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Abstract
Chronic obstructive pulmonary disease (COPD) will be a major leading cause of death worldwide in the near
future. Weakness and atrophy of the quadriceps are associated with a significantly poorer prognosis and
increased mortality in COPD. Despite that skeletal muscle dysfunction may affect both respiratory and limb
muscle groups in COPD, the latter are frequently more severely affected. Therefore, muscle dysfunction in
COPD is a common systemic manifestation that should be evaluated on routine basis in clinical settings. In the
present review, several aspects of COPD muscle dysfunction are being reviewed, with special emphasis on the
underlying biological mechanisms. Figures on the prevalence of COPD muscle dysfunction and the most
relevant etiologic contributors are also provided. Despite that ongoing research will shed light into the
contribution of additional mechanisms to COPD muscle dysfunction, current knowledge points toward the
involvement of a wide spectrum of cellular and molecular events that are differentially expressed in respiratory
and limb muscles. Such mechanisms are thoroughly described in the article. The contribution of epigenetic
events on COPD muscle dysfunction is also reviewed. We conclude that in view of the latest discoveries, from
now, on new avenues of research should be designed to specifically target cellular mechanisms and pathways
that impair muscle mass and function in COPD using pharmacological strategies and/or exercise training
modalities.

Keywords
COPD, respiratory and peripheral muscle dysfunction, muscle atrophy, muscle adaptation, epidemics, mole-
cular and cellular events

Introduction

Chronic obstructive pulmonary disease (COPD) will

be a major leading cause of death worldwide within

the next few years.1–6 Muscle dysfunction is a major

comorbidity in COPD that leads to poor exercise

capacity in the patients and negatively impacts their

quality of life.7 Moreover, COPD patients usually

suffer from other comorbidities or conditions such

as chronic heart failure, malnutrition, and aging that

may further deteriorate their underlying muscle dys-

function. Additionally, the number of exacerbations,

reduced physical activity or immobilization leads to

deconditioning, which further impairs muscle mass

and function in patients with COPD. Despite that ske-

letal muscle dysfunction may affect both respiratory

and limb muscle groups in COPD, the latter are fre-

quently more severely affected. As the diaphragm

needs to contract at an optimal resting length, the

mechanical factors play a paramount role in the

respiratory muscle dysfunction of COPD patients,

while this is not the case in the dysfunction of the
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lower limb muscles (Figure 1). Furthermore, both

weakness and atrophy of the lower limb muscles

(quadriceps) were also associated with a significantly

poorer prognosis and increased mortality in patients

with COPD8,9 (Figure 2). On the other hand, respira-

tory muscle dysfunction may also lead to hypercapnic

respiratory failure, exercise limitation, increased risk

for acute exacerbations, and even death in patients

with COPD.10 On this basis, the assessment of skele-

tal muscle dysfunction is of crucial importance and

should be included in the conventional clinical eva-

luation of patients with COPD.

With the aim to draw the medical and scientific

communities’ attention to the relevance and clinical

implications of muscle dysfunction, the current

review article focuses on the description of the mag-

nitude of the problem and its prevalence in COPD.

Moreover, the most significant biological mechan-

isms that have been shown to directly contribute to

COPD muscle dysfunction are also being reviewed

separately for the respiratory and the lower limb mus-

cles in the current review article, with a special

emphasis on epigenetic regulation of muscle mass and

function. Nonetheless, guidance on how to assess

muscle dysfunction in clinical settings is not

described herein, as all these aspects have been ade-

quately defined in previously published statements

and guidelines.11,12

Muscle dysfunction in COPD:
Definitions

The function of a muscle depends to a great extent

upon the physiological properties of its components,

especially the fibers. Their speed of contraction and

predominant metabolic profile, which determine their

resistance to fatigue, are the most relevant physiolo-

gical characteristics. Type I fibers are slow twitch, are

composed by myosin heavy chain (MyHC) type I,

have a predominantly oxidative metabolism, and are

very resistant to fatigue. Type IIx are fast-twitch

fibers, are composed by MyHC type IIx, have an

anaerobic metabolism, and are low fatigue resistant.

Type IIa fibers exhibit intermediate physiological and

metabolic profiles and are composed by MyHC type

IIa. In clinical settings, muscle function is evaluated

through the ‘‘in vivo’’ measurements of skeletal mus-

cle properties: (1) strength, defined as the ability of

the muscle to develop maximal force and (2) endur-

ance or the ability to sustain a submaximal force over

time. In COPD, muscle dysfunction is characterized

by a decline in either strength or endurance of the

affected muscles.7 While nutritional availability (gly-

cogen stored in the muscle) is the main contributor to

endurance, strength is determined by the size of the

muscle. Moreover, other factors such as capillary den-

sity, oxygen delivery, and the oxidative capacity of

the myofibers may also contribute to the outcome in

muscle performance of COPD patients.

