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Use of predictive algorithms in-home
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Abstract
Major reported factors associated with the limited effectiveness of home telemonitoring interventions in
chronic respiratory conditions include the lack of useful early predictors, poor patient compliance and the
poor performance of conventional algorithms for detecting deteriorations. This article provides a
systematic review of existing algorithms and the factors associated with their performance in detecting
exacerbations and supporting clinical decisions in patients with chronic obstructive pulmonary disease
(COPD) or asthma. An electronic literature search in Medline, Scopus, Web of Science and Cochrane
library was conducted to identify relevant articles published between 2005 and July 2015. A total of
20 studies (16 COPD, 4 asthma) that included research about the use of algorithms in telemonitoring
interventions in asthma and COPD were selected. Differences on the applied definition of exacerbation,
telemonitoring duration, acquired physiological signals and symptoms, type of technology deployed and
algorithms used were found. Predictive models with good clinically reliability have yet to be defined, and
are an important goal for the future development of telehealth in chronic respiratory conditions. New
predictive models incorporating both symptoms and physiological signals are being tested in
telemonitoring interventions with positive outcomes. However, the underpinning algorithms behind
these models need be validated in larger samples of patients, for longer periods of time and with well-
established protocols. In addition, further research is needed to identify novel predictors that enable the
early detection of deteriorations, especially in COPD. Only then will telemonitoring achieve the aim of
preventing hospital admissions, contributing to the reduction of health resource utilization and improving
the quality of life of patients.
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Introduction

Asthma and chronic obstructive pulmonary disease

(COPD) have attracted research interest as a major

public health problem of increasing concern to health-

care systems worldwide because of high prevalence1

and rising socioeconomic burden.2,3

Reducing the impact of exacerbations through the

early recognition of symptoms and prompt treatment

may reduce the risk of hospitalization, improve
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health-related quality of life (HRQoL) and control the

burden of COPD.4 In asthma, self-management

involving prompt intervention in line with a persona-

lized asthma action plan reduces acute exacerba-

tions.5,6 Education, self-monitoring and regular

review are recommended to improve outcomes and

prevent exacerbations in both conditions.7,8 New

information and communication technologies and

telemonitoring can potentially support patient self-

management.

Home telemonitoring encompasses the non-

invasive exchange of information using electronic

devices and telecommunication technologies and

allows clinical data to be collected remotely on a

routine and regular basis. Telehealth-enabled chronic

care management services are promoted as being

effective in supporting people with long-term condi-

tions at home,9 and the telemonitoring of patients with

chronic respiratory conditions has become a major

research field of the respiratory community because

of its potential to promote self-management, improve

control, increase quality of life and prevent admissions.

