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Abstract

The CopC proteins are periplasmic copper binding proteins believed to play a role in bacterial
copper homeostasis. Previous studies have focused on CopCs that are part of seven-protein Cop or
Pco systems involved in copper resistance. These canonical CopCs contain distinct Cu(l) and
Cu(ll) binding sites. Mounting evidence suggests that CopCs are more widely distributed, often
present only with the CopD inner membrane protein, frequently as a fusion protein, and that the
CopC and CopD proteins together function in the uptake of copper to the cytoplasm. In the
methanotroph Methylosinus trichosporium OB3b, genes encoding a CopCD pair are located
adjacent to the particulate methane monooxygenase (pMMO) operon. The CopC from this
organism (Mst-CopC) was expressed, purified, and structurally characterized. The 1.46 A
resolution crystal structure of Mst-CopC reveals a single Cu(ll) binding site with coordination
somewhat different from that in canonical CopCs, and the absence of a Cu(l) binding site.
Extensive bioinformatic analyses indicate that the majority of CopCs in fact contain only a Cu(ll)
site, with just 10% of sequences corresponding to the canonical two-site CopC. Accordingly, a
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new classification scheme for CopCs was developed, and detailed analyses of the sequences and
their genomic neighborhoods reveal new proteins potentially involved in copper homeostasis,
providing a framework for expanded models of CopCD function.

Graphical abstract

@ cun 2tis, 1asp @ cutn3nis @ Cut)

Copper is an essential but toxic metal in biology.12 It is a critical cofactor in proteins such as
cytochrome ¢ oxidase, superoxide dismutase, and numerous oxygenases, but excess copper
causes oxidative damage and may disrupt iron-sulfur clusters.2 To satisfy intracellular
copper requirements and avoid toxicity, bacteria have evolved multiple copper homeostasis
pathways. Strikingly, more than 44% of the copper proteome is dedicated to copper
homeostasis.? In prokaryotes, there are at least three systems that impart copper resistance:
the Cue system (Cu efflux), the Cus system (Cu sensing), and the Cop/Pco system (copper
resistance, or plasmid-borne copper resistance).5-2

The Cue and Cus systems are generally believed to function in copper export and
detoxification.5:” The Cue system typically comprises three proteins: a P1g-type ATPase
(often annotated as CopA and herein termed CopA¥*) that pumps Cu(l) from the cytoplasm
to the periplasm, the periplasmic multicopper oxidase CueO, which couples the oxidation of
Cu(l) to the reduction of molecular oxygen, and the cytoplasmic copper binding regulatory
protein CueR.10-12 |n contrast to the Cue system, the Cus system does not rely on the
reduction of oxygen and is therefore capable of functioning under anaerobic conditions. This
system includes six proteins. The CusABC complex spans the entire periplasmic envelope
and effluxes Cu(l) ions, driven by a proton gradient.13 CusF delivers Cu(l) ions to the
CusABC complex,* and expression of the Cus proteins is regulated by the CusR/CusS two-
component system. 1

While the Cue and Cus systems are strongly implicated in copper efflux, it is not yet clear
how the Cop/Pco system imparts copper resistance to the cell. It has been suggested that the
Cop proteins export copper,® import copper to the cytoplasm,2-16 and/or sequester copper in
the periplasm.1718 The possibility of import has been relatively underinvestigated, likely due
to the fact that there is no known function for copper in the bacterial cytoplasm beyond its
involvement in copper homeostasis and gene regulation.? The traditional Cop/Pco system is
composed of seven proteins, CopABCDERS. CopD and CopB are inner and outer
membrane proteins, respectively (CopB should not be confused with the identically named
copper-transporting P1g-type ATPase, not traditionally part of the cop operon).8 CopA is a
periplasmic multicopper oxidase that can substitute for CueO.19 CopE is a soluble protein
that binds Cu(l) and is hypothesized to sequester copper in the periplasm.2% CopC is
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believed to be a periplasmic copper chaperone.2! The PcoABCD proteins are homologous to
the CopABCD proteins but were originally identified on plasmids; annotations may show
either set of names. Like the cus operon, the canonical cop operon is regulated by a two-
component system, the CopRS proteins.19

The proposed physiological functions of the Cop/Pco systems are based largely on
phenotypic characterization of strains expressing different combinations of the cop genes
and on biophysical characterization of CopC/PcoC.8:22:23 Knockouts of the individual
cop/pco genes result in increased copper sensitivity, suggesting that all four proteins work in
concert to impart copper resistance.23:24 Counterintuitively, expression of copCD without
copAB leads to copper hypersensitivity, suggesting that CopD imports copper and that
CopD-mediated copper import is facilitated by CopC.2° A definitive model for the functions
and interactions of the Pco/Cop proteins remains elusive, however. Interpretation of
phenotypic data has been further complicated by biophysical studies of traditional CopC/
PcoC proteins. Until recently, CopCs were generally thought to contain both a Cu(l) binding
site and a Cu(l1) binding site.21:26-28 Structural studies show that the Cu(l) ion binds in a
methionine rich loop, and that the Cu(ll) ion is coordinated by the amino terminus, two
histidines, and a water molecule. One of the coordinating histidines is the N-terminal
residue, which is generated by cleavage of a signal peptide, while the other histidine is part
of a DXH motif in which the aspartic acid hydrogen bonds to the coordinating water
molecule.?1:26.29.30 Bjochemical studies with PcoC indicate that the Cu(l) and Cu(ll) sites
are capable of intermolecular copper transfer and that PcoA and CueO are capable of
oxidizing the Cu(l) site.21.28:31