Muscle weakness of the lower limb muscles, which

is frequent in COPD, is commonly defined as a

decline in the ability to generate force.13,14 In clinical

and experimental settings, the force of a muscle group

Figure 2. Schematic representation of the relevance of
skeletal muscle dysfunction and exercise intolerance as
factors that predict prognosis in patients with COPD.
COPD: chronic obstructive pulmonary disease.

Figure 1. Schematic representation of the most important
differences between respiratory and peripheral muscle
dysfunction in COPD patients. The mechanical factors,
mainly characterized by alterations in thorax geometry and
inspiratory overloads, play a paramount role in the venti-
latory muscle dysfunction of these patients. COPD: chronic
obstructive pulmonary disease.
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is typically quantified using a dynamometer, thus

reductions in muscle quadriceps force may help pre-

dict weakness.9,14 Additionally, prolonged and strong

contractions may lead to muscle fatigue, which

increases in direct proportions to the rate of nutri-

tional depletion. Interventions such as strength exer-

cise training and specific nutritional support

administered to patients with COPD improve their

loss of muscle force and susceptibility to fatigue.15

Prevalence of muscle dysfunction
in COPD

In COPD patients, impaired muscle function and mass

loss are common systemic manifestations. Respira-

tory and limb muscles are usually affected in these

patients, thus contributing to ventilatory constraints,

poor exercise tolerance, and reduced quality of life.16

As such, in a European-based study, it was estimated

that in one-third of the COPD patients, even at very

early stages of their disease, quadriceps muscle dys-

function was already an apparent manifestation,

which inversely correlated with body mass index, air-

flow obstruction, dyspnea, exercise capacity and dys-

pnea scores, but not with the airway obstruction.14 In

another investigation conducted on a cohort of 161

COPD patients who were evenly distributed from

Global Initiative for Chronic Obstructive Lung Dis-

ease stage I to stage IV, quadriceps strength and rectus

femoris cross-sectional area were also significantly

reduced (19–25%) compared to a population of age-

matched healthy controls.17 Peripheral muscle endur-

ance also impaired in COPD patients, even in those

with preserved physical activity and mild-to-

moderate airflow obstruction in another study.18 An

association between an early onset of muscle fatigue

and decreased endurance was demonstrated indepen-

dently of the airflow limitation or quadriceps muscle

weakness of the patients.18

The prevalence of respiratory and diaphragm mus-

cle dysfunction, although not fully elucidated in large

cohort studies, was also reported to be significant in

different cohorts of patients with advanced COPD

(20–30% decrease) compared to age-matched healthy

controls.19–23 Poor muscle mass and impaired limb

muscle dysfunction, as assessed by mid-thigh cross-

sectional area and quadriceps weakness, respectively,

were also shown to be strongly related to exercise

capacity and quality of life,16,24,25 to increase the uti-

lization of health-care resources,26 and to predict sur-

vival and mortality in patients with COPD.8,9

Peripheral and respiratory muscle
dysfunction in COPD

Lower limb muscle dysfunction

The peripheral muscles of patients with COPD

showed a greater susceptibility to fatigue.18,27–30

Interestingly, during normal walking, the gastrocne-

mius and tibialis anterior muscles were also shown to

be more prone to fatigue in COPD patients.31,32 As

abovementioned, strength and endurance properties

are impaired in the lower limb muscles of patients

with COPD. Although strength is not the most sensi-

tive measure to evaluate muscle function, it is a very

useful measurement in clinical settings due to its

accessibility, which enables the clinician to easily

diagnose skeletal muscle dysfunction in COPD.

Importantly, the outcome of measurements of muscle

strength varies widely depending on the type of tests

employed: 11,12 voluntary maneuvers, in which the

patient’s cooperation is of crucial importance, as

opposed to nonvoluntary maneuvers in which the

patient’s collaboration is irrelevant. Moreover, quad-

riceps muscle strength may also impair as a result of

exacerbations in COPD patients,33–36 which are

known to negatively influence muscle mass and exer-

cise tolerance even several weeks after hospital dis-

charge.33 Despite that the assessment of muscle

endurance may be more sensitive to the design of

tailored interventions in COPD patients, its use in

clinical settings is limited, probably as a result of a

lack of standardized protocols or reference values.

