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Abstract

Introduction: Smoking is the number one modifiable environmental risk factor for chronic obstruc-
tive pulmonary disease (COPD). Clinical, epidemiological and increasingly “omics” studies assess
or adjust for current smoking status using only self-report, which may be inaccurate. Objective
measures such as exhaled carbon monoxide (eCO) may also be problematic owing to limitations
in the measurements and the relatively short half life of the molecule. In this study, we determined
the impact of different case definitions of current cigarette smoking on gene expression in periph-
eral blood of patients with COPD.

Methods: Peripheral blood gene expression from 573 former- and current-smokers with COPD in
the ECLIPSE study was used to find genes whose expression was associated with smoking status.
Current smoking was defined using self-report, eCO concentrations, or both. Linear regression
was used to determine the association of current smoking status with gene expression adjusting
for age, sex and propensity score. Pathway enrichment analyses were performed on genes with
P<.001.

Result: Using self-report or eCO, only two genes were differentially expressed between current
and ex-smokers, with no enrichment in biological processes. When current smoking was defined
using both eCO and self-report, four genes were differentially expressed (LRRN3, PID1, FUCAT1,
GPR15) with enrichment in 40 biological pathways related to metabolic processes, response to
hypoxia and hormonal stimulus. Additionally, the combined definition provided better distribu-
tions of test statistics for differential gene expression.

Conclusion: A combined phenotype of eCO and self report allows for better discovery of genes and
pathways related to current smoking.
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Implications: Studies relying only on self report of smoking status to assess or adjust for the
impact of smoking may not fully capture its effect and will lead to residual confounding of results.

Introduction

The smoking epidemic remains one of the biggest public health
threats in modern history.! With the current estimates of 50% of
young men and 10% of young women becoming smokers and a
smaller percentage quitting in many developing countries, tobacco-
attributable deaths will rise from about 6 million a year currently
to more than 10 million globally by 2030.>* Smoking is the prin-
cipal modifiable environmental risk factor for chronic obstructive
pulmonary disease (COPD), ischemic heart disease, and lung cancer.®
COPD, for instance, affects 300 million people and is the third lead-
ing cause of death worldwide.® In Canada, COPD is the number one
cause of hospital admissions, accounting for 80 000 admissions per
year.”

Self-reported smoking status is widely used in epidemiologi-
cal, interventional, genetic and genomic studies as a covariate to
“control” for the harmful effects of tobacco exposure. However,
self-report is subject to reporting bias and has been shown to under-
estimate smoking prevalence and intensity.>’ Objective biochemi-
cal measures for smoking status include exhaled carbon monoxide
(eCO) and cotinine levels in serum, urine or saliva. Measuring eCO
is attractive because it is relatively inexpensive, noninvasive and the
measurements are well-standardized and can accurately identify
recent smokers.'%!!

Many blood gene expression profiling studies have been
published for COPD.'>' Smoking is an important driver and
confounder of these studies. The studies typically compare the
genome-wide expression profiles between COPD cases and
smoking controls, and include self-reported smoking status and/
or pack-years as covariates in the analysis. Using this approach,
pathway analyses of differentially expressed genes have revealed
enrichment in diverse processes including apoptosis, cell growth,
cellular defense response and inflammatory response,'? as well as
sphingolipid (ceramide) metabolism,' and cancer.’® However, the
differences in peripheral blood gene expression profiles between
current and former smokers in individuals with COPD are not
clearly understood. The objectives of the current study are to (1)
unravel the molecular signature in blood between current and for-
mer smokers with COPD and (2) examine the impact of differen-
tial phenotyping of smoking status using subjective and objective
measures on gene expression.

Materials and Methods

Study Subjects

The study population was a subset of the parent ECLIPSE (Evaluation
of COPD Longitudinally to Identify Predictive Surrogate Endpoints)
study.’® ECLIPSE was a 3-year noninterventional, multicentre, lon-
gitudinal prospective study. The ECLIPSE study was approved
by the relevant ethics review boards at each of the participating
centers. ECLIPSE included 2164 COPD patients aged 40-75 years
(smoking history 210 pack-years with a post-bronchodilator FEV./
FVC < 0.70 and FEV, < 80% predicted) and 337 smokers and 245
nonsmokers who acted as control subjects (FEV /FVC > 0.70 and
FEV, > 90% predicted). The inclusion criteria included individu-
als with >10 pack-years of smoking. Former smokers were defined