Over the years, evidence that Cop/Pco systems are significantly more diverse and less
similar to the traditional cueand cus copper efflux systems than was believed originally has
accumulated. First, a CopC lacking the Cu(l) binding site, but with an unusually high
affinity for Cu(ll), has been characterized.32 The higher affinity is believed to derive from an
additional coordinating histidine, which is present in the third position of the mature peptide.
Second, proteins that appear to be fusions of CopC and CopD have been reported in the
genomes of numerous organisms, and there is strong biochemical evidence that these Cop-
like systems are involved in the import of copper into the cytoplasm.16:33:34 Finally, operons
containing copC and copD without copA, copB, or copE have been observed in multiple
organisms.18:33.35 For example, in methanotrophic bacteria, copCand copD genes are
located adjacent to the operon encoding particulate methane monooxygenase (pPMMOQO), a
copper-containing enzyme that catalyzes the first step of methane metabolism.3¢ Notably,
the copD gene in a mutant strain of Methylosinus trichosporium OB3b that is impaired in
cytoplasmic copper uptake and regulation contains a frameshift deletion, consistent with
CopC and CopD functioning in copper import in this organism.37

To further understand the methanotroph CopCD system, a CopC from M. trichosporium
OB3b (Mst-CopC) was structurally characterized, and an extensive bioinformatics study was
undertaken to understand Mst-CopC in the broader context of the CopC protein family. A
total of 8636 CopC homologues were examined, providing an overview of the diversity of
CopC sequences and operons. We find that CopCs containing two copper binding sites
(named Type A by Wijekoon et al.32) are relatively rare, accounting for approximately 10%
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of CopCs. The vast majority of CopCs contain only a Cu(ll) site similar to that in either Mst-
CopC or the recently characterized higher-affinity Pseudomonas fluorescens SBW25 CopC
(Ps£ECopC, named Type B by Wijekoon et al.).32 These data, in conjunction with the crystal
structure of the newly identified CopC type, warrant the creation of a new system for
classifying CopC-like proteins. Moreover, when combined with a growing body of evidence
of CopCD-mediated copper uptake, these data necessitate a re-examination of the existing
models of CopCD function.

MATERIALS AND METHODS

Materials

Unless otherwise stated, all chemicals were purchased from VWR, Research Products
International, or Sigma-Aldrich and were not purified further before being used.

Construction of the Expression Plasmid

The Mst-copC gene (IMG gene ID 2507406428, locus tag Mettr-DRAFT_0380) was codon-
optimized using Escherichia coli codon frequencies, synthesized by GenScript, and
subcloned into pE-SUMO (Life Sensors) using the Bsal restriction site. This sequence
contains a C-terminal tag encoding a TEV restriction site, a sequence corresponding to 5-
strand 11 of green fluorescent protein,38 and a Strep-Tactin (IBA) affinity tag in that order.
In place of the native N-terminal signal peptide sequence, an N-terminally encoded His-
SUMO tag was introduced, which allows for generation of the authentic N-terminus (His 23)
after the protein is incubated with SUMO protease.39

Protein Expression and Purification

The resultant vector was transformed into chemically competent BL21 Star (DE3) (Life
Technologies) cells, and one colony was used to inoculate a 1 L culture of autoinduction
medium.#9 Cultures were shaken at 37 °C until they reached an ODggq of ~0.5, at which
point the temperature of the incubator was lowered to 20 °C. Following overnight growth,
cells were harvested by centrifugation for 15 min at 7100g and flash-frozen for later use.

Cells were suspended in Tris buffer [50 mM Tris and 500 mM NaCl (pH 8.0)] and lysed by
sonication on ice for 8 min using 1 s pulses with 3 s rests. Lysates were centrifuged for 1 h at
186000g and applied to a 15 mL Strep-Tactin affinity column (IBA) that had been pre-
equilibrated with equilibration buffer [50 mM Tris and 500 mM NaCl (pH 8.0)]. Following
extensive washing with equilibration buffer, Mst-CopC was eluted from the Strep-Tactin
column with elution buffer [50 mM Tris, 500 mM NaCl, and 2 mM desthiobiotin (pH 8.0)].

To cleave the SUMO tag, fractions containing MstCopC were incubated in TCEP-
containing Tris buffer [50 mM Tris, 500 mM NaCl, and 2 mM TCEP (pH 8.0)] at 37 °C
overnight with excess TEV and SUMO proteases that were prepared using previously
published protocols.3%41 Cleaved Mst-CopC containing the native amino-terminal histidine
residue was then applied to a Cu-loaded 5 mL HiTrap Chelating HP column (GE) to remove
the SUMO protein and the His-tagged proteases. MstCopC was then exchanged into 100
mM NaPO,4 and 500 mM NaCl (pH 7.0) and purified using a 24 mL Superdex 200 column
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(GE). Protein purity was assessed by sodium dodecyl sulfate—polyacrylamide gel
electrophoresis using a 15% gel, and protein concentrations were measured using the
calculated molar extinction coefficient at 280 nm (5960 M~1 cm™1).42 Protein yields of 10—
50 mg/L of culture were obtained.