Respiratory muscle dysfunction

In COPD, despite that the respiratory muscles

undergo a positive adaptation (training-like effect)

that renders them more fatigue resistant,12,21,37,38

maximal inspiratory and expiratory pressures

(strength) and endurance of these muscles are fre-

quently reduced in the patients.19,21–23,37,39,40

Respiratory muscle dysfunction imposes ventilatory

constraints to the patients that may worsen the under-

lying respiratory failure frequently present in COPD

patients, especially in advanced stages. Furthermore,

respiratory muscle dysfunction constitutes an impor-

tant factor accounting for an increased risk of hospital

readmissions.10 In addition, acute exacerbations also

impair respiratory muscle function as they severely

affect whole-body muscle mass.33–36 Changes in lung

volume during exacerbations pose the diaphragm and

the rib cage in a mechanical disadvantage, which may
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further deteriorate the function of other respiratory

muscles such as the intercostal muscles.36

Etiological factors of muscle
dysfunction in COPD

Cigarette smoke, hypoxia, hypercapnia and acidosis,

metabolic alterations of several types, malnutrition,

genetics, systemic inflammation, aging, comorbid-

ities, concomitant treatments, exacerbations, and

inactivity are counted among the most relevant etio-

logical factors that contribute to muscle dysfunction

in COPD patients through the action of several biolo-

gical mechanisms.

Limb muscle dysfunction

As aforementioned, muscles from the lower limbs are

usually more severely affected than those of the upper

limbs and the respiratory muscles. In patients with

COPD, most of the studies have focused so far on the

analyses of the vastus lateralis of the quadriceps.

Whether the same findings could be observed in other

muscles of the lower limbs remains unknown. How-

ever, as the quadriceps is a major locomotor muscle

and is easily accessible, it has been chosen as the best

option for the studies aimed at exploring the mechan-

isms involved in the limb muscle dysfunction and

exercise intolerance of COPD patients. To date, sev-

eral etiologic factors leading to a deconditioned phe-

notype of the lower limb muscles in COPD have been

identified (Figure 3).

The most relevant contributing factors are the

following: cigarette smoke, genetics, hypoxia,

hypercapnia and acidosis, metabolic derangements

including vitamin D, and testosterone deficiencies,

drugs (especially systemic corticosteroids), other

comorbidities, exacerbations, systemic inflammation,

nutritional abnormalities, reduced physical activity,

and aging as highlighted in several reviews and state-

ments11,12,37 (Figure 3). Nonetheless, physical inac-

tivity,17 nutritional abnormalities,41 repeated

exacerbations,34–36,42 and corticosteroids36,43 are the

main contributors to muscle function and mass

impairment, especially in advanced COPD.

Respiratory muscle dysfunction

In COPD, since the respiratory muscles are chroni-

cally exposed to the inspiratory loads and must remain

active throughout the existence of the patients, they

are less severely affected than the lower limb muscles.

In the last years, respiratory muscles have been stud-

ied through the analyses of the costal diaphragm, with

very restricted access, and only via thoracotomy per-

formed for clinical reasons (mainly lung cancer and

lung volume reduction surgery).

In COPD patients, modifications in ventilatory

mechanics as a result of static pulmonary hyperinfla-

tion, which modifies thorax geometry and shortens

the diaphragm length, displace the muscle away from

its optimal length to generate the required forces.37

Additionally, their respiratory muscles need to over-

come the increased work of breathing resulting from

the greater elastic, resistive, and threshold inspiratory

loads imposed by airflow limitation.37 These factors,

which are inherent to the respiratory condition, mostly

contribute to ventilatory muscle dysfunction in COPD

(Figure 4). However, in these patients, the respiratory

muscles also undergo a positive adaptation (training-

like effect) that renders them, especially the

diaphragm, more fatigue resistant compared to dia-

phragm forces developed by healthy subjects when

exposed to identical lung volumes37,38 (Figure 4).

