

HHS Public Access

Author manuscript

Crit Rev Immunol. Author manuscript; available in PMC 2018 March 05.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Published in final edited form as:

Crit Rev Immunol. 2015 ; 35(6): 451–461. doi:10.1615/CritRevImmunol.2016015865.

Interleukin-33 and its Receptor in Pulmonary Inflammatory Diseases

Jing Zhao and Yutong Zhao*

Department of Medicine, University of Pittsburgh School of Medicine, Acute Lung Injury Center of Excellence, and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, PA, United States

Abstract

Interleukin-33 (IL-33) is a member of the IL-1 cytokine family. It modulates immune responses and biological functions through binding to its membrane receptor, ST2L. ST2L is a member of the Toll-like/IL-1 (TIR)-receptor superfamily, and its isoform, soluble ST2 (sST2), functions as an inhibitor of the IL-33/ST2L pathway. Levels of IL-33 and sST2 in serum and bronchoalveolar lavage fluid (BAL) are known biomarkers for a variety of disorders such as heart failure, non-small-cell lung cancer, and pulmonary inflammatory diseases. IL-33 also exists in the nuclei, and nuclear IL-33 seems to regulate cytokine gene expression. In this review, we focus on the role of IL-33/ST2 in the pathogenesis of pulmonary inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), and lung injury.

Keywords

Interleukin-33; ST2; Asthma; COPD; ALI; Signal transduction

I. INTRODUCTION

Pulmonary inflammatory diseases, including asthma, COPD, and acute lung injury (ALI), are major lung disorders that cause breathing problems. Infections, inhaled environmental toxins, and genetics are responsible for most lung diseases. Excessive inflammation plays a central role in the pathogenesis of pulmonary inflammatory diseases. In response to insults, the inflammatory response defends against pathogens and protects lungs from infections, allergens, or pollutants, whereas imbalanced inflammation leads to tissue damage and respiratory failure.

Cytokines are polypeptides produced by most kinds of cells including T cells, macrophages, epithelial cells, and endothelial cells. Cytokines regulate cellular responses through binding to specific membrane receptors. Based on their functions, cytokines can be categorized as pro-inflammatory or anti-inflammatory. Major pro-inflammatory cytokines (e.g., TNF- α , IL-8, IL-6, and IL-1 β) are involved in innate immune responses. IL-10 and TGF- β are considered anti-inflammatory cytokines and promote tissue repair and remodeling in the

* Address all correspondence to: Yutong Zhao, MD, PhD, Department of Medicine, University of Pittsburgh, 3459 Fifth Avenue, NW 628 MUH, Pittsburgh, PA, 15213, United States, Phone: 412-648-9488, Fax: 412-383-7113, zhaoy3@upmc.edu.

Author Manuscript
Author Manuscript
Author Manuscript
Author Manuscript

injured lungs. IL-4, IL-5, and IL-13 play critical roles in the adaptive immune response and promote allergic responses; they exhibit anti-inflammatory properties in acute inflammation. Loss of the delicate balance between pro-inflammatory and anti-inflammatory activity leads to respiratory dysfunction. IL-33 is a newly characterized cytokine that amplifies both innate and adaptive immune responses. In this review, we discuss the role of IL-33 and its receptor ST2 in the pathogenesis of pulmonary inflammatory diseases. The IL-33/ST2 pathway is a potential therapeutic target in the treatment of lung diseases.