Copper Loading and Metal Analysis

Purified Mst-CopC in 100 mM NaPO,4 and 500 mM NaCl (pH 7.0) was incubated with 10
equiv of CuSO, at room temperature for several minutes. Samples were then centrifuged to
remove precipitated copper(ll) phosphate, and unbound copper was removed by buffer
exchange [into 100 mM NaPO,4 and 500 mM NaCl (pH 7.0)] on a 24 mL Superdex 200
column (GE). Metal content was measured by inductively coupled plasma mass
spectrometry (ICP-MS, Thermo iCAP Q). The concentrations of iron, cobalt, nickel, copper,
and zinc were measured using a multielement standard (Inorganic Ventures). ICP-MS
samples were prepared in 5% nitric acid with 5 ppb indium, lithium, scandium, and yttrium
internal standards (Inorganic Ventures).

Crystallization and Structure Determination

Mst-CopC was crystallized by sitting drop vapor diffusion at room temperature by mixing 1
L of 10 mg/mL protein with 1 gL of a well solution containing 0.1 M HEPES sodium salt,
0.8 M sodium phosphate, and 0.8 M potassium phosphate (pH 7.5). Football-shaped crystals
grew within 1 week. All crystals were cryoprotected in a well solution containing 50%
glycerol and flash-frozen in liquid nitrogen. Diffraction data were collected at LS-CAT
Sector 21 and GM/CA Sector 23 of the Advanced Photon Source at Argonne National
Laboratory (Argonne, IL) at an energy of 12 keV. HKL-2000 was used to index, integrate,
and scale all data sets.*3 Molecular replacement using £. coli PcoC [Esc-PcoC, Protein Data
Bank (PDB) entry 1LYQ]26 as a starting model was used to determine phases. Molecular
replacement solutions were calculated using Phaser, and structures were refined using
REFMAC as implemented in the CCP4 program suite (Table 1).#4-46 During the final stages
of refinement, TLS and anisotropic refinement parameters for the copper ion were added to
the model.

Identification of CopC Homologues in Bacterial Genomes

All protein sequences matching the CopC PFAM profile hidden Markov model (HMM)
(PF04234) and associated metadata were obtained from the JGI-IMG database (http://
img.jgi.doe.gov/w/, September 17, 2014) (Supplemental Files 1 and 2). To avoid the loss of
potentially relevant minor differences at copper binding sites, the data set was analyzed with
and without pruning on the basis of sequence similarity. In the pruned data set
(Supplemental Files 3 and 4), sequences were clustered according to similarity using
UClust,*” and in groups with >95% similarity, a centroid sequence was chosen to represent
the cluster, resulting in a smaller data set of 2550 sequences. Unless otherwise specified, this
is the data set discussed in the body of this paper, and discussion of the auxiliary unpruned
data is relegated to the Supporting Information. All sequences were aligned against the
HMM via hmmalign (Supplemental Files 5-9),%8 and additional domains not matching the
HMM were trimmed for further sequence-based analyses.
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Sequences were classified into one of several categories depending on the conservation of
their Cu(l) and Cu(ll) sites (Table 2). The Cu(l) site was considered to be present if, after
alignment with the CopC HMM, residues corresponding to at least four of the five residues,
M63, M66, M69, H72, and M75 (using £sc-PcoC residue numbering, IMG entry
640940805), were conserved. In the case of H69 and M75, the presence of an M or H within
one residue of that position was considered sufficient for conservation of the residue. The
Cu(ll) site was considered to be present if, after alignment with the CopC HMM, residues
corresponding to H24, D113, and H115 were conserved. Sequences containing a Cu(ll) site
with an additional conserved histidine at H26 were assigned to a separate category, higher-
affinity Cu(ll) binding sequences (using £sc-PcoC residue numbering, IMG entry
640940805). Systemic misalignments appear to be minimal or due to the presence of
significant insertions, deletions, or multiple-residue differences in sequence with the
potential to alter the structure or function of the resulting proteins. For the generation of
consensus sequences in Jalview,4° only residues fitting the HMM were used [along with
residues or gaps in the alignment corresponding to £sc-PcoC M51, which is part of the Cu(l)
binding site].

Network Analysis of CopC Sequences

Sequence similarity networks were generated as described previously.>? Nodes represent the
trimmed CopC amino acid sequences, and edge values were generated via an all-by-all
BLAST+ (NCBI) against a database consisting of either the 8636 raw or the 2500 pruned
CopC sequences (Supplemental Files 2-6), trimmed but unaligned. Initial networks were
generated using the Blast2Sim plug-in®? in Cytoscape 2.8.3%2 with an initial BLAST
threshold of 100, a coverage factor of 15, and a “sum of all hits” similarity function. Edges
corresponding to low similarity were removed according to a numeric filter; filter values
were set below a level that would result in >1% of the nodes dissociating from the main
cluster. Transitivity clustering was applied via the TransClust plugin, using a threshold of 35
with the Blast2SimGraph_sim score as an edge value and similarity as an edge weight
determiner.51 In the final cluster analysis, edges with a value below 35 were deleted and the
network was organized according to the edge-weighted, force-directed Cytoscape layout.