In addition, the same etiological factors that affect

the lower limb muscles, may also affect, to a different

extent, the respiratory muscles in COPD: cigarette

smoke, hypoxia, hypercapnia and acidosis, metabolic

derangements, malnutrition, genetics, systemic

inflammation, aging, comorbidities, concomitant

treatments, exacerbations, and reduced physical activ-

ity11,12,37 (Figure 4). Nevertheless, static hyperinfla-

tion, the number of exacerbations, nutritional

abnormalities, and aging are probably the most rele-

vant contributing factors to respiratory muscle

Figure 3. Schematic representation on how the identified
etiological factors (dark red panels) contribute to lower
limb muscle dysfunction in COPD through the action of
biological mechanisms (black panels) that negatively impact
muscle phenotype and function in the patients. COPD:
chronic obstructive pulmonary disease.
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dysfunction in COPD patients.12,21,37,41 Furthermore,

respiratory muscle dysfunction worsens in COPD

patients during exercise or exacerbations as a result

of dynamic hyperinflation.37

Molecular and cellular mechanisms in
COPD muscle dysfunction

The specific contribution of biological events and

pathways to both respiratory and limb muscle

dysfunction has been extensively discussed in differ-

ent comprehensive reports11,12,21,37,44 as well as in

more specific reviews that were mainly focused on

the discussion of structural abnormalities,45 muscle

remodeling,21 oxidative stress and muscle wasting,46

epigenetic regulation of muscle mass and func-

tion,47,48 autophagy,49 and metabolic derangements50

together with the influence of exercise training51 and

exacerbations.36 In the sections below, the contribu-

tion of the most relevant biological mechanisms to

both peripheral and respiratory muscle dysfunction

in COPD patients is being thoroughly described.

Lower limb muscles

In the lower limb muscles of COPD patients, several

molecular and cellular events mediate the effects of

the different etiological factors known to cause dys-

function of these muscles as well as modifications in

their phenotype. Studies that have demonstrated the

contribution of each biological event in the quadri-

ceps muscle dysfunction of COPD patients are sum-

marized below and in Figure 3.

Structural abnormalities. A fiber-type switch toward a

less fatigue resistant (phenotype from slow-twitch to

fast-twitch fibers) is a major feature in the vastus

lateralis of patients with advanced COPD.13,52,53

Furthermore, fast-twitch fibers are also of smaller size

in patients with advanced COPD and poor muscle

mass13 thus contributing to muscle weakness

(Figure 5). Additionally, factors such as aging,54 mal-

nutrition,55 and systemic corticosteroid treatment56

may worsen the fast-twitch fiber atrophy observed

in the patients. Besides, a reduction in the capillary

numbers and contacts57,58 that could eventually

impair oxygen delivery to the myofibers59–61 is

another contributing biological mechanism. Other

structural abnormalities such as muscle cell mem-

brane and sarcomere damage may also negatively

influence muscle function.13,45,62 In fact, greater levels

of sarcomere disruption were recently shown in the

vastus lateralis of patients with COPD cachexia63 (Fig-

ure 6). Mitochondrial derangements50 of several types

including decreased density as a result of fewer propor-

tions of slow-twitch fibers13,50,64 were also shown to

alter muscle function in COPD65–67 (Figure 3).

Redox balance. Oxidative stress is defined as the

imbalance between oxidants and antioxidants in favor

of the former. Increased levels of oxidative stress

have been consistently demonstrated in the vastus

Figure 4. Schematic representation on how the different
etiological factors (dark red panels) contribute to respira-
tory muscle dysfunction in COPD through the action of
several biological mechanisms (black panels) that modify
muscle phenotype and function in the patients. Several
etiological factors exert beneficial effects (training-like
effect, green panel) on muscle mass and performance
through the action of different biological mediators (adap-
tive muscle phenotype, right-hand side panels) that lead to
a certain adaptation of the inspiratory muscles in COPD.
These adaptive mechanisms partly counterbalance the
deleterious effects of other factors and biological
mechanisms (middle black panels). COPD: chronic
obstructive pulmonary disease.

Figure 5. Immunohistochemical staining using a specific
antibody of type II fibers (dark brown) in the vastus lateralis
of a COPD patient and a healthy control subject. Note that
type II fibers were of smaller size in the muscles of the
patients (for review see Puig-Vilanova et al., 2015). COPD:
chronic obstructive pulmonary disease.
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lateralis of patients with COPD by our group and

