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Abstract

Introduction: Smoking is the number one modifiable environmental risk factor for chronic obstruc-
tive pulmonary disease (COPD). Clinical, epidemiological and increasingly “omics” studies assess 
or adjust for current smoking status using only self-report, which may be inaccurate. Objective 
measures such as exhaled carbon monoxide (eCO) may also be problematic owing to limitations 
in the measurements and the relatively short half life of the molecule. In this study, we determined 
the impact of different case definitions of current cigarette smoking on gene expression in periph-
eral blood of patients with COPD.
Methods: Peripheral blood gene expression from 573 former- and current-smokers with COPD in 
the ECLIPSE study was used to find genes whose expression was associated with smoking status. 
Current smoking was defined using self-report, eCO concentrations, or both. Linear regression 
was used to determine the association of current smoking status with gene expression adjusting 
for age, sex and propensity score. Pathway enrichment analyses were performed on genes with 
P < .001.
Result: Using self-report or eCO, only two genes were differentially expressed between current 
and ex-smokers, with no enrichment in biological processes. When current smoking was defined 
using both eCO and self-report, four genes were differentially expressed (LRRN3, PID1, FUCA1, 
GPR15) with enrichment in 40 biological pathways related to metabolic processes, response to 
hypoxia and hormonal stimulus. Additionally, the combined definition provided better distribu-
tions of test statistics for differential gene expression.
Conclusion: A combined phenotype of eCO and self report allows for better discovery of genes and 
pathways related to current smoking.
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Implications: Studies relying only on self report of smoking status to assess or adjust for the 
impact of smoking may not fully capture its effect and will lead to residual confounding of results.

Introduction

The smoking epidemic remains one of the biggest public health 
threats in modern history.1 With the current estimates of 50% of 
young men and 10% of young women becoming smokers and a 
smaller percentage quitting in many developing countries, tobacco-
attributable deaths will rise from about 6 million a year currently 
to more than 10 million globally by 2030.2–4 Smoking is the prin-
cipal modifiable environmental risk factor for chronic obstructive 
pulmonary disease (COPD), ischemic heart disease, and lung cancer.5 
COPD, for instance, affects 300 million people and is the third lead-
ing cause of death worldwide.6 In Canada, COPD is the number one 
cause of hospital admissions, accounting for 80 000 admissions per 
year.7

Self-reported smoking status is widely used in epidemiologi-
cal, interventional, genetic and genomic studies as a covariate to 
“control” for the harmful effects of tobacco exposure. However, 
self-report is subject to reporting bias and has been shown to under-
estimate smoking prevalence and intensity.8,9 Objective biochemi-
cal measures for smoking status include exhaled carbon monoxide 
(eCO) and cotinine levels in serum, urine or saliva. Measuring eCO 
is attractive because it is relatively inexpensive, noninvasive and the 
measurements are well-standardized and can accurately identify 
recent smokers.10,11

Many blood gene expression profiling studies have been 
published for COPD.12–15 Smoking is an important driver and 
confounder of these studies. The studies typically compare the 
genome-wide expression profiles between COPD cases and 
smoking controls, and include self-reported smoking status and/
or pack-years as covariates in the analysis. Using this approach, 
pathway analyses of differentially expressed genes have revealed 
enrichment in diverse processes including apoptosis, cell growth, 
cellular defense response and inflammatory response,12 as well as 
sphingolipid (ceramide) metabolism,14 and cancer.15 However, the 
differences in peripheral blood gene expression profiles between 
current and former smokers in individuals with COPD are not 
clearly understood. The objectives of the current study are to (1) 
unravel the molecular signature in blood between current and for-
mer smokers with COPD and (2) examine the impact of differen-
tial phenotyping of smoking status using subjective and objective 
measures on gene expression.