A tab-delimited text file identifying characteristics of interest for each node was loaded and
overlaid onto the network via the Cytoscape VizMapper plug-in. Copper site assignment was
calculated as described above. The genus and gene length were obtained from exported JGI
metadata for each gene, while the phylum was determined using the NCBI Taxonomy
Database on the basis of genus (http://www.ncbi.nlm.nih.gov/taxonomy). Operon categories
were assigned as described below.

Hierarchical Clustering of CopC Genome Neighborhoods

In the JGI-IMG database, each gene has a gene object id (gene_oids). On a DNA contig,
scaffold, or chromosome, neighboring ORFs are assigned contiguous numeric gene oids. On
the basis of this information, metadata were obtained for all genes within five ORFs of copC
(i.e., all genes with gene_oids +5 from the gene_oid of the relevant copC). Neighboring
genes were classified by annotated Pfam®3 and TIGRFAM®4 profile HMMSs present in the
gene, and for genes observed near >1% of copCs in a given position, the distance in number
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of genes from copC was recorded, from 0 (indicating fusion with copC) to 5. A binary value
was assigned to indicate the presence or absence of a given trait at a given distance from the
copC gene; in a separate set of analyses, a binary value was assigned to the presence or
absence of those traits in the genomic neighborhood of copC regardless of their relative
positions. Several other traits were also assigned binary numeric values for each gene:
presence of a given type of copper site, membership in one of the 15 most common genera
in this data set, and membership in the most common phyla. Only gene presence or
presence/distance values and copper site values were used for hierarchical clustering.

The gene IDs and their associated traits were subjected to hierarchical clustering in R.%° For
both genes and traits, the distance matrix was calculated using the Manhattan method
(absolute distance) in the dlist function, and the clustering was determined using the
Ward.D2 method®® in the Ac/ust function (Supplemental File 10). A heatmap and
dendrograms were generated from the hierarchical clustering data via the heatmap.2
function in gplots.5” Co-clustered sets of traits were presumed to represent potential
operons, and five randomly selected copCs from each of the 20 largest operon families were
checked to visually confirm the clustering results. Similar sets of analyses were performed
using the unpruned CopC data set (Figure S1, SI Supplemental File 11). Only genes with
unidentified roles or with roles plausibly related to copper homeostasis were considered to
be potential operon members, although all gene neighbors are represented in the raw data in
the Supporting Information (Supplemental File 5). In some clusters with more
morphological variation, only the core operon structure observed in the significant majority
of the cluster is depicted.

RESULTS AND DISCUSSION
CopC from M. trichosporium OB3b

The cloned copC gene used in this work is located downstream of the pmoCAB operon,
which encodes the three subunits of pMMO, between a gene termed pmoD and the copD
gene.®® The copD gene is followed by a gene encoding a putative member of the DUF461
family, which includes the proteins known as PCuaC, PcuC, and EcuC.3%:59-61 This entire
gene cluster forms an operon that is coregulated in response to copper.3’ The predicted Mst
CopC protein includes an N-terminal signal peptide for export to the periplasm. Previous
studies of CopC proteins indicate that cleavage of the signal peptide results in an N-terminal
histidine, which coordinates a Cu(ll) ion with both the N-terminal amino group and the
imidazole side chain.2! Accordingly, the N-terminal histidine in Mst-CopC was generated by
genetically inserting a SUMO tag before the copC gene. Cleavage of this tag yields the
native N-terminus, and ICP-MS analysis of the resulting protein indicates that 1.0 £ 0.3 (n=
4) copper ions bind per monomer after metal loading.

The crystal structure of Mst-CopC was determined to 1.46 A resolution in space group
P212,24 with a single molecule in the asymmetric unit (Table 1 and Figure 1). There is no
evidence of biologically relevant oligomerization in the crystal packing or for interference of
crystal lattice contacts with the metal center. All regions of the protein are well-ordered, and
all of the residues following the signal peptide (residues 23-120) in addition to a C-terminal
TEV cleavage site were modeled. Similar to previously characterized CopCs, Mst-CopC
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forms a seven-stranded g-barrel, albeit with a slightly different arrangement of S-strands.
The crystal structure reveals a single copper ion, modeled at an occupancy of 1.0.

Two CopCs have previously been structurally characterized: PcoC82 encoded on plasmid
PRJ100423.63 found in an £. coli strain isolated from a piggery (£sc-PcoC)26 and CopC84
from Pseudomonas syringae pv. tomato (Pss-CopC).21:24:29.30 These CopCs contain Cu(l)
and Cu(Il) binding sites, located at opposite ends of the molecule. In Pss-CopC, the Cu(l)
ion is coordinated by methionine(s) and a histidine (Figures 1 and 2), with variable
coordination observed in crystal structures obtained at different pH values and in different
crystallographic space groups.2X The Cu(ll) ion is coordinated in square planar geometry by
two histidines, the amino terminus, and a water molecule, with an aspartic acid within
hydrogen bonding distance of the ligands (Figure 2B). At low pH values in a different space
group, an altered coordination involving a histidine from a second molecule is also observed.
Copper coordination was not observed in the £s¢-PcoC structure because the recombinantly
produced protein used for crystallography did not include authentic N-terminal histidine,
which is found in the native protein.