II. IL-33

IL-33 is a cytokine that is constitutively expressed in the nuclei of endothelial and epithelial cells.^{1–3} The full-length form of IL-33, pro-IL-33, serves as a gene regulator that is localized in the nuclei,⁴ whereas mature IL-33 serves as a cytokine after release into the extracellular space at the onset of tissue injury.^{5–7} Mature IL-33 is a relatively new member of the IL-1 family.⁵ Unlike IL-1 α and IL-1 β , IL-33 processing does not involve the activity of the NLRP3 inflammasome.⁸ In contrast, cleavage of pro-IL-33 by caspase-1⁹ or apoptotic caspases (e.g., caspase 3 and caspase 7) leads to its inactivation.^{9,10} Once pro-IL-33 (30 kDa) is released into the extracellular space, it is cleaved by proteases, such as calpain, cathepsin G, or neutrophil elastase, to become the pro-inflammatory, mature IL-33 (18 kDa).¹¹ Similar to other alarmin members of the IL-1 family, such as HMGB1 and IL-1 α , IL-33 can signal and activate immune cells such as macrophages, mast cells, eosinophils, basophils, natural killer cells, T cells, circulating CD34(+) stem cells, epithelial cells, and endothelial cells to produce cytokines such as IL-5, IL-13, IL-6, and IL-8.^{12–16} IL-33 has been implicated in both Th1- and Th2-cell-mediated immunity responses; it exhibits both pro-inflammatory and anti-inflammatory effects.⁵ As a pro-inflammatory cytokine, IL-33 plays a crucial role in innate immunity, allergic inflammation, and tissue injury.^{17–21} Increased IL-33 release can be detected in the serum or tissue of patients with asthma, COPD, idiopathic pulmonary fibrosis (IPF), or rheumatoid arthritis (RA).^{22–27} Inhibition of IL-33 via administration of neutralizing IL-33 antibody or IL-33 decoy receptor attenuates lung inflammation in murine models of asthma, COPD, and lung injury.^{28–31} Conversely, IL-33-deficient mice exhibit reduced cytokine release and mortality in the LPS-induced sepsis model, suggesting that IL-33 plays a critical role in innate immunity responses.³² A recent study has revealed a new IL-33 function of promoting antiviral Th1 cell responses. IL-33 acts directly on and enhances the expansion of antiviral CD4+ Th1 effector T cells and cytokine production during viral infection.³³

III. ST2

IL-33 exerts its function through the heterodimeric IL-33 receptor, which consists of one ST2³⁴ and one IL-1R accessory protein (IL-1RAcP) molecule.^{35–37} (IL-1RAcP is a common component of receptors for the IL-1 cytokine family.) ST2 exists in both a secreted form (sST2) and a transmembrane, long form (ST2L).³⁸ Pro-inflammatory stimuli (e.g., LPS, TNF α , LPA, and IL-6) upregulate ST2 mRNA expression.^{39–41} sST2 and ST2L exhibit diametric effects with regard to inflammatory responses.⁴² ST2L is highly expressed on immune effector cells, including lung epithelia, and it plays a critical role in triggering inflammation.^{43–45} In contrast, secreted sST2 acts as a decoy receptor for IL-33 and

functions as an inhibitor of IL-33 signals, exerting an anti-inflammatory effect.⁵ ST2L is a classic type I membrane receptor that contains three extracellular IgG-like domains, a transmembrane domain and an intracellular Toll/IL-1 receptor (TIR) domain.^{34,46} IL-33 binding to extracellular domain of ST2L results in the recruitment of MYD88 to the TIR domain of ST2L, inducing inflammatory mediators by activating transcription factor AP-1 or IRAK-mediated TRAF6, subsequent mitogen-activated protein kinase (MAPK), and IKK/NF- κ B.³⁴ Efforts to elucidate the specific role of ST2L in inflammatory diseases have been confounded by data showing that *st2* knockout or overexpressing mice exhibit changes in both sST2 and ST2L expression.^{47–50} Direct targeting of ST2L is more specific for the IL-33/ST2L pathway. ST2L stability is regulated by a ubiquitin E3 ligase SCF FBXL19 that induces ST2L ubiquitination and proteasome degradation, and thus blocks IL-33 signaling.³¹ Glycogen synthase kinase 3 β (GSK3 β), a serine/threonine kinase, regulates ST2L internalization.⁵¹ It has been shown that inhibition of GSK3 β attenuated IL-33-induced cytokine release.³¹ As a negative regulator of the IL-33/ST2 signaling pathway, TIR8 (also known as SIGIRR) dimerizes with ST2L and ultimately dampens the bioactivity of IL-33.⁵² SIGIRR-deficient Th2 cells show increased production of Th2 cytokines in response to IL-33 treatment.⁵³ All evidence suggests that modulation of ST2 expression impacts IL-33-induced biological functions.