as those who had quit smoking at least 6 months prior to study
entry. Blood was collected in PAXgene RNA tubes and frozen at
-80°C. The gene expression sub-study of ECLIPSE was designed
to determine bio-signatures of exacerbation in peripheral blood of
patients with COPD." Two groups of individuals were chosen from
the parent ECLIPSE study for this purpose: patients who were fre-
quent exacerbators defined as having two or more exacerbations
per year and patients who did not experience any exacerbation
during follow-up. The two groups were matched with respect to
age, sex, and smoking status (current and former smokers). A total
of 531 former and current- smokers were selected and had both
gene expression and phenotypic data available. Study participants
provided written informed consent, and participants’ information
was de-identified. ECLIPSE study was funded by GlaxoSmithKline,
under http://ClinicalTrials.gov identifier NCT00292552 and GSK
No. SCO104960. This gene expression sub-study was funded by
Genome British Columbia and was approved by the Providence
Health Care Research Ethics Board (REB) of the University of
British Columbia (UBC) (H11-00786).

Microarray Data Processing

Total RNA was extracted using the PAXgene Blood miRNA kit from
PreAnalytix (Cat. #763134). RNA was hybridized to the Affymetrix
Human Gene 1.1 ST array. Affymetrix GeneTitan MC Scanner
(Affymetrix Inc) was used to scan the array plates. The oligo'® and
RMA Express' packages from Bioconductor were used to perform
quality control on the microarray data. Background correction, nor-
malization, and summarization of the data and filtering out non-
informative probe sets was undertaken using the Factor Analysis for
Robust Microarray Summarization (FARMS Bioconductor pack-
age).?” The gene expression data are available on the NCBI Gene
Expression Omnibus (GEO) under www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE71220.

Smoking Status

Smoking status was analyzed using three different case definitions:
(1) self-reported smoking status at the time of the blood draw; (2)
eCO concentration; and (3) the combination of these two. Receiver
Operating Characteristic (ROC) curves were used to determine the
optimal eCO cut-off point that discriminated between self-reported
former and current smokers according to Youden’s criterion.?! As
illustrated in Supplementary Figure 1, the optimal eCO cut-off value
was 8 ppm, which was associated with a maximal area under the
curve (AUC) of 0.881 (95% CI, 0.847-0.916), a sensitivity of 83.3%
and a specificity of 84.8%.

For the combined phenotype definition, smoking status was
assigned using the self-reported smoking status with the additional
exclusion of self-reported former smokers whose eCO concentra-
tions were greater than 8 ppm (7 = 54) and current smokers with
eCO < 8 ppm (1 = 29). A boxplot of eCO concentrations stratified
by self-reported smoking status is shown in Figure 1.

Differential Gene Expression Analysis
The Linear Models for Microarray Data (Limma) Bioconductor
package?* was used to evaluate genome-wide differential gene
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Boxplot of eCO by self-reported status
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Figure 1. Boxplot of exhaled carbon monoxide (eCO) by self-reported status.
eCO is shown in ppm on theY axis. Self-reported smoking status is shown on
the X axis.The horizontal line at 8.1 ppm represents the cut-off point applied
to remove subjects discordant for the two measures of smoking status. Self
reported smokers with a eCO < 8.1 were excluded from the analysis as were
self reported ex-smokers with an eCO > 8.1. Fifty-four and 29 subjects fell into
these categories, respectively.

expression. A propensity score was used to adjust for potential con-
founders.? The propensity score was generated by using regression
modeling in which smoking status was the dependent variable and
the baseline characteristics were independent variables. Significant
variables (P < .05 on univariate analysis) that were associated with
smoking status were applied in stepwise selection to a logistic/linear
regression model to identify predictive independent variables based
on Akaike information criterion (AIC). This approach was taken for
all three case definitions of smoking status to calculate a propen-
sity score specific for each case definition. Limma was then used to
test for differential gene expression with adjustments for age, sex,
and the propensity score for each case definition. The Benjamini-
Hochberg method was applied to correct for multiple testing.*

Quantile-Quantile Plot

To compare the distributions of P values for differential gene expres-
sion, quantile—quantile (QQ) plots were used. In a QQ plot, the
observed P values from a particular analysis are plotted on the Y
axis and a uniform distribution of P values obtained for a certain
number of tests is plotted on the X axis. If the observed relationships
are stronger than what would be expected by chance, then the line
will deviate upwards from the diagonal line of identity.