Some authors have argued that telemonitoring is a

promising alternative – or adjunct – to provision of

traditional healthcare services both in asthma and

COPD.10 However, although some studies have

shown that telemonitoring may improve some clin-

ical outcomes and reduce healthcare costs,11,12 the

effects of telehealth interventions on emergency

department attendance, hospital admissions, dura-

tion of admissions, HRQoL, costs and mortality

remain less certain.10,13–16

Major reported factors associated with the apparent

lack of effectiveness of telemonitoring in COPD and

asthma include the dearth of useful early predictors of

deteriorations using a telemonitoring approach,17

poor patient compliance with telemonitoring tasks18,19

and the poor performance of conventional algorithms

(typically derived from studies of paper-based symp-

tom diaries20), for detecting exacerbations.21 Among

other factors described in the telehealth literature are

poor integration into routine healthcare and into the

day-to-day lives of patient.14,22,23 Developing accu-

rate predictive algorithms with demonstrable clinical

reliability is a priority for the future consolidation

of telemonitoring of chronic respiratory diseases.13

Home telemonitoring enables the collection of

large data sets at the individual level. The applica-

tion of predictive analytics to derive effective pre-

ventive algorithms using these data sets and data

available from existing electronic medical records

(including data on antibiotic/steroid use and hospital

admission) may improve outcomes, enhance disease

management and patients’ experiences and increase

effectiveness and cost-efficiency of telemonitor-

ing.24 In this context, recent advances in data mining

and machine learning methods offer the opportunity

to combine prior knowledge of the clinical context

with telemonitoring data sets to reveal predictive

patterns.25

Given the current lack of an existing systematic

synthesis of data in this area, this manuscript aims

to provide a thorough review of the algorithms used

for detecting exacerbations and supporting clinical

decision in patients with respiratory conditions, (more

specifically in COPD and asthma) that have been

reported in home telemonitoring studies. The study

looks at significant service-related factors associated

with the performance of home monitoring algorithms

such as the technology deployed, data collection rate,

system interoperability, the agreed exacerbation def-

inition, trial factors such as sample size and study

duration, and the machine learning techniques used

in the reviewed studies.

Theoretical background

This section includes a brief overview of the fields of

predictive analytics and machine learning and their

application to the healthcare context.

Predictive analytics in healthcare

Healthcare system use, clinical trials and real-time

telemonitoring systems are providing data sets larger

than are manageable by conventional management

tools.26 Data science is an emerging discipline that

combines and draws connections between the fields

of statistics and information and computer science,

which can support the management of these complex

and large data sets. In the prediction of health out-

comes, conventional statistical analysis is usually

applied by calculating scores for risk stratification.

Generally, the underlying belief is that a small num-

ber of important variables exist on which the model

can rely. However, these variables typically interact

with each other in a concealed way which means that

often they are not retained in the predictive model.27

Predictive analytics, a subset of data science, is based

on inductive inference rather than classical statistics

and is well suited to the analysis of high-dimensional

data sets and to the automated knowledge discovery

process.28
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Predictive analytics refers to the systematic use of

statistical or machine learning methods to make pre-

dictions and support decision-making.29 It uses com-

putational techniques rooted in several domains

including statistics, database management, artificial

intelligence, machine learning, pattern recognition

and data visualization. Currently, predictive analytics

is being applied in many fields such as public safety30

and security,31 cybersecurity32 and social media.33 In

healthcare, health analytics offers methods that can

contribute to the potential improvement of patient

care by supporting and enhancing medical decision-

making.25

Within predictive analytics, modelling takes data

with a known variable of interest or target variable

and a series of predictor values or features. A model

that relates the target variable and the features is then

developed. Therefore, the two basic components

involved in predictive analytics are (a) the data that

underlie the model and (b) the set of mathematical

techniques that are applied to the data to draw infer-

ence. In telehealthcare, clinical prediction models

usually manage data that include patient, disease and

environmental characteristics as well as treatment

information to predict a diagnostic or prognostic

outcome.

Machine learning. Machine learning is the crucial

methodology in predictive analytics. Conventional

statistical analysis focuses on explaining data and

relies on an expert (i.e. human) to formulate and dis-

cover cause–effect relationships, driven by a set of

predefined assumptions. Machine learning is more

data-focused and orientated to generating hypotheses

and building predictive models using algorithms.34

Through machine learning, a computer is pro-

grammed to reveal hidden relationships that explain

or predict a particular outcome. The resulting predic-

tive model may be improved over time with increased

number of cases.

Machine learning works by (a) defining goals,

(b) exploring data and (c) training, refining and vali-

dating models. Supervised, unsupervised and comple-

mentary algorithms can be used in the process.

Supervised learning includes two categories of algo-

rithms. If the output consists of one or more contin-

uous variables, regression algorithms are used.

Classification algorithms are applied for categorical

response values.35 In the case of telemonitoring and

early detection of patients’ deterioration, supervised

learning (classification algorithms) can be used to

model a health-related outcome (e.g. alarm state

because of exacerbation of respiratory symptoms)

using a collection of a priori known inputs and outputs

(training data) and exploring interactions to produce

an inferred function (classifier) that can predict a

response (output) given a valid set of predictor values.

Common classification algorithms for supervised

learning in the healthcare field include artificial

neural networks,36 decision trees,37 random forests,38

Bayesian networks,39 k-nearest neighbors,40 support

vector machines,41 linear discriminant analysis,42 k-

means clustering43 and logistic regression.44

There are three stages involved in machine learn-

ing: training, validation and testing of the algorithm.