IV. IL-33/ST2 IN ALLERGIC DISEASES

Allergic inflammation is driven by an imbalance of cytokine production between Th1 and Th2 lymphocytes.⁵⁴ Th1 lymphocytes normally initiate immune response by producing IL-2 and INF- γ in response to allergens.⁵⁵ In contrast, Th2 lymphocytes produce pro-inflammatory cytokines including IL-4, IL-5, IL-6, IL-9, and IL-13.⁵⁵ IL-4 and IL-13 are required for Th2-cell development and regulation of B-lymphocyte IgE production.^{34,56–58} Furthermore, IgE and Th2 cytokines stimulate mast cells, basophils, and eosinophils that produce histamine and prostaglandins; thus, they mediate the subsequent inflammation-driven immunity response.⁵⁹ Hyper-reactive type-2 immune responses are the primary contributor to the development of allergic disorders such as asthma, atopic dermatitis, allergic rhinitis, and anaphylaxis.^{24,60–63} ST2L is mainly expressed on the surfaces of Th2 cells, mast cells, and NKT cells and is only transiently expressed on Th1 cells under certain states of cellular activation.^{33,34,64}

IL-33/ST2L contributes to the pathogenesis of allergic inflammatory disorders by activating mast cells and Th2 cells.^{6,24,56,65,66} IL-33 levels and ST2L expression are upregulated in patients with asthma and atopic dermatitis.^{28,39,67} Serving as a chemotactic factor for Th2 cells, IL-33 induces Th2 immune responses by producing pro-inflammatory cytokines, chemokines, and lipid mediators, including IL-4, IL-5, IL-13, tumor necrosis factor- α , GM-CSF, CCL2 (monocyte chemoattractant protein-1), and prostaglandin D₂.^{6,66,68} Tjota et al. discovered that immune complex (IC) increased IL-33 levels from dendritic cells sufficiently to induce the development of a Th2 response.⁶⁹ Administration of an antibody against IL-33 or blockade of IL-33/ST2L by sST2 attenuates allergic airway inflammation by inhibiting Th2 cytokine production and reducing eosinophil infiltration and IgE.^{1,2}

Asthma is a complex and chronic inflammatory airway disease that is influenced by genetic and environmental factors. Several genome-wide association studies (GWAS) have revealed that the gene coding IL-33 and ST2 is a major susceptibility loci for human asthma.⁷⁰⁻⁷³ Genetic polymorphisms in *IL-33/ST2* are found in relation to asthma and specific wheezing phenotypes, especially intermediate-onset wheeze (a phenotype closely associated with sensitization).⁷⁴ A GWA study identified single-nucleotide polymorphisms (SNPs) in *St2* (e.g., rs1420101 for Icelandic population and rs950880 for non-Icelanders) associated with blood eosinophils and all three asthma phenotypes: asthma, atopic asthma, and nonatopic asthma.⁷⁵ These SNPs also correlated positively with serum IgE.⁷⁵ The SNP located 32-kbp proximal to the start codon of *IL33* (rs3939286) has been significantly associated with both eosinophil counts and asthma, except in the nonatopic phenotype.⁷⁵ These findings indicate that *IL33/ST2* SNPs are one of the significant genetic factors for asthma. The TIR domain is the intracellular domain of ST2L that interacts with MYD88, which plays a crucial role in signal transduction. A recent study has shown that missense SNPs in the TIR domain of ST2, such as rs10204137, enhance the IL33/ST2L pathway.⁷⁶ These SNPs also enhance the proximal and distal promoter activity of *St2*.⁷⁶ All of these genetic studies support the hypothesis that IL-33/ST2 contributes to the pathogenesis of asthma.