Pathway Enrichment Analysis

Differentially expressed genes (unadjusted P < .001) were tested
for enrichment in Gene Ontology (GO) biological processes
and pathways using the WEB-based GEne SeT AnaLysis Toolkit
(WebGestalt).” Enrichment was undertaken using hypergeomet-
ric tests?® and corrected for multiple testing using the Benjamini-
Hochberg False Discovery Rate (FDR).

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA)?” was used to compare over-
lap in results from the current study with published studies that

have reported on the effects of smoking on gene expression. GSEA
uses 1000 permutations and weighted enrichment statistics to iden-
tify Enrichment Score (ES) that evaluates if the genes are randomly
distributed or found at the extremes (top or bottom) of the ranked
list. The probability of the ES being false positive is assessed using
FDR. A total of seven studies were identified in our search and
were used in the GSEA analysis as summarized in Supplementary
Table 1.

Statistical Analysis Software
All analyses were performed with R version 3.1.2 and Bioconductor
packages.?®

Results

The current study included 573 subjects. A total of 12 381 probe-
sets that mapped to 7366 unique genes were tested for differential
expression with respect to three different definitions of smoking.
The results of differential gene expression using the three different
definitions of current smoking are presented below. For the dichoto-
mous definitions based on self-report and the combined phenotype,
gene expression changes and test statistics in former smokers ver-
sus current smokers are reported, while the eCO analysis reports
expression changes and test statistics for each unit increase in eCO
concentration.

Self-Reported Smoking Status

Based on self-report, there were 126 current and 447 former smok-
ers. The characteristics of study subjects using self reported smok-
ing status are shown in Supplementary Table 2. The propensity
score constructed for this model included the following variables:
years smoked, body mass index, cigarettes/day, FEV,% predicted,
FEV /FVC, white blood cell (WBC) count, chronic wheeze, chronic
cough, exacerbations in the year prior to blood withdrawal, and %
monocytes.

At a nominal P < .05, 195 genes were differentially expressed
following adjustments for propensity score, age, and sex. Of these
genes, 137 were up-regulated and 58 were down-regulated. Two
genes were differentially expressed at FDR < 0.1. Table 1 shows
that the two most significantly different genes were both down-
regulated in former smokers, namely LRRN3 (log2FC = -0.532,
FDR = 0.0018) and PID1 (log2FC = -0.198, FDR = 0.0816).
Figure 2A shows a volcano plot for differentially expressed genes
using self-report of smoking, annotating genes differentially
expressed at FDR < 10%. For the GO pathway enrichment analysis,
genes with unadjusted P < .001 were selected. However, there was
no enrichment for significant biological pathways following adjust-
ments for multiple testing (FDR < 0.1).

eCO Analysis

This analysis included 573 subjects with eCO data available. The
propensity score for this analysis included the following vari-
ables: years smoked, body mass index, FEV % predicted, FEV /
FVC, WBC count, cough, exacerbations in the year prior to blood
withdrawal, % neutrophils, and % monocytes. In this analysis,
282 genes were differentially expressed at a P < .05, with 194
genes that were down-regulated and 88 that were up-regulated in
those with raised eCO concentrations. Two genes were significant
at an FDR < 0.1; the most significant gene was LRRN3, similar
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to the analysis based on self reported smoking status, with an
FDR = 5.95E-06 and a log2 fold change of 0.0255. The second
most significant gene was GPR15, with an FDR of 0.0017 and a
log2 fold change of 0.0210. These two genes were up-regulated
with increased eCO concentrations (Table 1). The volcano plot for
these results is shown in Figure 2B. There were 10 unique genes
at an unadjusted P < .001, which were used for the GO pathway
analysis. However, there were no significant pathways detected at
an FDR < 0.1.

Combined Smoking Status Phenotype

The use of the combined phenotype (eCO and self report) yielded
97 current and 393 former smokers. The characteristics of these
subjects are shown in Supplementary Table 3. In this population,
males represented 68% and 64% of current and former smokers,
respectively. The average FEV,% predicted was 51% and 54%
in current and former smokers, respectively, while FEV /FVC
was similar at 0.47. In addition, current smokers had a lower
body mass index (25 kg/m* compared to 28 kg/m?), had a higher
WBC (8.1 GI/L compared to 7.4 GI/L), and had a lower number
of exacerbations in the year prior to screening (0.34 compared
to 0.84).