Materials and Methods

Study Subjects
The study population was a subset of the parent ECLIPSE (Evaluation 
of COPD Longitudinally to Identify Predictive Surrogate Endpoints) 
study.16 ECLIPSE was a 3-year noninterventional, multicentre, lon-
gitudinal prospective study. The ECLIPSE study was approved 
by the relevant ethics review boards at each of the participating 
centers. ECLIPSE included 2164 COPD patients aged 40–75 years 
(smoking history ≥10 pack-years with a post-bronchodilator FEV1/ 
FVC < 0.70 and FEV1 < 80% predicted) and 337 smokers and 245 
nonsmokers who acted as control subjects (FEV1/FVC > 0.70 and 
FEV1 > 90% predicted). The inclusion criteria included individu-
als with >10 pack-years of smoking. Former smokers were defined 

as those who had quit smoking at least 6 months prior to study 
entry. Blood was collected in PAXgene RNA tubes and frozen at 
−80°C. The gene expression sub-study of ECLIPSE was designed 
to determine bio-signatures of exacerbation in peripheral blood of 
patients with COPD.17 Two groups of individuals were chosen from 
the parent ECLIPSE study for this purpose: patients who were fre-
quent exacerbators defined as having two or more exacerbations 
per year and patients who did not experience any exacerbation 
during follow-up. The two groups were matched with respect to 
age, sex, and smoking status (current and former smokers). A total 
of 531 former and current- smokers were selected and had both 
gene expression and phenotypic data available. Study participants 
provided written informed consent, and participants’ information 
was de-identified. ECLIPSE study was funded by GlaxoSmithKline, 
under http://ClinicalTrials.gov identifier NCT00292552 and GSK 
No. SCO104960. This gene expression sub-study was funded by 
Genome British Columbia and was approved by the Providence 
Health Care Research Ethics Board (REB) of the University of 
British Columbia (UBC) (H11-00786).

Microarray Data Processing
Total RNA was extracted using the PAXgene Blood miRNA kit from 
PreAnalytix (Cat. #763134). RNA was hybridized to the Affymetrix 
Human Gene 1.1 ST array. Affymetrix GeneTitan MC Scanner 
(Affymetrix Inc) was used to scan the array plates. The oligo18 and 
RMA Express19 packages from Bioconductor were used to perform 
quality control on the microarray data. Background correction, nor-
malization, and summarization of the data and filtering out non-
informative probe sets was undertaken using the Factor Analysis for 
Robust Microarray Summarization (FARMS Bioconductor pack-
age).20 The gene expression data are available on the NCBI Gene 
Expression Omnibus (GEO) under www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE71220.

Smoking Status
Smoking status was analyzed using three different case definitions: 
(1) self-reported smoking status at the time of the blood draw; (2) 
eCO concentration; and (3) the combination of these two. Receiver 
Operating Characteristic (ROC) curves were used to determine the 
optimal eCO cut-off point that discriminated between self-reported 
former and current smokers according to Youden’s criterion.21 As 
illustrated in Supplementary Figure 1, the optimal eCO cut-off value 
was 8 ppm, which was associated with a maximal area under the 
curve (AUC) of 0.881 (95% CI, 0.847–0.916), a sensitivity of 83.3% 
and a specificity of 84.8%.

For the combined phenotype definition, smoking status was 
assigned using the self-reported smoking status with the additional 
exclusion of self-reported former smokers whose eCO concentra-
tions were greater than 8 ppm (n = 54) and current smokers with 
eCO ≤ 8 ppm (n = 29). A boxplot of eCO concentrations stratified 
by self-reported smoking status is shown in Figure 1.