Mst-CopC contains only the Cu(ll) binding site and completely lacks the conserved residues
necessary for Cu(l) binding (Figure 1). The residues near the Cu(ll) site, H23, D105, H107,
and the amino terminus, are similar to those observed in Pss-CopC?2! but coordinate Cu(ll)
differently (Figures 2 and 3A). In Mst-CopC, Cu(ll) is bound in a distorted square pyramidal
geometry with H23, H107, D105, and the amino terminus comprising the planar ligands and
a water molecule serving as the axial ligand (Figure 3B). The D105 coordinating distance is
2.30 A, whereas the histidine nitrogen to copper distances range from 1.96 to 2.06 A. The
2.30 A distance is likely due to anisotropy along the D105 H23 imidazole axis, as evidenced
by egg-shaped electron density in the copper omit map (Figure 3B). The distance between
the copper ion and water molecule is 2.37 A. This elongation is likely a result of Jahn-Teller
distortion. Similar to Met-CopC, P. fluorescens SBW25 CopC (PsF-CopC) also contains only
a Cu(ll) binding site, which was characterized biochemically and spectroscopically. The Psf£
CopC Cu(ll) site has a Cu(ll) affinity 2 orders of magnitude higher than that of Pss-CopC,
which was attributed to the presence of an additional histidine ligand in the third sequence
position of the mature peptide (Figure 4).32 Notably, this residue is absent in MstCopC.
Thus, Mst-CopC appears to be a Cu(ll)-only chaperone distinct from the two types of CopCs
previously characterized: those that bind both Cu(l) and Cu(ll) (e.g., Pss-CopC and Esc-
PcoC) and those that bind only Cu(ll) with an additional histidine ligand (e.g., Ps~CopC).

The fold of Mst-CopC is the same as that of Pss-CopC and Esc-PcoC, but the S-strands
adopt a slightly different arrangement (Figures 1 and 2). In particular, a “dog leg”®® is
introduced into B-strand 4, resulting in secondary structure contacts with S-strands 3 and 5
and the formation of a tighter loop between g-strands 3 and 4 (Figure 1). The contacts
between B-strand 3 and the “dog leg” consist of backbone hydrogen bonds from a single pair
of amino acids (labeled S-strand 4B in Figures 1 and 2), whereas four pairs of amino acids
mediate the interaction between the “dog leg” and B-strand 5 (labeled S-strand 4A in Figures
1 and 2). By contrast, g-strand 4 of Pss-CopC contacts only B-strand 5, resulting in a more
extensive loop that also includes the Cu(l) binding residues. It has been suggested that the
Cu(1) bound in this loop can be oxidized by periplasmic oxidases,28 and the extended loop
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may play a role in protein-protein interactions between Cu(l) binding CopCs and cognate
oxidases or other partner proteins. Although the overall structure of all three CopCs is
similar, the differences in metal binding site arrangement and ligands are consistent with
Mst-CopC representing a new type of CopC.

Bioinformatic Classification of CopC Subfamilies

To determine if the MstCopC type is unique to methanotrophs or more prevalent, we
performed an extensive bioinformatics study. At the time of analysis, the JGI-IMG database
contained 8636 genes predicted to include a CopC-like domain. After alignment against the
CopC profile HMM (PF04234), these genes were categorized on the basis of the
composition of the copper sites, considering each of the two sites independently. This
classification scheme is more comprehensive than previous analyses, in which CopCs were
identified on the basis of the presence or absence of the Cu(l) binding site.32 We have
assigned each sequence according to whether the Cu(l) site is present in the canonical form
represented by the Pss-CopC and Esc-PcoC ligand set (1) or absent (0) and defined three
categories for the Cu(ll) site: absent (0), present in the canonical/ MstCopC form (1), or
present in the higher-affinity form with an additional histidine ligand (2) (Table 2 and Figure
4). Using this nomenclature, we have given each CopC class a designation consisting of “C”
followed by two subscripted digits, of which the first identifies the Cu(l) site type and the
second identifies the Cu(ll) site type, resulting in five categories: Cp-1, Cg-2, C1-1, Co-0,
and Cq—g, in order of prevalence (no C1-, CopCs were identified). The sequences were also
grouped into CopC supersets, including combinations of multiple types (Table 2).
Surprisingly, this analysis indicates that Cp—1 CopCs, of which MstCopC is the founding
member, are the most abundant (71.8%), followed closely by members of the Cy-5 class
(13.0%). Thus, the overwhelming majority of CopCs contain only the Cu(ll) site, and only
5.4% of the sequences belong to the C1_; class, upon which most previous studies and
functional hypotheses have been based. A total of 9.3% of the sequences lack one or more
ligands to either copper site (Cg-g), and a very few (0.4%) appear to have only the Cu(l) site

(C1-0)-

To improve our understanding of this newly discovered CopC diversity, similarity network
analysis was performed using nodes composed of trimmed CopC sequences and edge values
generated by an all-by-all BLAST. The resulting clusters were examined for the following
traits: CopC type, source organism phylum, and length as a proxy for detecting fusions to
other proteins (Figure 5). The results indicate that type Cq-1 is the most widely distributed,
appearing in the actinobacteria, proteobacteria, and firmicutes; it is clearly not limited to
methanotrophs. By contrast, Cp—, and C1-1 CopCs are mostly confined to three clusters
within the Proteobacteria phylum (Figure 5A, B). The Cy- CopCs are found primarily in
gamma-proteobacterial genera like Escherichiaand Pseudomonas.3?