In this model, the propensity score included the following vari-
ables: years smoked, body mass index, cigarettes/day, FEV, % pre-
dicted, FEV /FVC, WBC count, chronic cough, exacerbations in the
year prior to blood draw, and % monocytes. A total of 454 genes
were significantly associated at a P < .05; of these genes, 219 were
down-regulated and 235 up-regulated in current smokers. Using
an FDR < 0.1, four genes were differentially expressed: LRRN3
(log2FC = -0.7274, FDR = 2.31E-06), PID1 (log2FC = -0.2489,
FDR = 0.0116), FUCA1 (log2FC = -0.1621, FDR = 0.0284), and

Table 1. Significant Differentially Expressed Genes at an FDR < 0.1

GPR15 (log2FC = -0.5091, FDR = 0.0284; Table 1). The volcano
plot of differential expression is shown in Figure 2C. For the path-
way enrichment analysis, nine genes with a P <.001 were enriched in
40 significant pathways. The top 10 significant pathways are shown
in Table 2. These pathways were related to metabolic processes,
response to nutrients, and response to decreased oxygen levels,
hypoxia, and hormones. The complete list of significant pathways is
shown in Supplementary Table 4.

In a sensitivity analysis, a lower eCO cut-off of 7 ppm was
used. In this analysis, 105 current and 379 former smokers were
included. Compared to the 8 ppm cut-off, this analysis included
eight more current and 14 fewer former smokers. A total of 620
genes showed association at P < .05. Of these, 355 were down-
regulated and 265 were up-regulated. Using an FDR < 0.1, three
genes were differentially expressed: LRRN3 (log2FC = -0.8051,
FDR = 7.00E-09), GPR15 (log2FC = ~0.5492, FDR = 0.0079), and
PID1 (log2FC = -0.2301, FDR = 0.03177). A total of 12 genes with
P <.001 were enriched in 34 biological processes (data not shown).

To visually compare the P value distributions of differentially
expressed genes across the three different case definitions of smok-
ing status, we created QQ plots, which are shown in Figure 3. The
distribution of P values from the combined phenotype was parallel
to the diagonal (expected) line and deviated towards lower P values
indicating associations beyond what is expected by chance. The QQ
plots of self report or eCO concentrations showed slightly deflated
distributions.

GSEA Results

Results from the GSEA analyses revealed strong support for the
signature identified in this study (Supplementary Table 1). The
two strongest enrichments were discovered in two studies that

Definition of smoking status Gene symbol Gene name LogFC P Adjusted P value
Self-reported LRRN3 Leucine rich repeat neuronal 3 -0.5322 1.48E-07 .0018
PID1 Phosphotyrosine interaction domain containing 1 -0.1978 1.32E-05 .0816
Exhaled carbon monoxide LRRN3 Leucine rich repeat neuronal 3 0.0255 4.81E-10 5.95E-06
GPR1S5 G protein-coupled receptor 15 0.0210 2.79E-07 .0017
Combined smoking status LRRN3 Leucine rich repeat neuronal 3 -0.7274 1.87E-10 2.31E-06
phenotype PID1 Phosphotyrosine interaction domain containing 1 -0.2489 1.88E-06 .0116
FUCA1 Fucosidase, alpha-L-1, tissue -0.1621 9.11E-06 .0284
GPR1S G protein-coupled receptor 15 -0.5091 9.16E-06 .0284

FDR = False Discovery Rate. Adjusted P-Value: Benjamini Hochberg Adjusted P-value. LogFC: log2 fold change.

Table 2. TheTop 10 Most Significant Pathways Identified Using the Combined Smoking Phenotype to Represent Smoking Status

Adjusted P-value Genes in this pathway

Biological process P
Positive regulation of macromolecule metabolic process 8.82E-05
Positive regulation of cellular metabolic process 9.92E-05
Positive regulation of metabolic process .0001
Response to nutrient .0002
Positive regulation of phosphate metabolic process .0002
Positive regulation of phosphorus metabolic process .0002
Response to decreased oxygen levels .0003
Response to hypoxia .0003
Response to oxygen levels .0003
Response to hormone stimulus .0004

.005 PTK2B/PID1/DBNL/USF1/CD38/LRRN3
.00S PTK2B/PID1/DBNL/USF1/CD38/LRRN3
.005 PTK2B/PID1/DBNL/USF1/CD38/LRRN3
.005 PTK2B/USF1/CD38