Differential Gene Expression Analysis
The Linear Models for Microarray Data (Limma) Bioconductor 
package22 was used to evaluate genome-wide differential gene 
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expression. A propensity score was used to adjust for potential con-
founders.23 The propensity score was generated by using regression 
modeling in which smoking status was the dependent variable and 
the baseline characteristics were independent variables. Significant 
variables (P < .05 on univariate analysis) that were associated with 
smoking status were applied in stepwise selection to a logistic/linear 
regression model to identify predictive independent variables based 
on Akaike information criterion (AIC). This approach was taken for 
all three case definitions of smoking status to calculate a propen-
sity score specific for each case definition. Limma was then used to 
test for differential gene expression with adjustments for age, sex, 
and the propensity score for each case definition. The Benjamini-
Hochberg method was applied to correct for multiple testing.24

Quantile–Quantile Plot
To compare the distributions of P values for differential gene expres-
sion, quantile–quantile (QQ) plots were used. In a QQ plot, the 
observed P values from a particular analysis are plotted on the Y 
axis and a uniform distribution of P values obtained for a certain 
number of tests is plotted on the X axis. If the observed relationships 
are stronger than what would be expected by chance, then the line 
will deviate upwards from the diagonal line of identity.

Pathway Enrichment Analysis
Differentially expressed genes (unadjusted P < .001) were tested 
for enrichment in Gene Ontology (GO) biological processes 
and pathways using the WEB-based GEne SeT AnaLysis Toolkit 
(WebGestalt).25 Enrichment was undertaken using hypergeomet-
ric tests26 and corrected for multiple testing using the Benjamini-
Hochberg False Discovery Rate (FDR).

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA)27 was used to compare over-
lap in results from the current study with published studies that 

have reported on the effects of smoking on gene expression. GSEA 
uses 1000 permutations and weighted enrichment statistics to iden-
tify Enrichment Score (ES) that evaluates if the genes are randomly 
distributed or found at the extremes (top or bottom) of the ranked 
list. The probability of the ES being false positive is assessed using 
FDR. A  total of seven studies were identified in our search and 
were used in the GSEA analysis as summarized in Supplementary 
Table 1.

Statistical Analysis Software
All analyses were performed with R version 3.1.2 and Bioconductor 
packages.28

Results

The current study included 573 subjects. A total of 12 381 probe-
sets that mapped to 7366 unique genes were tested for differential 
expression with respect to three different definitions of smoking. 
The results of differential gene expression using the three different 
definitions of current smoking are presented below. For the dichoto-
mous definitions based on self-report and the combined phenotype, 
gene expression changes and test statistics in former smokers ver-
sus current smokers are reported, while the eCO analysis reports 
expression changes and test statistics for each unit increase in eCO 
concentration.

Self-Reported Smoking Status
Based on self-report, there were 126 current and 447 former smok-
ers. The characteristics of study subjects using self reported smok-
ing status are shown in Supplementary Table  2. The propensity 
score constructed for this model included the following variables: 
years smoked, body mass index, cigarettes/day, FEV1% predicted, 
FEV1/FVC, white blood cell (WBC) count, chronic wheeze, chronic 
cough, exacerbations in the year prior to blood withdrawal, and % 
monocytes.

At a nominal P < .05, 195 genes were differentially expressed 
following adjustments for propensity score, age, and sex. Of these 
genes, 137 were up-regulated and 58 were down-regulated. Two 
genes were differentially expressed at FDR < 0.1. Table  1 shows 
that the two most significantly different genes were both down-
regulated in former smokers, namely LRRN3 (log2FC  =  −0.532, 
FDR  =  0.0018) and PID1 (log2FC  =  −0.198, FDR  =  0.0816). 
Figure 2A shows a volcano plot for differentially expressed genes 
using self-report of smoking, annotating genes differentially 
expressed at FDR < 10%. For the GO pathway enrichment analysis, 
genes with unadjusted P < .001 were selected. However, there was 
no enrichment for significant biological pathways following adjust-
ments for multiple testing (FDR < 0.1).