others.13,68–74 The most widely studied markers of

oxidative stress are the oxidation of proteins such as

protein carbonylation taking place within the skeletal

muscles of patients with COPD, for review see refer-

ences.75,76 Importantly, oxidative stress markers were

also shown to inversely correlate with several clinical

and physiological parameters such as exercise capac-

ity, body composition, and quadriceps strength of the

patients.13,69 Furthermore, an improvement in quad-

riceps muscle endurance was also seen in response to

decreased systemic oxidative stress levels in severe

COPD patients.72 A rise in levels of systemic oxida-

tive stress has also been shown in patients with severe

COPD,63,74 especially in those with muscle wasting,

which was partly reversed after exercise training.74

Although oxidative stress and inflammation have

been proposed to be potentially associated, evi-

dence shows that local inflammatory events are not

prominently expressed in muscles of COPD

patients,13,68,70,77 even in atrophying muscles or dur-

ing exacerbations.36,42 Therefore, local oxidative

stress and inflammation are not interrelated in COPD

muscles. The content and activity of antioxidant

enzymes, especially of mitochondrial superoxide dis-

mutase 2, were greater in the quadriceps of patients

with severe COPD than in the control subjects,

whereas no differences were observed in levels of

catalase enzyme.13,63,69

Chronic hypoxia induces a reduction in muscle

mass probably as a result of the interaction of several

molecular mediators such as inflammation,78 hypoxia

inducible factor-1 signaling pathway,79 oxidative

stress,73,80 and reduced oxidative enzyme capacity

and capillary numbers.81 Hypercapnia, which may

worsen during exacerbations, may also play a role

in COPD muscle dysfunction through acidosis as it

enhances ubiquitin–proteasome proteolytic system

activity82,83 and/or through a reduction in protein ana-

bolism82,84 (Figure 3).

Cigarette smoke may also contribute to limb mus-

cle dysfunction in COPD through several biological

mechanisms such as decreased type I fiber sizes and

proportions and reduced mitochondrial activity,

while concomitantly inducing a rise in oxidative

stress levels in healthy smokers and experimental

animal models of chronic exposure to cigarette

smoke70,85 (Figure 3).

Enhanced muscle proteolysis. Several markers of the

ubiquitin–proteasome pathway, especially atrogin-1

and total protein ubiquitination levels, have been con-

sistently increased in the vastus lateralis of patients

with severe COPD, characteristically in those with

muscle wasting and/or cachexia.13,33,63,86,87 More-

over, several redox signaling cellular pathways such

as nuclear factor and forkhead box (FoxO)1 and

FoxO3 were shown to mediate the loss of muscle

mass in COPD cachectic patients.13,63 Importantly,

levels of several specific muscle proteins such as crea-

tine kinase and MyHC were shown to be significantly

decreased in the vastus lateralis of patients with

severe COPD and muscle wasting.13,63 Moreover,

levels of carbonylation of those proteins were also

increased in the same muscles, suggesting that oxida-

tion may render those proteins more prone to degra-

dation13,63,76 (Figure 3).

Myostatin. Myostatin, which is a member of the trans-

forming growth factor-b superfamily, is almost exclu-

sively expressed in skeletal muscles and is a potent

negative regulator of muscle mass. Myostatin expres-

sion was increased in the vastus lateralis87,88 and dia-

phragm89 of severe COPD patients. It has also been

suggested that resistance training reduces myostatin

levels in the limb muscles of non-wasted COPD

patients,90,91 eventually contributing to enhanced

muscle mass in these patients. Nevertheless, in

another investigation,13 muscle protein levels of

myostatin did not significantly differ between severe

COPD patients and healthy controls (Figure 3).

Apoptosis. Severe COPD patients with normal weight

exhibited increased levels of terminal deoxynucleoti-

dyl transferase-mediated dUTP nick-end labeling

(TUNEL)-positive nuclei in their vastus lateralis com-

pared to control subjects.92 Importantly, in that

Figure 6. Ultrastructural images of sarcomerae in the
vastus lateralis of a COPD patient and a healthy control
subject. Note that sarcomerae were significantly more
disrupted in the muscles of the COPD (for review see Puig-
Vilanova et al., 2015). COPD: chronic obstructive pul-
monary disease.
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investigation, severe COPD patients with low body

mass index exhibited even much greater levels of

DNA fragmentation through the TUNEL assay in

their vastus lateralis compared to healthy controls and

severe COPD patients with normal weight, and those

levels inversely correlated with the patients’ exercise

capacity.92 In another investigation conducted by our

group,77 levels of TUNEL-positive nuclei were also

significantly greater in the vastus lateralis muscles of

COPD patients with normal body composition than in

control subjects. Figure 7 illustrates TUNEL posi-

tively stained nuclei in vastus lateralis of COPD

patients. In the same investigation,77 the vastus later-

alis muscles exhibited extremely few fibers positively

stained for active caspase-3 in both severe COPD

patients and control individuals. Also, the ratio of

cleaved caspase-3 to procaspase-3 was low in the limb

muscles of both patients and controls.77 These find-

ings are in complete agreement with those reported in

a previous study,93 in which no cleaved caspase-3

immunohistochemical localization was found in the

limb muscles of either COPD patients or control

subjects.