V. IL-33/ST2 IN COPD

COPD is a progressive inflammatory disorder of the lung. Levels of serum IL-33 and ST2 in COPD patients have been examined by several investigators.^{23,77} Tang et al. discovered that IL-33 levels in COPD patients were lower than those in healthy controls.⁷⁷ Interestingly, IL-33 levels were higher in COPD patients in the stable phase than in COPD patients with chronic *cor pulmonale* during the acute episode stage. In contrast to this study, Xia et al. showed that serum levels of both of IL-33 and ST2 were higher in COPD patients than in control subjects.²³ Consistent with the study, Byer et al. revealed that levels of both IL-33 mRNA and protein were higher in the lungs of COPD patients than in those of non-COPD subjects.⁷⁸ Although the cause of the data disagreement is unknown, more data from clinical and translational research studies, especially studies related to cigarette smoking, suggest that IL-33 contributes to the pathogenesis and progression of COPD. Cigarette smoking is a major cause of COPD. Both IL-33 and ST2 expression was increased in the lungs of mice with cigarette-smoke-induced COPD.^{30,78,79} Anti-IL-33 antibody delivered intranasally inhibited cigarette-smoke-induced pathogenic changes in murine lungs.³⁰ Taken together, these studies suggest that IL-33 plays a critical role in the pathogenesis of COPD. Airway epithelial cells,^{23,80,81} including epithelial progenitor cells,^{78,82} have been considered a major source of IL-33, whereas cigarette smoke also induces IL-33 expression in PBMC⁷⁹ and peripheral blood lymphocytes (PBLs).²³

COPD is characterized by chronic inflammation and alveolar structure disruption.⁸³ Higher levels of interleukins (IL-6 and IL-8) have been detected in BAL and lungs in COPD patients than in normal subjects.⁸⁴⁻⁸⁷ The induced cytokine storm leads to a neutrophil influx into the lungs, resulting in tissue damage.⁸⁷⁻⁸⁹ IL-33 increased IL-6 and IL-8 release in lung epithelial and endothelial cells and promoted cigarette-smoke-induced cytokine release via activation of p38 MAPK.^{79,80} As discussed earlier, IL-33 promotes adaptive immune responses and contributes to mucus generation,⁷⁸ which is common in COPD. Zhao

et al. showed that IL-33 also triggers apoptosis in alveolar epithelial cells, suggesting that elevated IL-33 levels may directly induce tissue damage in COPD.³¹ Although Qiu et al. showed that inhibition of IL-33 signaling may be beneficial in airway inflammation induced by cigarette smoke, the development of potential therapeutic strategies for treating COPD with anti-IL-33 antibody or sST2 administration requires more preclinical studies.³⁰

VI. IL-33/ST2 IN ALI

ALI is a life-threatening inflammatory lung disorder that causes difficulty breathing and organ failure. According to the Berlin definition, ALI is a slightly less severe form of acute respiratory distress syndrome (ARDS) that is caused by direct insults, such as pneumonia, or indirect insults, such as sepsis. ALI is characterized by increased cytokine release, neutrophil influx into the lungs, and pulmonary endothelial barrier disruption. The serum and BAL levels of IL-33 were significantly higher in patients with acute eosinophilic pneumonia than in chronic eosinophilic pneumonia.⁹⁰ Consistent with this study, Ampawong et al. recently demonstrated that bronchial IL-33 levels were increased in severe malaria patients with lung injury.⁹¹ Acute *Plasmodium falciparum* infection increased eosinophil activity,⁹² suggesting that IL-33 may play a role in lung injury with eosinophilic lung inflammation. However, the serum and BAL IL-33 levels in patients with ARDS were not elevated.⁹⁰ Unlike IL-33 expression in ARDS patients, serum sST2 concentrations were higher in ARDS patients,^{93, 94} and these higher sST2 levels were associated with worse outcomes in these patients.⁹⁴