eCO Analysis
This analysis included 573 subjects with eCO data available. The 
propensity score for this analysis included the following vari-
ables: years smoked, body mass index, FEV1% predicted, FEV1/
FVC, WBC count, cough, exacerbations in the year prior to blood 
withdrawal, % neutrophils, and % monocytes. In this analysis, 
282 genes were differentially expressed at a P < .05, with 194 
genes that were down-regulated and 88 that were up-regulated in 
those with raised eCO concentrations. Two genes were significant 
at an FDR < 0.1; the most significant gene was LRRN3, similar 

Figure 1. Boxplot of exhaled carbon monoxide (eCO) by self-reported status. 
eCO is shown in ppm on the Y axis. Self-reported smoking status is shown on 
the X axis. The horizontal line at 8.1 ppm represents the cut-off point applied 
to remove subjects discordant for the two measures of smoking status. Self 
reported smokers with a eCO < 8.1 were excluded from the analysis as were 
self reported ex-smokers with an eCO > 8.1. Fifty-four and 29 subjects fell into 
these categories, respectively.

http://ntr.oxfordjournals.org/lookup/suppl/doi:10.1093/ntr/ntw129/-/DC1
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to the analysis based on self reported smoking status, with an 
FDR = 5.95E-06 and a log2 fold change of 0.0255. The second 
most significant gene was GPR15, with an FDR of 0.0017 and a 
log2 fold change of 0.0210. These two genes were up-regulated 
with increased eCO concentrations (Table 1). The volcano plot for 
these results is shown in Figure 2B. There were 10 unique genes 
at an unadjusted P < .001, which were used for the GO pathway 
analysis. However, there were no significant pathways detected at 
an FDR < 0.1.

Combined Smoking Status Phenotype
The use of the combined phenotype (eCO and self report) yielded 
97 current and 393 former smokers. The characteristics of these 
subjects are shown in Supplementary Table 3. In this population, 
males represented 68% and 64% of current and former smokers, 
respectively. The average FEV1% predicted was 51% and 54% 
in current and former smokers, respectively, while FEV1/FVC 
was similar at 0.47. In addition, current smokers had a lower 
body mass index (25 kg/m2 compared to 28 kg/m2), had a higher 
WBC (8.1 GI/L compared to 7.4 GI/L), and had a lower number 
of exacerbations in the year prior to screening (0.34 compared 
to 0.84).

In this model, the propensity score included the following vari-
ables: years smoked, body mass index, cigarettes/day, FEV1% pre-
dicted, FEV1/FVC, WBC count, chronic cough, exacerbations in the 
year prior to blood draw, and % monocytes. A total of 454 genes 
were significantly associated at a P < .05; of these genes, 219 were 
down-regulated and 235 up-regulated in current smokers. Using 
an FDR < 0.1, four genes were differentially expressed: LRRN3 
(log2FC  =  −0.7274, FDR  =  2.31E-06), PID1 (log2FC  =  −0.2489, 
FDR = 0.0116), FUCA1 (log2FC = −0.1621, FDR = 0.0284), and 

GPR15 (log2FC = −0.5091, FDR = 0.0284; Table 1). The volcano 
plot of differential expression is shown in Figure 2C. For the path-
way enrichment analysis, nine genes with a P < .001 were enriched in 
40 significant pathways. The top 10 significant pathways are shown 
in Table  2. These pathways were related to metabolic processes, 
response to nutrients, and response to decreased oxygen levels, 
hypoxia, and hormones. The complete list of significant pathways is 
shown in Supplementary Table 4.

In a sensitivity analysis, a lower eCO cut-off of 7 ppm was 
used. In this analysis, 105 current and 379 former smokers were 
included. Compared to the 8 ppm cut-off, this analysis included 
eight more current and 14 fewer former smokers. A  total of 620 
genes showed association at P < .05. Of these, 355 were down-
regulated and 265 were up-regulated. Using an FDR < 0.1, three 
genes were differentially expressed: LRRN3 (log2FC  =  −0.8051, 
FDR = 7.00E-09), GPR15 (log2FC = −0.5492, FDR = 0.0079), and 
PID1 (log2FC = −0.2301, FDR = 0.03177). A total of 12 genes with 
P < .001 were enriched in 34 biological processes (data not shown).