In terms of predicted final polypeptide length, the C1_1 and Cp-» CopCs are typically 90—
100 amino acids and do not contain additional domains (Figure 5C). Although some Cy-4
CopC sequences, including the Mst-CopC sequence, are similar in length and composition
to the C1-1 and Cy—» CopCs, a significant subset of these sequences are fused to CopD

homologues. These CopCD fusions are especially common in Gram-positive bacteria. The
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YcnJ CopCD fusion protein from Bacillus subtilis has been investigated by gene disruption
and copper regulation studies as well as whole cell copper uptake experiments.16:33 Some of
the fused genes encode additional C-terminal domains, in particular the functionally
uncharacterized YktA domain (PF05256); both the fused CopC and the C-terminal domains
are predicted to be periplasmic in Gram-negative bacteria and external to the cell in Gram-
positive bacteria. In Gram-positive bacteria, Cg—1 CopC sequences not fused to CopD are
frequently longer than CopCs in other classes likely due to the need for an N-terminal
transmembrane region that tethers the protein to the external surface of the Gram-positive
cell membrane (Figure 5C).

Genomic Neighborhood Analysis

To gain insight into CopC functional diversity, we analyzed the genomic neighborhoods of
all the copC genes. For each copC gene, predicted genes within a five-gene radius were
identified via profile hidden Markov models (TIGRFAMSs and PFAMS), as were copper site
types and the presence of any fusion proteins. These traits and the CopCs associated with
them were submitted to hierarchical clustering to identify conserved gene groups and sets of
CopCs with similar genomic neighborhoods (Figure 6). In addition, investigation of
particularly common clusters allowed us to eliminate genes likely to be irrelevant to copper
homeostasis on the basis of predicted function, relative distance and direction, and
membership in an overrepresented genus. Examination of the 21 remaining common operon
types highlights possible functional differences between CopC subfamilies as well as genes
encoding several previously uninvestigated proteins that may be involved in copper
homeostasis (Figures 5D and 6).

The C1-1 copC genes are almost invariably found preceding copD and are frequently found
in operons containing other cop machinery (Figures 5 and 6). Common examples include
COPABCDRS, copBARSA*CD, and copAB(DUF411) (DUF2933)A*CD. Proximity to czc
and cus metal homeostasis operons is common, as is the existence on a plasmid rather than a
chromosomal operon. Of special note in these putative cop operons are DUF411 and
DUF2933 gene sequences. DUF411 has occasionally been conflated with several different
regulatory proteins (including the CopY family repressor CopR® and the characterized
repressor CopG)87:68 and as a potential exporter;59 the sequences of DUF411 proteins
support a third role, namely a periplasmic copper binding protein.”%71 It has been
hypothesized that DUF411 is involved in copper resistance,’%-72 whereas DUF2933
(occasionally annotated as CopQ) is completely uncharacterized. Both hypothetical proteins
also appear in the proximity of cusoperons. The 11 type C1-¢ copC genes are found in
operons that are similar to C1-1 cgpC-containing operons. It is not clear that C;_g CopCs are
a significant and distinct group of CopCs; rather, they seem to be the result of mutations to
the Cu(ll) site in otherwise C;-1 CopCs.

The Cy_» copC genes, which are frequently (although not invariably) annotated as yobA,°
occur almost exclusively before separate copD genes (often annotated as yeb.2). Sometimes
these two genes comprise the entire operon, but in many cases, the copD homologue is
followed by an uncharacterized DUF2511 gene sequence (sometimes annotated as yebY)
(Figure S1 and Figure 6). DUF2511 is predicted to be a small periplasmic protein, and the
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proximity of its gene to those encoding CopC and CopD homologues suggests that it too
may be involved in copper homeostasis. However, unlike the C1—; copC genes, Co—» copC
genes do not appear in the genomic proximity of other cop genes, and they are broadly
chromosomal rather than plasmid-based.

The genome neighborhoods of the Cy-1 copC genes, which include Mst-CopC, are quite
varied. This diversity is consistent with the range of species containing these genes (Figure
6). DUF1775 sequences (PF07987, sometimes annotated ycn/) are frequently adjacent to
copC or copD genes, and this protein is produced in response to copper in some species,
though the function remains unknown.”3 Two other members of the ycn operon are
sometimes observed, although primarily in Bacillus species and related genera; examples
include the DeoR family regulator yecnK (PF08220) and a reductase or disulfide isomerase
sometimes annotated as ycnL. Other frequent neighbors across species and genera include
genes encoding DyP-type peroxidases (PF04261), periplasmic copper binding proteins
belonging to the DUF461 family (PF04314, also known as PCuaC, PcuC, and EcuC),%! and
genes encoding other periplasmic copper chaperones resembling Scol and SenC
(PF02630).74 Perhaps because of their wide distribution across many species, likely aided by
horizontal gene transfer, Cy-1 copC genes occur without a neighboring copD gene at a
frequency higher than those of other copCtypes (Figure 5D), although even these isolated
copC genes frequently occur in the genomic vicinity of genes encoding DyP peroxidases,
DUF461 proteins, Scol homologues, and Ycnl homologues.