.00S PTK2B/PID1/DBNL/LRRN3

.005 PTK2B/PID1/DBNL/LRRN3

.005 PTK2B/USF1/CD38

.00S PTK2B/USF1/CD38

.005 PTK2B/USF1/CD38

.006 PTK2B/PID1/USF1/CD38

Adjusted P-value: Benjamini Hochberg Adjusted P-value.
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Figure 2. Volcano Plots of differential gene expression using three case definitions. The plot shows the log2 fold difference in gene expression on the X axis
versus the unadjusted P values (on the -log10 scale) on theY axis. For the self-reported status and the combined phenotype, the blue and red dots represent
genes that showed fold change in either direction greater than 0.2 and have unadjusted P value < .01. Genes that had a False Discovery Rate (FDR) adjusted P
values less than .1 for differential expression are annotated on the graph. (A) Self-reported smoking status; (B) exhaled carbon monoxide (eCO); (C) Combined
phenotype.The eCO plot (B) shows gene expression differences per unit increase in eCO concentration, hence the X scale is different to A and C.

reported the effects of smoking on gene expression and methyla-
tion profiles. Fifty genes in the study by Charlesworth et al.,”
15 CpG sites corresponding to 14 unique genes in the study by
Wan et al.,*® and five genes in the study by Beineke et al.’! showed
significant enrichment against the 7366 unique genes pre-ranked
by their absolute #-statistics in our gene set from the combined
phenotype analysis using FDR g-values of 0.00058, 0.0012 and
0.03835, respectively.

Discussion

In the current study, we used three different case definitions to iden-
tify peripheral blood gene expression signatures related to current
smoking. Using FDR <0.1 for genes and pathway enrichment, we
found two genes that were differentially expressed and no enriched
pathway using self report or eCO concentrations by themselves. By
combining self-report with eCO concentrations, however, we discov-
ered four differentially expressed genes and 40 pathways that were
enriched in the current smokers. The QQ plots in Figure 3 suggest
that the combined phenotype produced a “better” P value distribu-
tion, providing added confidence to this approach. The plot also
shows that the combined phenotype approach produced more sig-
nificant (smaller) P values, thus reducing the risk of false negatives.
Interestingly, the increase in statistical significance was achieved
despite the fact that the sample size was reduced in the combined
analysis, indicating the improved resolution of this approach in
ascertaining significant gene expression changes related to current
smoking.

The genes that were differentially expressed in all three analyses
are very well supported by data from previous studies on smoking
and gene expression and/or methylation. In the study of Wan et al.,*
hypomethylation of the CpG sites at LRRN3 in peripheral blood
correlated with current smoking and a shorter time since quitting in
former smokers, and hypomethylation of the GPR135 site correlated
with current smoking, higher cumulative smoke exposure (more
pack-years) and shorter time since quitting in former smokers. In
the study of Charlesworth et al.,”” smoking status was associated
with gene expression of LRRN3, PID1, and FUCAT1 in lymphocytes.
In lung tissue, Bossé et al. reported up-regulation of FUCA1 among
smokers.’? The study of Beineke et al.’! reported up-regulation of

Three definitions of smoking status
10.04

7.5+

smoking_status
+ combined phenotype
- eCO

+ self-reported smoking staus

Observed —logio(P.Value)

0 1 2 3 4
Expected —logo(Uniform.Quantile)

Figure 3. A quantile-quantile (QQ) plot for the three case definitions of
smoking status. The X axis is —log10 of the expected P-values, and theY axis
is —log10 of the actual P-values in QQ plot. Under the null hypothesis, the
points should fall approximately along the 45-degree reference line. Genes
with low P values deviate from the reference line, indicating significant
association.