Ultrastructural evaluation of cells is the gold stan-

dard for the diagnosis of apoptosis as it confirms the

diagnosis made by other indirect methodologies

(immunohistochemical procedures on light micro-

scopy). Furthermore, early phases of apoptosis can

only be identified using electron microscopy, whereas

late phases of this phenomenon are seen on both light

and electron microscopy. However, electron micro-

scopy is not widely used for this purpose. Previously

we also reported data on the ultrastructural diagnosis

of apoptotic nuclei in both respiratory and limb mus-

cles of patients with severe COPD.77 The lower limb

muscles exhibited very low and similar levels of

either early or advanced ultrastructural nuclear apop-

tosis in both severe COPD patients and control

subjects.77 In Figure 8, examples of early and late

nuclear apoptosis are shown in vastus lateralis mus-

cles of a severe COPD patient.

Autophagy. Autophagy is the process whereby cellu-

lar components are degraded and recycled within the

cells. A rise in autophagy events has been demon-

strated in two recent studies, in which several mole-

cular markers of autophagy and the number of

autophagosomes were increased in the vastus later-

alis of patients with advanced COPD94,95 (Figures 3

and 9).

Figure 7. A representative example of TUNEL-positive
nuclei (dark brown staining, black arrow) together with
non-stained nuclei (blue, red arrow) in the vastus lateralis
of a COPD patient. COPD: chronic obstructive pulmonary
disease; TUNEL: terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling.

Figure 8. Representative electron micrographs of early
and late apoptotic nuclei as identified using electron
microscopy in the vastus lateralis of a COPD patient.
COPD: chronic obstructive pulmonary disease.

Figure 9. Representative electron micrographs of autop-
hagosomes (white arrows) as identified using electron
microscopy in the vastus lateralis of a COPD patient and a
healthy control subject. Note that the number of autop-
hagosomes was greater in the muscles of the patient (for
review see Puig-Vilanova et al., 2015). COPD: chronic
obstructive pulmonary disease.
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Epigenetic events. Epigenetic control of cells, defined

as the process whereby gene expression is regulated

by heritable mechanisms that do not affect DNA

sequence, has also emerged as a potential biological

mechanism that may regulate muscle function and

mass in COPD.96,97 The epigenetic modifications iden-

tified so far in cells are as follows: (1) DNA methyla-

tion, (2) histone acetylation, (3) histone methylation,

and (4) non-coding RNAs such as microRNAs

(Table 1). DNA methylation at the 5 position of

cytosine specifically reduces gene expression. Acety-

lation is a transient, enzymatically controlled biochem-

ical process and the commonest posttranslational

modification of histones. Acetylation, a process

mediated by histone acetyltransferases results in a

rather open chromatin structure that is transcriptionally

active, while deacetylation through the action of his-

tone deacetylases (HDAC) blocks transcription (Table

1). Additionally, methylation of histones may activate

or repress gene transcription depending on the proteins

recruited to the chromatin (Table 1).

MicroRNAs, encoded by eukaryotic nuclear DNA,

are non-coding single-stranded RNA molecules (18–

24 nucleotides) that function in the posttranscriptional

regulation of gene expression (Table 1). They exert

their action via base pairing with complementary

sequences in mRNA molecules that result in gene

silencing via translational repression or target degra-

dation (Table 1). MicroRNAs may have different

mRNA targets, and in a similar manner, a given

mRNA may also be targeted by multiple microRNAs.

MicroRNAs regulate many physiological cellular pro-

cesses and may play a significant role in the patho-

genesis of several lung diseases including COPD.98

Specifically, within the muscle fibers, muscle-

enriched microRNAs regulate several events includ-

ing muscle repair and myogenesis and adaptation to

environmental factors such as overloading and decon-

ditioning. For instance, miR-1 promotes muscle cell

differentiation and innervation, whereas miR-133

favors myoblast proliferation by repression of the

serum response factor, which inhibits myotube forma-

tion. Moreover, miR-206 also stimulates innervation

and myotube formation by targeting the p180 subunit

of DNA polymerase a which leads to DNA synthesis

inhibition and cell cycle withdrawal.99–101 Other

microRNAs such as miR-181, miR-27, and miR-

486, which exert their actions in several tissues, are

also abundantly expressed in muscles and may regu-

late skeletal muscle development and phenotype.47,48

In COPD patients with preserved body composi-

tion, a pioneering study97 demonstrated that miR-1

levels were reduced, while those of HDAC4 were

increased in their vastus lateralis. In another study,53

levels of the transcription factor Yin Yang 1, which

modifies histones, inversely correlated with the size

of slow- and fast-twitch fibers in the limb muscles of

COPD patients with normal body composition.