In practice, machine learning algorithms are trained

by estimation of unknown internal parameters using a

trial/study data set in which category labels are manu-

ally assigned to predictors (e.g. defined exacerba-

tions). The model then needs to be validated and

tested to quantify its performance. Experimental vali-

dation using an external data set is the best method of

validating a model and ensuring generalizability.

However, in telehealthcare interventions, to acquire

further samples is costly and the amount of manually

labelled data available is small. In this scenario, dif-

ferent strategies can be followed for internally evalu-

ating the model. When large data sets are available,

data may be randomly divided into three parts: train-

ing, testing and validation sets. The training set is

used to build the model via a learning algorithm and

to identify discriminating features of the predictor

variables. Occasionally, different models can be com-

bined to achieve results that outperform any of the

individual models. This is known as an ensemble of

classifiers.45 The validation set is used to assess how

well the model perform against real data, to ensure

stability and, in some cases, to fine-tune the model.

The test set is used to assess the prediction error of the

final model. The splitting of available data into two

disjoint sets (training and test set) is also a widespread

practice. In data-poor situations, when disjoint sets

cannot be created, resampling methods such as

cross-validation and bootstrapping may be used for

internal validity.46

Methodology

Search strategy, eligibility criteria and study
selection

We undertook a systematic review, reported accord-

ing to Preferred Reporting Items for Systematic
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Reviews and Meta-Analyses standards47 with

searches conducted in Medline, Scopus, Web of

Science and Cochrane library in July 2015. Search

terms were based on a combination of the following

keywords: [telemonitoring OR telecare OR telehealth

OR telehomecare OR home monitoring] AND [COPD

OR chronic obstructive pulmonary disease OR

asthma OR respiratory diseases]. Additional searches

were performed in the references cited in the finally

selected articles to find relevant additional studies.

The inclusion criteria were as follows: (1) the study

involved home telemonitoring of COPD or asthma

and described the algorithms used to detect episodes,

(2) the study presented results on the performance of

algorithms for the automatic prediction and/or detec-

tion of respiratory exacerbations, and (3) the article

was written in English and published in peer-reviewed

journals from 2005. This date was chosen according

to the findings of a recent systematic review that

reported the majority of the articles that described

home telemonitoring interventions were published

from 2010 to the present, suggesting that this is a

relatively new field in respiratory research.48

Some small pilot and feasibility studies were

included because the expected outcomes were directly

related to the design and implementation of algo-

rithms for the early detection of respiratory exacerba-

tions. Conference, posters abstracts and general

reviews were not considered. Publications that

focused on settings or conditions other than home

telemonitoring in COPD and asthma were excluded.

Data extraction and quality assessment

Two authors (DS and MAF) extracted the data from

the selected studies and a third author (AL) checked

for inconsistencies. The following data were extracted

and are summarized in three tables. Table 1 reports

the first author’s last name, year of publication, coun-

try where the study was conducted, type of patients

(e.g. disease) to which telemonitoring was applied,

duration, study design, number of subjects that com-

pleted the telemonitoring study, admissions and/or

exacerbations in the telemonitoring group and the

exacerbation criteria applied. Table 2 summarizes the

specification of clinical and physiological parameters

collected in the telemonitoring (e.g. symptoms and

physiological variables), the features and algorithms

used for triggering automatic alerts and the persona-

lization strategies. Table 3 describes the technology

deployed during the study, provides details about data

transmission, patients’ compliance with remote mon-

itoring tasks and study outcomes.

The quality of included studies was independently

evaluated by two reviewers using a modified ver-

sion49 of the tool developed by Hailey et al.50 Articles

were rated from A (high quality and high degree of

confidence in the study findings) to E (poor quality

and unacceptable uncertainty in the study findings).

Disagreements were resolved by consensus.

Because of the diverse outcome measurements and

the heterogeneous nature of data collected and clinical

diversity of the studies, a meta-analysis was not per-

formed; instead we used a narrative synthesis.