To visually compare the P value distributions of differentially 
expressed genes across the three different case definitions of smok-
ing status, we created QQ plots, which are shown in Figure 3. The 
distribution of P values from the combined phenotype was parallel 
to the diagonal (expected) line and deviated towards lower P values 
indicating associations beyond what is expected by chance. The QQ 
plots of self report or eCO concentrations showed slightly deflated 
distributions.

GSEA Results
Results from the GSEA analyses revealed strong support for the 
signature identified in this study (Supplementary Table  1). The 
two strongest enrichments were discovered in two studies that 

Table 2. The Top 10 Most Significant Pathways Identified Using the Combined Smoking Phenotype to Represent Smoking Status

Biological process P Adjusted P-value Genes in this pathway

Positive regulation of macromolecule metabolic process 8.82E-05 .005 PTK2B/PID1/DBNL/USF1/CD38/LRRN3
Positive regulation of cellular metabolic process 9.92E-05 .005 PTK2B/PID1/DBNL/USF1/CD38/LRRN3
Positive regulation of metabolic process .0001 .005 PTK2B/PID1/DBNL/USF1/CD38/LRRN3
Response to nutrient .0002 .005 PTK2B/USF1/CD38
Positive regulation of phosphate metabolic process .0002 .005 PTK2B/PID1/DBNL/LRRN3
Positive regulation of phosphorus metabolic process .0002 .005 PTK2B/PID1/DBNL/LRRN3
Response to decreased oxygen levels .0003 .005 PTK2B/USF1/CD38
Response to hypoxia .0003 .005 PTK2B/USF1/CD38
Response to oxygen levels .0003 .005 PTK2B/USF1/CD38
Response to hormone stimulus .0004 .006 PTK2B/PID1/USF1/CD38

Adjusted P-value: Benjamini Hochberg Adjusted P-value.

Table 1. Significant Differentially Expressed Genes at an FDR < 0.1

Definition of smoking status Gene symbol Gene name LogFC P Adjusted P value

Self-reported LRRN3 Leucine rich repeat neuronal 3 -0.5322 1.48E-07 .0018
PID1 Phosphotyrosine interaction domain containing 1 -0.1978 1.32E-05 .0816

Exhaled carbon monoxide LRRN3 Leucine rich repeat neuronal 3 0.0255 4.81E-10 5.95E-06
GPR15 G protein-coupled receptor 15 0.0210 2.79E-07 .0017

Combined smoking status 
phenotype

LRRN3 Leucine rich repeat neuronal 3 -0.7274 1.87E-10 2.31E-06
PID1 Phosphotyrosine interaction domain containing 1 -0.2489 1.88E-06 .0116
FUCA1 Fucosidase, alpha-L-1, tissue -0.1621 9.11E-06 .0284
GPR15 G protein-coupled receptor 15 -0.5091 9.16E-06 .0284

FDR = False Discovery Rate. Adjusted P-Value: Benjamini Hochberg Adjusted P-value. LogFC: log2 fold change.

http://ntr.oxfordjournals.org/lookup/suppl/doi:10.1093/ntr/ntw129/-/DC1
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reported the effects of smoking on gene expression and methyla-
tion profiles. Fifty genes in the study by Charlesworth et  al.,29 
15 CpG sites corresponding to 14 unique genes in the study by 
Wan et al.,30 and five genes in the study by Beineke et al.31 showed 
significant enrichment against the 7366 unique genes pre-ranked 
by their absolute t-statistics in our gene set from the combined 
phenotype analysis using FDR q-values of 0.00058, 0.0012 and 
0.0385, respectively.