Furthermore, plasma levels of muscle-specific micro-

RNAs were also shown to be increased in patients

with severe COPD.96 Recently, in the vastus lateralis

of patients with mild COPD, miR-1 expression was

shown to increase, while also positively correlated

with both forced expiratory volume in 1 second and

quadriceps force.102 Furthermore, in another study,95

the expression of miR-1, miR-206, and miR-27a; lev-

els of lysine-acetylated proteins and histones; and

acetylated histone 3 were increased in the quadriceps

Table 1. Epigenetic modifications in cells.

Epigenetic
event DNA methylation Histone acetylation Histone methylation MicroRNAs

Addition of a methyl
group to 50 cytosine
before guanine in
the same chain
(CpG islands)

Acetylation: acetyl group
from acetyl-CoA
transferred to lysine
residues ) euchromatin
) favors transcription

Addition of methyl
groups to lysine
(�3) and arginine
(�2) residues )
may favor or block
transcription

Non-coding single-stranded
RNA molecules )
posttranscriptional
regulation of gene
expression

Deacetylation: reverses
acetylation )
heterochromatin )
blocks transcription

Base pairing with
complementary sequences
in mRNA molecules )
gene silencing: translational
repression or target
degradation

DNA, deoxyribonucleic acid; RNA, ribonucleic acid.
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of COPD patients, especially in those with muscle

weakness, while expression of HDAC3, HDAC4, and

sirtuin-1 were decreased. Collectively, these findings

suggest that several epigenetic events are differen-

tially expressed in the limb muscles of COPD

patients, probably as an attempt to counterbalance the

underlying mechanisms that alter muscle function and

mass (Figure 3).

Respiratory muscles

Several molecular and cellular events that are

involved in the pathophysiology of peripheral muscle

dysfunction in COPD patients also contribute to their

respiratory muscle dysfunction. The most widely

studied mechanisms are described below and sum-

marized in Figure 4.

Structural adaptations. Adaptive cellular events take

place in the respiratory muscles, especially the dia-

phragm of COPD patients. Such mechanisms exert

beneficial effects on the diaphragm fibers, rendering

them more resistant to fatigue, thus neutralizing the

deleterious effects of other mechanisms. The most

relevant adaptive phenotypic features identified so far

in the diaphragm of COPD patients are the following:

shorter sarcomere length,103 larger proportions of

slow-twitch fibers (Figure 10), greater myoglobin

content,20,104 increased capillary contacts per fiber,104

higher mitochondrial density and activity,103,105 and

enhanced aerobic enzyme capacity105,106 (Figure 4).

Furthermore, in COPD patients, similar adaptive cel-

lular events were also reported to take place in the

external107–109 and parasternal110 intercostal muscles,

in which a fast-to-slow transformation in both fiber-

type and MyHC proportions were consistently

observed. Furthermore, in patients with advanced

COPD, biological mechanisms similar to those

involved in the peripheral muscle dysfunction also

contribute to the pathophysiology of the dysfunction

of their respiratory muscles.12 Such mechanisms are

described below.

Structural abnormalities. Sarcomere disruption, as a fin-

gerprint of muscle injury, is common in the dia-

phragm of patients with severe COPD and was

significantly increased after a period of respiratory

loading.111 Moreover, contractile function of isolated

fibers was also impaired in the diaphragm of patients

with mild COPD.112 Alterations in structural titin

were also shown in the diaphragm of COPD patients

in another study.113 Nevertheless, other authors have

reported no alterations in the expression of costameric

proteins or muscle damage in the diaphragm of COPD

patients compared to the controls.114

Apoptosis. The levels of TUNEL-positive nuclei were

also shown to be increased in the diaphragm of COPD

patients as demonstrated in a previous investigation

from our group77 (Figure 4). Nonetheless, in the same

muscles, levels of early or advanced ultrastructural

nuclear apoptosis and caspase-3 were similar between

COPD patients and the control subjects.77 We con-

cluded that the rise in TUNEL-positive nuclei

detected in the diaphragm of the patients could rather

be the result of increased DNA repair activity than

apoptosis,77 as this event does not seem to occur in

COPD beyond the physiological levels detected in the

muscles of the control subjects. Figure 11 illustrates

Figure 10. Immunohistochemical staining using a specific
antibody of type I fibers (dark brown) in the diaphragm of a
COPD patient and a healthy control subject. COPD:
chronic obstructive pulmonary disease. Figure 11. A representative example of TUNEL-positive

nuclei (dark brown staining, black arrow) together with
non-stained nuclei (blue, red arrow) in the diaphragm of a
COPD patient. COPD: chronic obstructive pulmonary
disease; TUNEL: terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling.
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TUNEL-positively stained nuclei in diaphragm of

COPD patients.