Results

Study selection

Totally, 407 articles were identified with the search

strategy. After removing duplicates and review arti-

cles, 189 articles were retained. Two researchers

screened title, abstract and keywords (DSM and

MAF) to determine eligibility for this review. These

potentially relevant articles were examined and 32

articles with potential significance for this study were

selected and full text was retrieved. The bibliography

of each manuscript was screened and four additional

relevant studies were identified. Full-text articles

were assessed for eligibility, and finally, 20 were

included. The majority were from European coun-

tries, with two from United States and one each from

Canada and Australia.

Study characteristics and quality assessment

Study characteristics are presented in Table 1. Six-

teen studies focused on COPD13,51–65 and four66–69

studies involved patients with asthma. Nine of the

studies were controlled trials, six were prospective

cohort studies, four were pilot/feasibility studies and

one was an uncontrolled before and after studies.

The number of telemonitored patients that com-

pleted the studies ranged from 5 to 169. Two studies

used the same data set.59–63

With respect to the quality assessment, 11 studies

were rated A (high quality), 7 were rated B (good

quality) and 2 were rated D (poor to fair quality).

Home telemonitoring duration, exacerbation
criteria and admissions

Duration of the telemonitoring period ranged from 3

to 15 months (Table 1). Ten studies had a duration
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greater than 6 months, five studies had a duration of

6 months and five studies had a duration shorter than

6 months.

An ‘event-based’ definition of an exacerbation,70

including self-administration of medication or

unscheduled visits to emergency units and/or admis-

sions, was used in nine studies (n ¼ 6 in COPD and

n ¼ 3 in asthma studies). Symptom-based definitions

of exacerbation (e.g. Anthonisen criteria71) were used

in seven COPD studies. Two studies did not detail the

criteria used and the remaining two studies explored

different definitions of exacerbation.

The following symptom questionnaires were used

in the studies: Clinical COPD Questionnaire (CCQ),72

exacerbations of chronic pulmonary disease Tool

(EXACT)- patient-reported outcome (PRO),73 St

Georges Respiratory Questionnaire (SGRQ),74 Pae-

diatric Asthma Quality of Life Questionnaire

(PAQLQ),75 Asthma Control Questionnaire (ACQ)76

along with a variety of ad-hoc questionnaires for

COPD and asthma.

The number of admissions in each study caused by

worsening in respiratory symptoms ranged from 1 to

148. The maximum number of recorded exacerba-

tions during a study was 191 for a telemonitored

group of 49 subjects. The highest average number

of exacerbations was 9 per patient.

Factors that influence algorithms’ performance

Clinical data, sensors and devices. Tables 2 and 3 present

information about the telemonitoring system

deployed during the study period. Clinical telemoni-

tored data consisted of symptoms collected using

electronic questionnaires (n ¼ 3), physiological

measurements (n¼ 4) or a combination of symptoms

and physiological measurements (n ¼ 13). The data

acquisition process was similar in all studies. Typi-

cally, symptoms were reported using electronic dia-

ries completed via the telemonitoring device. The

physiological parameters were collected via various

peripherals and transmitted by telemonitoring sys-

tem. All of asthma studies recorded lung function

(peak exploratory flow (PEF) in two cases and

forced expiratory volume in one second (FEV1) in

three studies), as well as symptoms. A wider range of

telemonitored physiological variables were recorded

in COPD: lung function using FEV1 (n ¼ 6), peak-

flow (n¼ 1) and forced vital capacity (FVC) (n¼ 1),

oximetry (n ¼ 9), heart rate (n ¼ 7), weight (n ¼ 2),

respiratory rate (n ¼ 2), physical activity (n ¼ 3),

blood pressure (n¼ 3), body temperature (n¼ 2) and

lung sounds (n ¼ 2).

Data were recorded at least on a daily basis in all

studies. More specifically, data were gathered more

than once per day (n ¼ 1), with adjustable frequency

(n¼ 2), or recorded daily although transmitted twice a

week (n ¼ 1). Patient collaboration was always

required during data acquisition excepting in one

study in COPD where a wristband recorded heart rate,

physical activity, temperature and galvanic skin

response and transmitted the physiological informa-

tion several times per hour without requiring patient

intervention.