Discussion

In the current study, we used three different case definitions to iden-
tify peripheral blood gene expression signatures related to current 
smoking. Using FDR <0.1 for genes and pathway enrichment, we 
found two genes that were differentially expressed and no enriched 
pathway using self report or eCO concentrations by themselves. By 
combining self-report with eCO concentrations, however, we discov-
ered four differentially expressed genes and 40 pathways that were 
enriched in the current smokers. The QQ plots in Figure 3 suggest 
that the combined phenotype produced a “better” P value distribu-
tion, providing added confidence to this approach. The plot also 
shows that the combined phenotype approach produced more sig-
nificant (smaller) P values, thus reducing the risk of false negatives. 
Interestingly, the increase in statistical significance was achieved 
despite the fact that the sample size was reduced in the combined 
analysis, indicating the improved resolution of this approach in 
ascertaining significant gene expression changes related to current 
smoking.

The genes that were differentially expressed in all three analyses 
are very well supported by data from previous studies on smoking 
and gene expression and/or methylation. In the study of Wan et al.,30 
hypomethylation of the CpG sites at LRRN3 in peripheral blood 
correlated with current smoking and a shorter time since quitting in 
former smokers, and hypomethylation of the GPR15 site correlated 
with current smoking, higher cumulative smoke exposure (more 
pack-years) and shorter time since quitting in former smokers. In 
the study of Charlesworth et  al.,29 smoking status was associated 
with gene expression of LRRN3, PID1, and FUCA1 in lymphocytes. 
In lung tissue, Bossé et al. reported up-regulation of FUCA1 among 
smokers.32 The study of Beineke et  al.31 reported up-regulation of 

LRRN3, PID1, GPR15 and FUCA1 gene expression in the whole 
blood of current smokers with LRRN3 being the most statistically 
significant gene. In a recent study by Guida et al.,33 CpG sites at both 
LRRN3 and GPR15 were found to be hypomethylated in blood. 
LRRN3 is particularly interesting because it has been shown to be 
over-expressed in current smokers and in the study by Guida et al.,33 
it was the only gene associated with smoking at the level of both 
methylation and gene expression. In genetic association studies, vari-
ants in PID1 have been associated with lung function in the Korean 
population.34

The exact biological roles of LRRN3, PID1, FUCA1, and GPR15 
in smoking are not clear. Leucine rich repeat neuronal 3 (LRRN3) is 
thought to play a role in neural development and regeneration35 and is 
up-regulated during cortical neuronal injury.36 Its genetic variants have 
been associated with autism.37 Phosphotyrosine interaction domain 
containing one (PID1) function as a growth-inhibitory gene in brain 
tumors38 and is a potent intracellular inhibitor of the insulin signaling 
pathway during obesity in humans and mice.39 Fucosidase, alpha-L-1, 
tissue (FUCA1) is a liposomal enzyme that degrades a variety of fucose-
containing fucoglycoconjugates and has been proposed as a promising 

Figure  3. A quantile–quantile (QQ) plot for the three case definitions of 
smoking status. The X axis is −log10 of the expected P-values, and the Y axis 
is −log10 of the actual P-values in QQ plot. Under the null hypothesis, the 
points should fall approximately along the 45-degree reference line. Genes 
with low P values deviate from the reference line, indicating significant 
association.

Figure 2. Volcano Plots of differential gene expression using three case definitions. The plot shows the log2 fold difference in gene expression on the X axis 
versus the unadjusted P values (on the –log10 scale) on the Y axis. For the self-reported status and the combined phenotype, the blue and red dots represent 
genes that showed fold change in either direction greater than 0.2 and have unadjusted P value < .01. Genes that had a False Discovery Rate (FDR) adjusted P 
values less than .1 for differential expression are annotated on the graph. (A) Self-reported smoking status; (B) exhaled carbon monoxide (eCO); (C) Combined 
phenotype. The eCO plot (B) shows gene expression differences per unit increase in eCO concentration, hence the X scale is different to A and C.
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tumor marker in the diagnosis40 and prognosis41 of hepatocellular 
carcinoma. Finally, G protein-coupled receptor 15 (GPR15) acts as a 
chemokine receptor for human immunodeficiency virus.42