Unlike the type C1-g CopCs, many type Cy—g CopCs appear to be distinct CopC variants.
They lack one or more metal binding residues at the copper binding sites or have regions of
divergent length or sequence composition that render comparison to the standard HMM
difficult to interpret. Several clusters are seen within groups of related species (Figure 5),
suggesting that these sequences have been maintained despite likely alterations in copper
binding. The genes encoding Cy—g CopCs are found next to or fused with copD a little less
than half the time. Given that many of CopCs encoded by these genes are unlikely to bind
copper or to have Cu(l) or Cu(ll) sites resembling those of established CopC families, their
function remains ambiguous.

Functional Implications

The crystal structure of Mst-CopC and accompanying bioinformatic analysis reveal a new
CopC subfamily, the Cp—1 CopCs, characterized by the presence of a single Cu(ll) binding
site similar to those found in the previously characterized C;_1 CopCs.21:26:29.30 Thjs
subfamily is broadly distributed throughout the microbial world and is in fact the most
common form of CopC (Table 2). Combined with the higher-affinity Cu(Il) Cg—o subfamily,
CopCs that bind only Cu(ll) comprise approximately 85% of all CopC family proteins.
Thus, previous functional roles suggested for CopC, including delivery of Cu(l) to outer
membrane components or to the multicopper oxidase CopA as a source of reducing
equivalents,’® as well as models involving intra- or intermolecular transfer of copper ions
between the two sites in CopC or to other partners such as CopA, CopB, and CopD, 2130
may not be applicable to the broader CopC family. Whereas the C1-1 copC genes are
typically found in operons with these previously proposed partner proteins, the genomic
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neighborhoods of Cy-1 copC genes are variable. The copD gene is usually present, however,
and in many instances, the encoded CopCD pairs or CopCD fusion proteins appear to be
functional units by themselves. This observation is particularly notable given the
increasingly strong evidence of the role of CopD as a copper importer, despite the lack of a
well-understood nonregulatory role for copper in the cytoplasm of
microorganisms,16.18.25,33,37

It is likely that the Cp—1 and Cp-» CopCs are periplasmic Cu(ll) chaperones for a Cu(ll)
import system that utilizes CopD for transport across the inner membrane followed by
reduction to Cu(l) in the cytoplasm.2-16 These CopCs could also donate Cu(ll) to other
proteins in the periplasm, including Cop proteins. In this scenario, the C;-; CopCs would
function similarly and may also participate in Cu(l) detoxification. As noted previously, the
presence of the two distinct sites for Cu(l) and Cu(l1) is unusual,3° and Cu(l) binding could
serve a specialized function in some organisms. Alternatively, the methionine rich Cu(l)
binding site could function in protein-protein interactions,28 not necessarily always binding
Cu(l) in vivo. Methionine residues are often found in patches at protein interaction
interfaces.’6:77

The full range of functional roles for CopC and CopD remains unclear. In some systems,
copper imported by CopD clearly interacts with cytoplasmic regulatory proteins. For
example, copper imported by B. subtilis Ycnd, a CopCD fusion protein, binds the copper-
dependent regulator CsoR, resulting in expression of the copZA genes encoding a
cytoplasmic copper efflux system, which pumps copper to the extracellular matrix.33 In 2
fluorescens SBW25, the Cop and Cue systems work in concert to regulate copper levels.18
In support of a similar model in methanotrophs, a frameshift/deletion in the copD gene
adjacent to the gene encoding Mst-CopC results in a copper-starved phenotype, suggesting
that copper is not reaching cytoplasmic regulators.3 This type of model likely applies to
other systems and diverse cytoplasmic regulators. For example, in E. coli, copper imported
by CopC and CopD could activate the Cue system as well as the outer membrane protein
ComcC, which reduces the permeability of the outer membrane to copper. These systems are
regulated by the copper binding transcription factors CueR’8 and ComR,’? respectively.

Beyond import for regulation, it is also possible that CopC and CopD import copper into the
cytoplasm for protein assembly. In Rhodobacter capsulatus, assembly of active cbbs-type
cytochrome coxidase (COX) depends on CcoA, a member of the major facilitator
superfamily involved in the uptake of copper to the cytoplasm.89:81 The frequent appearance
of periplasmic copper proteins implicated in COX assembly, including DUF461 and Scol
homologues,35:59-61.82-84 j the genomic neighborhood of Cy_; copCand copD genes
suggests that CopD could function analogously to CcoA. In support of this notion, at least
15% of copD gene sequences contain a C-terminally fused domain annotated as cfaG (not to
be confused with the COX11/CtaG protein family), which is a transmembrane protein
implicated in cytochrome ¢ biogenesis in Bacillus species.3”:8586 The presence of multiple
copC genes in 37.6% of CopC-producing species may also support functional roles of CopC
and CopD other than regulation (Sl File 4). Copper imported by the CopCD system might
also be used to metalate fully folded copper-containing proteins that are exported from the
cytoplasm via the twin arginine translocation (TAT) pathway. Disruption of the TAT
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secretion pathway affects metal homeostasis in £, coli;8” and numerous copper proteins are
exported by the TAT pathway, including multicopper oxidases, nitric oxide reductases, and
nitrite reductases.® This mechanism of metal loading has been previously proposed for
CueO6 and PcoA.28 Finally, in the case of the relatively abundant copCD mini-operons, it
seems equally probable they could import copper for regulation, for loading, or for both
functions.