Feature extraction, personalization and model validation.
There was limited description of how the collected

data were processed. Mean (n ¼ 4), standard devia-

tion, the percentage of change of the parameter from

the distribution mean and the standard score or z-score

of parameters were among the used features (n ¼ 2).

Two studies applied statistical methods to select pre-

dictive features. The heuristic ‘SEPCOR’ algorithm

that is based on the variability measure of each fea-

ture,77 and the minimum description length algorithm

were each used in one study.

In the studies that reported predictive analytic

models, personalization of the algorithm was gen-

erally discussed as a future improvement (n ¼ 3).

Personalized predictions by entering patient-specific

data were implemented in two studies. Model vali-

dation was performed through different approaches:

holdout validation (n ¼ 2), 10-fold cross valid-

ation (n ¼ 2), leave-one-episode-out cross valid-

ation (n ¼ 1) and leave-one-subject-out cross

validation (n ¼ 1).

Algorithms for automatic detection of health
deterioration

Different strategies were followed to detect early

exacerbations of respiratory symptoms. In the sim-

plest approach, the decision support consisted of a

basic decision rule based on assigning threshold val-

ues to the collected parameters (n¼ 12). This resulted

in an alert when scores crossed the predefined thresh-

old indicating deterioration in the patient’s condition.

In the remaining studies, the challenge of early detec-

tion of exacerbations was addressed using machine

learning techniques (n ¼ 8). More specifically, naı̈ve

Bayesian classifiers (n ¼ 1), support vector machines

(n ¼ 1), probabilistic neural networks (n ¼ 1), a
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Bayesian network model (n ¼ 1) and k-NN (n ¼ 1)

were among the techniques utilized. In addition,

classification and regression trees (n ¼ 1), multi-

level logistic regression (n ¼ 1), linear discrimi-

nant analysis (n ¼ 1) and clustering techniques

like k-means clustering (n ¼ 1) were alternatively

implemented.

In some studies, predictions were personalized by

entering patient-specific data or by modelling indi-

vidual characteristics. In the case of a decision rule

based on score thresholds, an individual baseline was

established according to different criteria (n ¼ 9). In

asthma, a non-personalized approach that used a

fixed common threshold of 80% of FEV1 for all

patients was also reported (n ¼ 1). Recognition of

changes in previously defined patterns of major and

minor respiratory symptoms was also implemented

(n ¼ 2).

When used, the baseline was defined in various

ways: as an exacerbation-free period of 14 days

(n ¼ 1), at the beginning of the study (n ¼ 1), recal-

culated every 4 weeks unless an exacerbation

occurred (n ¼ 1), as the average of the last 10 days

of the treatment optimization period (n ¼ 1), using 5

days prior to exacerbation (n ¼ 1), defined as the

scoring of a given day (n ¼ 1) or calculated as 95th

centile of the probability density function (n ¼ 1).

Results in terms of system performance were not

always reported. In COPD, when reported, accu-

racy in detecting exacerbations ranged from 40%
to 94%, sensitivity from 70% to 80% and specifi-

city from 61% to 95%. In asthma, only one study

reported accuracy (52%), whilst achieved sensitiv-

ity ranged from 65% to 84% and specificity from

77% to 95%.

Discussion

This systematic literature review provides a descrip-

tion of the algorithms used in home telemonitoring

interventions in COPD and asthma for supporting

clinical decision and summarizes the findings related

to factors associated with the performance of home

monitoring algorithms. Reviewed studies were

heterogeneous in terms of their definition of exacer-

bation, telemonitoring duration, telemonitored mea-

surements, type of technology deployed and

algorithms used. In asthma, the home telemonitoring

comprised symptoms and lung function (PEF and

FEV1): in COPD a much wider range of physiological

measures were used.

