different scanners were used, with the following protocols: 120
kV peak, 200 mA, and 0.75-mm slice thickness for Siemens scanners; 120 kV peak, 400
mA, and 0.625-mm slice thickness for General Electric scanners; and 120 kV peak, 440 mA,
and 0.9-mm slice thickness for Philips scanners. Scans acquired at full inspiration were used
in the study. Full inspiration was controlled as per the COPDGene Study protocol (11). The
full details of the acquisition parameters for the COPDGene Study can be found in
Reference (14).

Emphysema Subtype Features

Input for the emphysema severity model included six parenchymal subtypes (normal, mild,
moderate, and severe centrilobular emphysema, panlobular, and paraseptal emphysema).
The six subtypes are classified in the following manner (2): First, we obtain training data for
each of the subtypes, which consists of square CT regions. For each region of interest, we
build a feature vector consisting of a local density histogram obtained using kernel density
estimation. We then classify each new CT scan by subdividing it into regions of interest, and
then comparing the local histogram of each region to those in the training data using the
Least Absolute Deviations (L1) norm. We select the subtype with the highest frequency
from the five nearest training neighbors as determined by the distance metric (k-nearest
neighbor classification). A representative example of axial CT images and a range of
severities for these subtypes are provided in Figure 1.
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Severity Index From CT Image Information

A detailed description of the derivation of the severity index is provided as supplementary
material. Briefly, we began by extracting the CT-based features that correspond to the
prevalence of each of the six emphysema subtypes from the training set of 2500 subjects.
Principle components analysis (15) was then performed on those features to extract the first
three components and reduce the dimensionality of the data. The result is depicted
graphically in Figure 2(a). Visual inspection of this boomerang-like shape suggested that
much of the variance of the original data was maintained and that emphysema severity
progression (from mild to severe) is based in part on the prevalence of NT. We therefore
clustered the data according to prevalence of NT and learned a two-dimensional (2D) space
from the six-dimensional original space by maximizing the separation between clusters
using linear discriminant analysis (LDA) (16) (Fig 2(b)). Visual inspection of the 2D
embedded space suggested that the shape can be modeled by a second-order polynomial
curve to form a parametric description of that space.

The resulting dispersion obtained in 2D space suggested that emphysema progression might
follow unique paths for each individual. To investigate this, we defined an emphysema
severity curve for each COPDGene subject. To do so, we build our model with multiple
curves that span the dispersion. We first divide our original severity space into four groups
based on the distance along the normal to the curve, n, in 2D space. The intuition is that the
closer to 0 the n value is for a given model, the closer the data are to the derived model. For
each group, we derive a new model from the subset of training points that belong to that
group. We choose to split our space into four groups because it maximizes separability
between disease models all while providing an adequate amount of training data per model.
An example of a model with four curves is shown in Figure 2(b).

Once the model is built, we can compute the severity for a new patient CT. We first project
the emphysema subtype feature vector corresponding to the CT onto the LDA 2D space and
obtain a 2D point p_pa. For each of the four curves, the curve-specific severity is then
defined as the arc-length along the curve from the upper left point, refered to as origin in
Figure 2(b), to the reference point on the curve. The origin is considered the point of mildest
emphysema. The reference point on the curve is defined as the projection onto the curve
along the polynomial normal of p, pa.

Finally, we obtain a patient-specific disease curve passing through p_pa in LDA space by
interpolating over the four curves using the value of n. The final severity index Sis then
defined as the arc-length along the interpolated curve. This implies that the higher the arc-
length, the further we are from the origin along the curve, the higher the severity. A software
implementation of this algorithm is available on-line as part of the Chest Imaging Platform
(http://chestimagingplatform.org/) under cip_python/phenotypes/emphysema_severity.py.

Statistical Analysis

Data are presented as means and standard deviations or medians and interquartile ranges
where appropriate. Linear associations were assessed using Spearman correlation
coefficients. P values less than 0.05 were considered statistically significant.
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The distributions of LAA% and Sacross GOLD stages were compared by performing trend
analysis based on the Wilcoxon rank sums test and by computing the coefficient of
variation. The association between LAA% and Sby GOLD stage was obtained via a linear
regression.

We compared the proposed measure to expert scores using trend analysis based on the
Wilcoxon rank sums test. For each of the 40 test cases, two expert clinicians assigned an
emphysema severity score by consensus. The score ranges between the values of 0 and 4,
where 0 is the lowest severity (no emphysema) and 4 is the highest severity (severe
emphysema).

Univariate and multivariate regression models were performed to measure associations
between our measure and each of the following clinical measures: FEV;, distance walked,
and SGRQ. These associations were compared to ones obtained using LAA%. For the
multivariate models, a priori models based on clinical knowledge are used? in the models for
distance walked and SGRQ, and adjusted for age, gender, race, height, smoking status, and
number of pack-years in the model for FEV;.