Biological pathway enrichment was detected for the self-report/
eCO combined phenotype, and revealed intriguing biology about the 
role of smoking related genes. The pathways were related to regula-
tion of metabolic processes, response to decreased oxygen levels and 
hypoxia, response to hormones and lipids, response to cytokines and 
cell proliferation. The effect of smoking in reducing tissue oxygenation 
is well established.43–45 Smoking leads to oxidative stress which induces 
systemic inflammation.46 Accordingly, smokers consistently demon-
strate elevated levels of proinflammatory cytokines in the blood.47 
Additionally, epidemiological studies have shown that smokers have 
higher levels of total cholesterol, triglycerides, and low-density lipopro-
tein cholesterol (LDLC) compared with nonsmokers.48 Smoking has 
also been shown to affect the metabolic and biological processes includ-
ing secretion of hormones.49 These data are consistent with the biologi-
cal processes identified in the combined smoking definition analysis.

In this study, defining smoking status using a combination of self 
report and eCO concentrations produced better distribution of test 
statistics for gene expression and identified more genes that showed 
stronger enrichment in biological pathways when compared to using 
self-report or eCO alone.

Smoking is one of the most common variables used to adjust for 
confounders in genetic, epidemiological and interventional studies. 
Our data suggest that self-report is probably insufficient to fully cap-
ture the effects of smoking in these studies, leading to some degree of 
residual confounding by smoking. A genome-wide association study 
of genetic variation underlying eCO levels while adjusting for self 
report arrived at a similar conclusion where eCO was found to cap-
ture aspects of cigarette smoke exposure in current smokers beyond 
the number of cigarettes smoked per day.50 Thus for future -omics 
and other studies, our data strongly suggest the need to complement 
self-report with an objective measure of active smoking such as eCO 
to more accurately capture the effects of smoking in these studies.

The current study has a number of limitations. First, the sample 
size of the study may have been too small to detect modest changes 
in gene expression. On the other hand, the top genes identified in our 
study have been previously associated with smoking status suggest-
ing that with the current sample size we were able to detect a repro-
ducible smoking-related gene signature. Second, we did not assess 
the impact of different case definitions on hard clinical endpoints 
such as mortality as this was beyond the purview of the present 
study. Third, we also did not evaluate other objective measures of 
smoking status such as cotinine. Thus, the impact of using urinary, 
blood or salivary cotinine in lieu of or in addition to eCO is not 
known. Fourth, although the differential gene expression analysis 
was adjusted for a number of variables including cell percentages, 
this may not be able to fully account for the cellular changes between 
former and current smokers. Finally, the use of eCO is not without 
limitations. eCO has a short half-life and studies have shown that 
eCO may be a poor biomarker of smoking that occurred more than 
8 hours prior to the eCO measurement.51 A number of studies also 
showed eCO to be elevated in individuals with respiratory diseases 
such as asthma or COPD.52,53 Current and former smokers pheno-
typed using the combined definition were not statistically different 
with respect to their lung function and the propensity score included 
FEV1 as a percentage of predicted, chronic cough and exacerbations, 
providing some assurances that the results were unlikely to have 
been confounded by COPD status or severity.

In conclusion, blood from current smokers exhibits a differential 
expression profile when compared to former smokers. Combining 
both eCO and self reported smoking status to define current and 
former smokers improved the discovery of differentially expressed 
genes and enriched pathways. For future studies, combining self-
reported smoking status with eCO will enhance the statistical power 
of these studies to discover (or adjust for) the impact of smoking.

Supplementary Material

Supplementary Tables 1–4 and Supplementary Figure 1 can be found 
online at http://www.ntr.oxfordjournals.org
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