Oxidative stress. Increased oxidative stress as measured

by protein carbonylation was seen in the diaphragm of

patients with severe COPD.19 Moreover, protein oxi-

dation levels inversely correlated with the degree of

the airway obstruction among the patients.19 In

another study,22 the most significantly carbonylated

proteins were identified in the diaphragm of patients

with COPD: actin, creatine kinase, and carbonic

anhydrase. Carbonylation levels of these proteins

were greater in the diaphragm of the patients than in

the controls.22 Importantly, creatine kinase activity

levels and MyHC protein content were significantly

lower in the diaphragm of COPD patients than in the

healthy subjects.22 These findings suggest that oxida-

tion may render the target proteins more susceptible

to be degraded, as also shown in another investiga-

tion,115 in which MyHC content also decreased in the

diaphragm of COPD patients. On the other hand, oxi-

dation of specific residues may also impair the activ-

ity of specific enzymes that play key roles in muscle

metabolism115 (Figure 4).

Enhanced proteolysis. As abovementioned oxidative

stress may be a major trigger to increased muscle

proteolysis in COPD.76 In a seminal study,115 several

markers of proteolysis were shown to be upregulated

in the diaphragm of patients with COPD. A substan-

tial rise in several markers such as 20S proteasome

activity, ubiquitin–proteasome ligases, and caspase-3

activity was observed in the diaphragm of patients

with mild-to-moderate COPD.115 In another relevant

study,89 several mechanisms of proteolysis such as the

ubiquitin–proteasome pathway and myostatin were

upregulated in the diaphragm of COPD patients,

while MyoD expression was reduced, suggesting that

these events may influence diaphragm remodeling in

COPD (Figure 4).

Epigenetic events. Abnormalities in the expression of

several epigenetic markers have been recently

reported.116 In this regard, muscle-specific micro-

RNA expression was downregulated, while that of

HDAC4 and myocyte enhancer factor 2C protein lev-

els were higher in the diaphragm of the COPD

patients.116 However, levels of DNA methylation lev-

els and muscle fiber types and sizes did not differ

between patients and controls.116 We concluded that

these epigenetic events act as biological adaptive

mechanisms to better overcome the continuous

inspiratory loads of the respiratory system in COPD

patients116 (Figure 4).

Other factors. In stable COPD, a fragile balance

between adaptive and deleterious biological mechan-

isms exists in the respiratory muscles. Nevertheless,

the predominance of factors such as exacerbations,

nutritional abnormalities, and aging may rapidly skew

the balance toward a rather negative phenotype of the

diaphragm, thus leading to ventilatory failure and

eventual death of the patients.21,36,37

Concluding remarks

Muscle dysfunction in COPD is a common systemic

manifestation that should be evaluated on routine

basis in clinical settings. Despite that muscle dysfunc-

tion with and without mass loss takes place in both

respiratory and limb muscle groups, the latter are usu-

ally more severely affected, with the resulting impli-

cations on the patients’ quality of life. Impairment of

muscle strength is the most relevant feature observed

in both diaphragm and quadriceps muscle dysfunction

in COPD. Most of the investigations have been con-

ducted on the basis of a reduction in force generation

by muscles of COPD patients. In the last two

decades, much progress has been achieved on the

cellular and molecular mechanisms that lead to

respiratory and peripheral muscle dysfunction and

wasting in patients with COPD, especially in those

with a more severe disease. Despite that ongoing

research will shed light into the potential contribu-

tion of additional mechanisms to COPD muscle dys-

function, current knowledge points toward the

involvement of a wide spectrum of cellular and

molecular events that are differentially expressed

in respiratory and limb muscles. Moreover, several

so-called systemic and local factors also play a para-

mount role in the development of respiratory and

peripheral muscle dysfunction in COPD patients.

In view of the latest discoveries, new avenues of

research should be designed in the near future to

specifically target cellular mechanisms and path-

ways that impair muscle mass and function in COPD

using pharmacological strategies and/or different

exercise training modalities.
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