Analysis of Severity

Figure 3 shows the distribution of Sand LAA% across GOLD stages. Trend analysis shows a
steady increase in Salong GOLD stages with significant differences across the GOLD stages
(p < 0.0001). Table 2 shows the coefficient of variation of both Sand LAA% measures
across GOLD stages. The coefficient of variation of LAA% is considerably higher than that
of Sfor all the GOLD stages, suggesting a much higher dispersion. For both Sand LAA%,
the coefficient of variation decreases as the GOLD stage increases.

Figure 4 shows the coefficient of determination (R-squared) across GOLD stages following
a linear regression between LAA% and S An overall R-squared value of 0.654 is obtained
between LAA% and S and a value of 0.666 is obtained between log(LAA%) and S The
coefficient of determination is generally increasing across GOLD stages. An analysis of
variance shows a linear association between LAA% and Sfor each of the GOLD stages (p <
0.0001).

Figure 5 shows the distribution of Sandd LAA% by visual assessment score. Trend analysis
shows a steady increase in both Sand LAA% along expert index values and significant
differences in both S(p < 0.001) and LAA% (p < 0.0001) across expert index values.

Associations With Outcomes

Figure 6 shows a plot of the distribution of FEV4, an important indicator of COPD, and S
the proposed severity measure. A regression line fit in red shows a predictable downward
trend (R-squared = 0.24).

Iwe adjusted for age, gender, race, body mass index, smoking status, number of pack-years, and FEV1.
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Table 3 shows results of regression models for each of the outcomes and including either S
or LAA%. For both Sand LAA%, statistically significant associations are found with each of
the outcomes (p < 0.0001). However, for each of the outcomes, the adjusted R-squared is
higher in the case of our proposed Scompared to LAA%. This suggests that, prior to
adjusting for confounding factors, more of the variation in the outcome is explained by our
proposed measure than by LAA%.

Table 4 shows results of the multivariate regression models controlling for the covariates. A
total of 6220 subjects were used in this analysis (thus excluding normal subjects). We show
the two covariates of interest: Sand LAA%. Adjusted R-squared values are predictably
higher when both Sand LAA% are included in the model compared to the univariate models.
Statistically significant associations are found between Sand LAA% and each of the clinical
outcomes (p < 0.0001). These associations show that our measure is a statistically significant
predictor of the outcomes after adjusting for all the covariates and for LAA%. This shows the
added benefit of our measure as it provides significant complementary information to LAA%
and significantly improves associations with clinical indicators of disease severity.

DISCUSSION

We proposed a single emphysema severity measure that aggregates information from
multiple features used to classify emphysema subtypes. Dimensionality reduction techniques
were used to obtain a 2D space that consists of a linear combination of the original six
dimensions. We then computed the proposed emphysema severity measure on 6414 patients
and compared the proposed measure to LAA%. Trend analysis showed an increase in both
LAA% and Salong GOLD stages, predictably showing that cases in later stages of disease
tend to have more severe emphysema. LAA% was found to have a larger dispersion than S
when stratified by GOLD, suggesting higher variability in that measure for a given disease
stage. We found a wider range in the later disease GOLD stages for LAA% compared to
earlier stages, whereas the Stended to exhibit less variation across the disease spectrum.
This resulted in a decrease in the coefficient of variation across disease stages for both LAA
% and S, due to the fact that the coefficient of variation is normalized by the mean. We
looked at the coefficient of determination between LAA% and Sacross GOLD stages. S
correlates well with LAA% for more advanced stages of disease, and less well for earlier
stages of disease. The particularly small interval for LAA% for the lower GOLD stages
suggests that Smight have a higher sensitivity in detecting early disease stages.

Both Sand LAA% were shown to have significant associations with expert analysis of
severity. A few outliers were observed for both measures, where the measure is high when
compared to the expert index. It must be noted that expert manual measurements can suffer
from variability. Itra-rater repeat measurements were obtained for the expert classifications,
and a kappa coefficient of 0.792 was obtained. In addition, expert classifications were done
by looking at extra-pulmonary manifestations in addition to the lungs to obtain a global idea
of disease. However, both LAA% and Sare computed only in the parenchymal area and do
not take contextual information into account. Thus, based on our knowledge about expert
classification, we can hypothesize that an effective emphysema classification scheme would
be able to leverage additional contextual information about the patient.
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Univariate regression analysis showed that a better model fit was obtained for all outcomes
when only our proposed measure was used as opposed to LAA%. Multivariate regression
analysis showed that although LAA% is a predictor of disease outcome, Sis an independent
predictor of disease outcome after adjusting for LAA%. This suggests that our proposed
severity measure is of added value to LAA%, as it provides significant complementary
information. This complementary information can help better characterize disease severity.
We speculate that the complementary information that our severity measure provides is
specific to what each subtype contributes to the severity of emphysema as a whole.
Associations were particularly low between the 6-minute walk and both Sand LAA%. The
models have not been able to explain the variability for this measure perhaps due to the fact
that the variability of the measure itself is inherently high, as it is dependent on the patient’s
effort. For these reasons, parenchymal measures may never explain more of the variability
of the 6-minute walk for the reasons stated previously. In fact, distance walked and SGRQ
have shown weak associations with severity measures in the literature (17,18). We believe
that finding an emphysema severity measure that would improve these models is beneficial
because both distance walked and SGRQ are important indicators of the patient’s outcome.
In spite of the high variability in both distance walked and SGRQ, our proposed severity
measure has still been able to describe more of the variance in the models obtained.
Although clearly, more work needs to be done to further improve these models.