Home telemonitoring duration, exacerbation
criteria and admissions

A common limitation in the selected studies was the

examination of a relatively small group of patients

who presented a high rate of exacerbations. Winter

periods were extensively selected for trials because

exacerbations are more likely than in other sea-

sons.51 Although this may have enabled recruit-

ment of ‘at-risk’ populations it may have affected

generalizability of results. Randomized controlled

trials with a larger sample of patients over periods

longer than 6 months might improve the robustness

of algorithms and the generalizability of their

findings.62,82

The lack of consensus on a definition of an exacer-

bation83 and unreported episodes that are poorly

labelled in data sets 84 may adversely affect algo-

rithms’ performance. Identifying an exacerbation epi-

sode is dependent on establishing a link between the

characteristics being measured and exacerbations.

Asthma attacks are relatively clearly defined; in

COPD the absence of a gold standard definition

makes identifying exacerbations difficult. Of the

questionnaires CCQ, PAQLQ, ACQ and SQRG

widely used in the reviewed studies, only EXACT-

PRO was specifically designed and validated for

detecting COPD exacerbations. Finally, in most of

studies patients were given self-management advise

encouraging them to intervene, usually at quite an

early stage, if parameters strayed outside of expected.

This may have influenced some outcomes (e.g. hos-

pital admission and length of exacerbation) possibly

blunting the relationship between the original predic-

tive features and outcomes.

Factors that influence algorithms’ performance

Clinical data, sensors and devices. The combination of

symptoms and physiological measurements was the

most common approach in the selected works

(n ¼ 13). All the asthma studies utilized daily read-

ings, though one only transmitted data twice weekly.

In COPD, physiological measurements have not

proved to be able to predict deteriorations, either

because they change late in the time course of

exacerbation, they cannot be measured reliably or

because therapeutic interventions during the experi-

ment alter the outcomes hindering the accuracy of

algorithms.17 For this reason all studies used a daily

data collection (only one study collected data daily

but stored data in an internal memory of the
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respiratory monitor). Whilst the 7-day recall scores

and the daily diary scores have been found to be

equivalent in detecting changes over time of the

impact of COPD symptoms, only daily data seem

to be suitable if the outcome of interest is detecting

the onset of exacerbations.85 One study used a com-

promise solution,56 whereby the patient with a low

risk of exacerbation monitored on a weekly basis and

when risk increased according to the predictive

model, reporting tasks could be scheduled daily to

ensure timely detection.

Since learning algorithms and deployed predictive

models rely on timely reporting of accurate data, good

patient compliance with reporting tasks is needed.

Perceived ease of use of home telehealth devices is

a significant predictor of compliance.86 Systems that

offer a unified interface with contextual data on

smartphones and provide interactive user feedback

and self-adaptive sensor polling could be a solution

to alleviate the patient burden of reporting tasks and

optimize the quality of collected data.87 One study,

which used a wearable sensor that automatically

transmitted heart rate, temperature and activity levels

five times an hour, achieved average reporting rates of

60% though the reason for 40% loss of data was due to

patients not wearing the device or technical failure is

not reported.58

Features extraction, personalization and model validation.
Although feature extraction can help to build derived

values that enhance the subsequent learning and gen-

eralization steps of algorithms, these techniques were

seldom implemented in the selected studies. Addi-

tionally, personalization of predictive models that

used machine learning techniques was only imple-

mented in a single study.56

With respect to the procedure to estimate the pre-

diction error in studies that applied machine learning

methods, different approaches were followed in six

studies. None applied external validity and a number

of internal validity methods based on holdout and

cross validation techniques were reported. Holdout

approaches work well in large data sets, but can give

inaccurate performance estimations because the

results are highly dependent on how the training and

test sets are chosen.88 Cross validation and boot-

strapping can help to overcome this challenge, but

the latter technique was not used in the reviewed

works. Cross validation was used in different ways

in four studies. It is advisable that none of the same

person’s measures are in the training set and in the

test set. Leave-one-subject-out cross-validation88,89

can allow for subject-to-subject variation,88 but was

not carried out for any of the machine learning

experiments.