In this study, structural biology and bioinformatics have been used to significantly expand
and thoroughly categorize the CopC family of periplasmic copper binding proteins. Contrary
to the established model, the CopC family is dominated by proteins that bind only Cu(ll),
namely, the recently discovered Cy—, CopCs and the newly identified Cy—q CopCs. The vast
majority of these genes are not found in canonical cop operons, and the composition of their
genomic neighborhoods depends in part on the identity of their copper sites. Several
conserved and uncharacterized proteins potentially associated with copper homeostasis can
be identified on the basis of their genomic association with copCD pairs. Taken together,
these data indicate that truly representative cop operons and CopC copper binding properties
cannot be defined. Exploring the range of potential CopC functions in the context of this
previously unappreciated diversity will form the basis for further studies of the widespread
yet poorly understood CopCD copper homeostasis system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Structural alignment of Mst-CopC (light pink) and Pss-CopC (purple, PDB entry 2C9Q).

Copper ions are shown as spheres.
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Figure 2.

Topology diagrams of (A) MstCopC and (B) Pss-CopC and Esc-PcoC. Cu(ll) and Cu(l)
ions are shown as dark and light blue spheres, respectively. Water is shown as small red

spheres.
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A

e

Figure 3.
Coordination environment of the Cu(ll) site. (A) Structural alignment of the Cu(ll) site in

MstCopC (light pink) and Pss-CopC (purple, PDB entry 2C9Q). Copper ions are shown as
large spheres, and water molecules are shown as small spheres. (B) Electron density map
(2F, — F; map contoured at 1.60, colored gray) and difference density map (/, — Fc map
contoured at 4.50 with positive density colored green, negative density not observed at this
o, and copper and water omitted) of the MstCopC Cu(ll) site.
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Figure 4.

Cng sequence logos and alignment. Residues that do not match a position in the profile
HMM have been removed for the sake of clarity except for M72, which is a key Cu(l)
binding residue; it should be noted that M72 and H75 are located in a somewhat variable
loop region. Copper binding residues are highlighted in blue (histidine), red (aspartate), or
green (methionine). Representative sequences are from the following organisms: C;_4,
Pseudomonas sp. GM17 (IMG ID 2511266057); Co-1, M. trichosporium OB3b (IMG ID
2507406428); Cg-2, P, fluorescens R124 (IMG 1D 2503652063); Co—g, Mycobacterium
tusciae JS617 (IMG ID 2508745664); and C1—q, Sphingobium yanoikuyae XLDN2-5 (IMG
1D 2549030586).
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Figure5.
CopC sequence similarity networks colored by (A) copper site, (B) phylum, (C) full

sequence length in amino acids, and (D) CopD presence, absence, or fusion. Labeled
variants correspond to CopC sequences highlighted in Figure 4 [PsG, Ps. sp. GM17; Mst, M.
trichosporium OB3b (IMG ID 2507406428); Psf R, P. fluorescens R124 (IMG 1D
649637371); Myt, My. tusciae JS617; and C1_qSpy., Sp. yanoikuyae XLDN2-5].
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Figure®6.

Hierarchical clustering of copC genes and traits [including genome neighborhood, copper
site identity, and the presence of additional domains within the copC gene (e.g., copD,
VtkA)]. copC genes are clustered by which traits are observed in and around them (left),
while traits are clustered by the copC genes to which they are connected (top); correlation
between a given copC gene and trait is indicated by black (central heatmap). The 21 most
widespread sets of neighboring genes are depicted (bottom). In some cases, multiple
potential operon architectures are seen; the most common one is depicted. Neighboring
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genes to either side with no predicted relationship to metal homeostasis have been omitted.
The copC genes in operons 2—8 are often adjacent to a range of other copper-related genes
and operons beyond the five-gene neighborhood monitored in this data set; these genes
include cusABCF, other cop genes (copE, copK, and copZ2), regulatory proteins (cuer,
additional cusRSIcopRS), and disulfide isomerases.
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Table 1

Data Collection and Refinement Statistics of Cu- Loaded Mst-CopC

space group
resolution (A)
Reym

ol
completeness (%)
redundancy

no. of reflections
data cutoff

no. of atoms

Rwork/ Rfree (%)

Bfactor (A2

average

protein

water

ligands/ions
root-mean-square deviation

bond lengths (A)

bond angles (deg)

P2,2,2;
1.46 (1.50-1.46)
0.048 (0.067)
41.9 (22.1)

99.9 (99.9)
8.6(8.2)

17434

F>0

876

16.6/19.1

8.5
7.7
20.3
18.4

0.0141
1.661
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