Variation in scanned lung volumes can have an effect on intensity-based emphysema
measures such as Sand LAA%. We tested the extent of this effect by performing regression
analysis on a subset of the COPDGene population that has been scanned twice. The details
of this analysis can be found in section 2 of the supplementary material. Although no
statistically significant associations were found between change in volume and change in
resulting LAA% or S higher associations were found between change in volume and change
in resulting LAA%. We can, however, still see intra-subject variability in our proposed
measure across the scans. We plan to study the reasons behind this variability as part of
future work.

Changes in scanner can also have an effect on emphysema severity measures. We tested
such effects by performing regression analysis between the outcomes and both Sand LAA%,
and adding scanner to the covariates. Details of the analysis can be found in section 3 of the
supplementary material. We found better associations between the outcomes and our
measure compared to LAA% after correcting for scanner, and less association between Sand
scanner compared to LAAY, although there were statistically significant associations
between some outcomes and scanner when both Sand LAA% are included in the model.
Further mitigation of the effect of scanner on our measure is the subject of ongoing work.

One limitation of the work is that the automatic emphysema classification scheme that was
used has low classification success rates for certain disease subtypes when compared to
expert classification (2). In particular, mild centrilobular emphysema was classified with
lower success rates than the remaining subtypes. However, we chose this classification
scheme based on its speed, simplicity, ease of implementation, and overall competitive
performance. When compared to other available methods, its performance was shown to be
superior even for the more poorly classified subtypes. More importantly, emphysema
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classifications using the chosen method have shown novel associations in a recent genome-
wide association study of emphysema phenotypes (19).

CONCLUSIONS

We proposed a method to compute a single emphysema severity measure from CT image-
based quantities representing emphysema subtypes. We obtained a manifold from the
image-based quantities and used dimensionality reduction to map these quantities onto the
severity space. We compared associations between the proposed metric and clinical COPD
quantities and those obtained using standard densitometry as a binary classifier of
emphysema (LAA%). We showed statistically significant associations between our proposed
measure and each of the clinical measures analyzed in this study (P <.0001), and better
associations when our proposed measure is compared to percent emphysema. We also
showed that our measure is an independent predictor of the clinical outcomes and provides
significant complementary information to LAA%. The proposed measure provides a way to
compare emphysema severity across a population all while showing associations with
clinical outcomes. Future works include exploring methods that would further mitigate the
effect of scanner on the characterization of severity, the effect of changes in lung volume on
our proposed measure, different dimensionality reduction methods, and extending the
measure to three-dimensional space to further improve the associations between the measure
and the clinically relevant outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figurel.

Computed tomography (CT) slices (top row) and their corresponding emphysema
classification (bottomrow). Slices from three patients are shown and range from mild (left)
to severe (right). The emphysema classes have the following color codes: normal
parenchyma is red, paraseptal emphysema is green, panlobular emphysema is blue, mild
centrilobular emphysema is yellow, moderate centrilobular emphysema is cyan, and severe
centrilobular emphysema is purple. (Color version of figure is available online.)
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Figure 2.

Derivation of the severity measure Sfrom the local histogram emphysema space. The data
are projected onto the two spaces shown. Cyan, black, blue, green, and red represent cases
with Global Initiative for Obstructive Lung Disease (GOLD) stages 0, 1, 2, 3, and 4,
respectively; magenta is for cases with reduced forced expiratory volume in 1 second
(FEV1) and forced vital capacity (FVC). (Color version of figure is available online.)
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Figure 3.

Distribution of Sand percent low attenuation areas (LAA%) across Global Initiative for
Obstructive Lung Disease (GOLD). A gray line shows the mean over all the data.
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Obstructive Lung Disease (GOLD) stages.

Acad Radiol. Author manuscript; available in PMC 2017 April 01.




1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Harmouche et al. Page 14

20 .
H
15 ~ = :
1
-
. t
» ——e
10
.
51 1
L
o 1 2 ' 3 : 4
Expert index
70-
60 = B
—
50- -
H
2 40 [ :
3 : I
30 =
s
L
"’°‘ 1
10
e
0 o' 1 ‘ 2 ' 3 ‘ 4
Expert Index
Figure5.

Distribution of Sand percent low attenuation areas (LAA%) across expert scores. A gray line
shows the mean over all the data.

Acad Radiol. Author manuscript; available in PMC 2017 April 01.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Harmouche et al. Page 15

FEV1

5.5

S
4.5

3.5
3
2.5
2
1.5
1
0.5

19 21 2

11 13 15 17
S

0123456789

Figure®6.
Distribution of forced expiratory volume in 1 second (FEV;) and Sfor the testing data.

(Color version of figure is available online.)
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