Algorithms for automatic detection of health
deterioration and service implications

The evidence that telemonitoring can enhance out-

comes and reduce costs remains unclear,10 in part

because of the limited performance of the predictive

models used.13,14,20 Conventional threshold-based

algorithms, adopted in the majority of reviewed stud-

ies (n ¼ 12), show poor performance in early detect-

ing respiratory exacerbations or identifying severity

and duration in COPD,13,53 with the best reported

accuracy being 73% of exacerbations detected.52; best

sensitivity/specificity 66%/93%55 24 h before hospi-

talization. COPD studies generally used symptoms

scores occasionally in association with FEV1, arterial

oxygen saturation (SpO2), heart and breathing rate,

but there was no consistency between studies in terms

of the threshold used or how the individual patient’s

baseline was established/calculated. In asthma, only

one study using a threshold-based algorithm reported

performance as a sensitivity of 65% and a specificity

of 95%.68

If a sensitivity level over 70% is considered accep-

table,54 the performance of current threshold-based

algorithms may not be adequate for the real-time

detection of events after experimental validation. As

an alternative, the data-driven (n¼ 7) and knowledge-

based (n ¼ 1) approaches used in some of the

reviewed studies provided encouraging results. With

a purely data-driven approach, one of the studies

used a probabilistic graphical model that incorporated

clinical knowledge firstly defined by clinicians

(based on their experience and knowledge) and later

fine-tuned by experimental data. The transparency of

knowledge-based models allows the system structure

and inference to be understood by clinicians in con-

trast with black box approaches like data-driven

models.90

However, the use of semantic mapping between

gathered remote telemonitoring data and existing

patient-specific data and models to complement the

predictive model using ontologies91 and stan-

dards92,93 was not found in the literature included in

this review. Furthermore, the evaluation of strategies

for connecting different predictive personalized mod-

els was not considered in the selected studies. Such
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‘ensemble modelling’ could offer a compromise

between clinical comprehension and statistical good-

ness of fit in order to improve the quality and robust-

ness of the whole system.94

Integration of telemonitoring services with the

electronic healthcare systems used routinely by

healthcare professionals was not described in any of

the studies. Instead, an electronic health record was

designed for the specific purpose of each trial. This

lack of integration with the existing health record

systems does not enable intelligent algorithms to

interpret data from multiple sources.95 In this context,

novel systems96 that automatically data-mine inpati-

ent decision support from electronic medical records

and that are predictive of real practice patterns and

clinical outcomes are being evaluated with promising

results.97

Study limitations

The search was undertaken by a team with extensive

experience of home telemonitoring studies and pre-

dictive analytics and using multiple databases.

Despite this, the present work has limitations. Due

to the heterogeneity of the data, a formal meta-

analysis was not possible. The literature search was

comprehensive but we may have missed home tele-

monitoring interventions including asthma or COPD

but not specifically indexed as such, or because they

were not written in English. A main limitation relates

to the heterogeneous interventions, which makes

comparisons hard and conclusions difficult to draw.

Furthermore, the number of studies is insufficient to

measure the potential of novel predictive models.

Conclusions

Our review of the algorithms used in home telemoni-

toring interventions in COPD and asthma suggests

that the development of predictive models with clini-

cally useful levels of accuracy, sensitivity and speci-

ficity has not yet been achieved.

A range of physiological measurements, consensus

in the definition of exacerbations, achievement of

high-compliance rates, the development and persona-

lization of predictive models using machine learning

techniques and the strategic importance of interoper-

ability of telemonitoring systems with routine health-

care record systems have been discussed in this work

as key factors that influence – or potentially could

influence – the performance of systems for the remote

monitoring of chronic respiratory patients.

New predictive models considering symptoms and

physiological measures are being tested in pilot stud-

ies with positive outcomes. However, the algorithms

that underpin these models have to be validated in

large samples of patients, for longer periods of time

and with well-established protocols. Further research

is needed to identify new features associated with

symptoms and physiological signals that enable the

early detection of deteriorations, especially in COPD.

Only then will telemonitoring achieve the aim of pre-

venting hospital admissions, contributing to the

reduction of health resource utilization and improving

quality of life of patients.
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