LRRN3, PID1, GPR15 and FUCA1 gene expression in the whole
blood of current smokers with LRRN3 being the most statistically
significant gene. In a recent study by Guida et al.,>> CpG sites at both
LRRN3 and GPR15 were found to be hypomethylated in blood.
LRRN3 is particularly interesting because it has been shown to be
over-expressed in current smokers and in the study by Guida et al.,*
it was the only gene associated with smoking at the level of both
methylation and gene expression. In genetic association studies, vari-
ants in PID1 have been associated with lung function in the Korean
population.’*

The exact biological roles of LRRN3, PID1, FUCA1, and GPR15
in smoking are not clear. Leucine rich repeat neuronal 3 (LRRN3) is
thought to play a role in neural development and regeneration® and is
up-regulated during cortical neuronal injury.*® Its genetic variants have
been associated with autism.’”” Phosphotyrosine interaction domain
containing one (PID1) function as a growth-inhibitory gene in brain
tumors® and is a potent intracellular inhibitor of the insulin signaling
pathway during obesity in humans and mice.* Fucosidase, alpha-L-1,
tissue (FUCAT1) is a liposomal enzyme that degrades a variety of fucose-
containing fucoglycoconjugates and has been proposed as a promising
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tumor marker in the diagnosis* and prognosis*' of hepatocellular
carcinoma. Finally, G protein-coupled receptor 15 (GPR15) acts as a
chemokine receptor for human immunodeficiency virus.*

Biological pathway enrichment was detected for the self-report/
eCO combined phenotype, and revealed intriguing biology about the
role of smoking related genes. The pathways were related to regula-
tion of metabolic processes, response to decreased oxygen levels and
hypoxia, response to hormones and lipids, response to cytokines and
cell proliferation. The effect of smoking in reducing tissue oxygenation
is well established.**** Smoking leads to oxidative stress which induces
systemic inflammation.* Accordingly, smokers consistently demon-
strate elevated levels of proinflammatory cytokines in the blood.*”
Additionally, epidemiological studies have shown that smokers have
higher levels of total cholesterol, triglycerides, and low-density lipopro-
tein cholesterol (LDLC) compared with nonsmokers.* Smoking has
also been shown to affect the metabolic and biological processes includ-
ing secretion of hormones.* These data are consistent with the biologi-
cal processes identified in the combined smoking definition analysis.

In this study, defining smoking status using a combination of self
report and eCO concentrations produced better distribution of test
statistics for gene expression and identified more genes that showed
stronger enrichment in biological pathways when compared to using
self-report or eCO alone.

Smoking is one of the most common variables used to adjust for
confounders in genetic, epidemiological and interventional studies.
Our data suggest that self-report is probably insufficient to fully cap-
ture the effects of smoking in these studies, leading to some degree of
residual confounding by smoking. A genome-wide association study
of genetic variation underlying eCO levels while adjusting for self
report arrived at a similar conclusion where eCO was found to cap-
ture aspects of cigarette smoke exposure in current smokers beyond
the number of cigarettes smoked per day.*® Thus for future -omics
and other studies, our data strongly suggest the need to complement
self-report with an objective measure of active smoking such as eCO
to more accurately capture the effects of smoking in these studies.

The current study has a number of limitations. First, the sample
size of the study may have been too small to detect modest changes
in gene expression. On the other hand, the top genes identified in our
study have been previously associated with smoking status suggest-
ing that with the current sample size we were able to detect a repro-
ducible smoking-related gene signature. Second, we did not assess
the impact of different case definitions on hard clinical endpoints
such as mortality as this was beyond the purview of the present
study. Third, we also did not evaluate other objective measures of
smoking status such as cotinine. Thus, the impact of using urinary,
blood or salivary cotinine in lieu of or in addition to eCO is not
known. Fourth, although the differential gene expression analysis
was adjusted for a number of variables including cell percentages,
this may not be able to fully account for the cellular changes between
former and current smokers. Finally, the use of eCO is not without
limitations. eCO has a short half-life and studies have shown that
eCO may be a poor biomarker of smoking that occurred more than
8 hours prior to the eCO measurement.’’ A number of studies also
showed eCO to be elevated in individuals with respiratory diseases
such as asthma or COPD.’>** Current and former smokers pheno-
typed using the combined definition were not statistically different
with respect to their lung function and the propensity score included
FEV, as a percentage of predicted, chronic cough and exacerbations,
providing some assurances that the results were unlikely to have
been confounded by COPD status or severity.

In conclusion, blood from current smokers exhibits a differential
expression profile when compared to former smokers. Combining
both eCO and self reported smoking status to define current and
former smokers improved the discovery of differentially expressed
genes and enriched pathways. For future studies, combining self-
reported smoking status with eCO will enhance the statistical power
of these studies to discover (or adjust for) the impact of smoking.

Supplementary Material

Supplementary Tables 1-4 and Supplementary Figure 1 can be found
online at http://www.ntr.oxfordjournals.org
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