The changes in IL-33/ST2 expression in the lungs have been documented in preclinical animal models of ALI. In a mechanical-ventilation-induced lung injury model, IL-33 levels were increased in rat lungs. Interestingly, ST2L accumulation in the membrane fraction was found in the ventilation group.⁹⁵ In an LPS-induced murine model of ALI, BAL IL-33 and ST2 levels in the lungs were significantly elevated.^{16,31,32,96} Several studies have shown that modulation of IL-33 or ST2 expression affects lung injury. Overexpression of IL-33 by adenovirus-mediated gene delivery promotes bleomycin-induced lung injury.²² Overexpression of sST2 by administration of human adipose tissue-derived mesenchymal stem cells overexpressing sST2, adenovirus-mediated sST2 transfer, hydrodynamic gene transfer, or administration of sST2 protein significantly reduced LPS- or bleomycin-induced lung injury.^{16,96-98} Zhao et al. showed that reduction of ST2L stability by a ubiquitin E3 ligase attenuated LPS-induced lung injury.³¹ Downregulation of IL-33 by heme oxygenase-1 ameliorated LPS-induced ALI.⁹⁶ Taken together, these preclinical studies suggest that inhibition of the IL-33/ST2L pathway may be a potential therapeutic strategy for treating ALI or ARDS.

Elevated cytokine release and endothelial or epithelial barrier dysfunction are major pathological changes in lung injury. IL-33 triggers IL-8 and IL-6 release from PBMCs, pulmonary endothelial cells, and epithelial cells,^{31,51,80,99} thus inducing neutrophil influx into alveolar spaces. The effect of IL-33 on cytokine production might be partly blocked by sST2⁸⁰ or downregulation of ST2L.³¹ In addition to modulating cytokine expression, IL-33 has been known to increase pulmonary endothelial barrier permeability and alveolar

epithelial cell death. All of these effects by IL-33 directly contribute to the pathogenesis of lung injury.

VII. CONCLUSIONS

IL-33 and ST2 are considered biomarkers for a variety of human disorders, including pulmonary inflammatory diseases, which supports the hypothesis that IL-33 is closely associated with the pathogenesis of lung inflammatory diseases. Early preclinical models have shown significant preventative effects with delivery of sST2, an anti-IL-33 antibody, or increases in FBXL19 levels (Fig. 1). Targeting the IL-33/ST2 pathway could be a therapeutic strategy for treating pulmonary inflammatory diseases; however, this approach requires more preclinical studies with post-treatment in animal models. Additionally, the role of IL-33 in the nuclei has not been well studied. Its binding partners in the nuclei need to be identified. The association of IL-33 polymorphisms with asthma, COPD, and lung injury also need to be explored.

Acknowledgments

This work was partly supported by grants from National Institutes of Health (grant no. R01 HL112791 to Y.Z and grant no. R01GM115389 to J.Z.), an American Heart Association award (grant no. 12SDG9050005 to J.Z.), and an American Lung Association Biomedical Research Grant (grant no. RG350146 to J.Z.). We thank Joseph Franz for editing the manuscript.

ABBREVIATIONS

IL-33	interleukin-33
BAL	bronchoalveolar lavage fluid
COPD	chronic obstructive pulmonary disease
TIR	Toll-like/IL-1
IPF	idiopathic pulmonary fibrosis
RA	rheumatoid arthritis
IL-1RAcP	IL-1R accessory protein
ARDS	acute respiratory distress syndrome
GWAS	several genome-wide association studies
MAPK	mitogen-activated protein kinase
GSK3β	glycogen synthase kinase 3 β
SNP	single-nucleotide polymorphism.

References

1. Baekkevold ES, Roussigne M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F, Brandtzaeg P, Erard M, Haraldsen G, Girard JP. Molecular characterization of NF-HEV, a nuclear factor

preferentially expressed in human high endothelial venules. *Am J Pathol.* 2003 Jul; 163(1):69–79. [PubMed: 12819012]

2. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. *Proc Nat Acad Sci U S A.* 2007 Jan 2; 104(1):282–7.
3. Pichery M, Mirey E, Mercier P, Lefrancais E, Dujardin A, Ortega N, Girard JP. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel IL-33-LacZ gene trap reporter strain. *J Immunol.* 2012 Apr 1; 188(7):3488–95. [PubMed: 22371395]
4. Choi YS, Park JA, Kim J, Rho SS, Park H, Kim YM, Kwon YG. Nuclear IL-33 is a transcriptional regulator of NF- κ B p65 and induces endothelial cell activation. *Biochem Biophys Res Comm.* 2012 May 4; 421(2):305–11. [PubMed: 22708120]
5. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. *Nature Rev Immunol.* 2010 Feb; 10(2):103–10. [PubMed: 20081870]
6. Komai-Koma M, Xu D, Li Y, McKenzie AN, McInnes IB, Liew FY. IL-33 is a chemoattractant for human Th2 cells. *Eur J Immunol.* 2007 Oct; 37(10):2779–86. [PubMed: 17853410]
7. Lunderius-Andersson C, Enoksson M, Nilsson G. Mast Cells Respond to Cell Injury through the Recognition of IL-33. *Front Immunol.* 2012; 3:82. [PubMed: 22566963]
8. Lefrancais E, Cayrol C. Mechanisms of IL-33 processing and secretion: differences and similarities between IL-1 family members. *Eur Cytokine Network.* 2012 Oct-Dec;23(4):120–7.
9. Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. *Proc Nat Acad Sci U S A.* 2009 Jun 2; 106(22):9021–6.
10. Luthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, Brumatti G, Taylor RC, Kersse K, Vandenabeele P, Lavelle EC, Martin SJ. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. *Immunity.* 2009 Jul 17; 31(1):84–98. [PubMed: 19559631]
11. Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, Cayrol C. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. *Proc Nat Acad Sci U S A.* 2012 Jan 31; 109(5):1673–8.
12. Allakhverdi Z, Comeau MR, Smith DE, Toy D, Endam LM, Desrosiers M, Liu YJ, Howie KJ, Denburg JA, Gauvreau GM, Delespesse G. CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. *J Allergy Clin Immunol.* 2009 Feb; 123(2):472–8. [PubMed: 19064280]
13. Drube S, Heink S, Walter S, Lohn T, Grusser M, Gerbaulet A, Berod L, Schons J, Dukeck A, Freitag J, Grotha S, Reich D, Rudeschko O, Norgauer J, Hartmann K, Roers A, Kamradt T. The receptor tyrosine kinase c-Kit controls IL-33 receptor signaling in mast cells. *Blood.* 2010 May 13; 115(19):3899–906. [PubMed: 20200353]
14. Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. *J Allergy Clin Immunol.* 2008 Jun; 121(6):1484–90. [PubMed: 18539196]
15. Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. *Int Immunol.* 2008 Aug; 20(8):1019–30. [PubMed: 18550585]
16. Oshikawa K, Yanagisawa K, Tominaga S, Sugiyama Y. ST2 protein induced by inflammatory stimuli can modulate acute lung inflammation. *Biochem Biophys Res Comm.* 2002 Nov 22; 299(1):18–24. [PubMed: 12435383]
17. Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H. Human IL-25- and IL-33-responsive type-2 innate lymphoid cells are defined by expression of CRTH2 and CD161. *Nature Immunol.* 2011 Nov; 12(11):1055–62. [PubMed: 21909091]
18. Walker JA, McKenzie AN. Development and function of group 2 innate lymphoid cells. *Curr Opin Immunol.* 2013 Apr; 25(2):148–55. [PubMed: 23562755]

19. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? *PLoS One*. 2008; 3(10):e3331. [PubMed: 18836528]
20. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. *Nature Med*. 2007 Jul; 13(7):851–6. [PubMed: 17572686]
21. Cho KA, Suh JW, Sohn JH, Park JW, Lee H, Kang JL, Woo SY, Cho YJ. IL-33 induces Th17-mediated airway inflammation via mast cells in ovalbumin-challenged mice. *Am J Physiol Lung Cell Mole*. 2012 Feb 15; 302(4):L429–40. [PubMed: 22180658]
22. Luzina IG, Kopach P, Lockatell V, Kang PH, Nagarsekar A, Burke AP, Hasday JD, Todd NW, Atamas SP. Interleukin-33 potentiates bleomycin-induced lung injury. *Am J Respir Cell Mole*. 2013 Dec; 49(6):999–1008. [PubMed: 23837438]
23. Xia J, Zhao J, Shang J, Li M, Zeng Z, Zhao J, Wang J, Xu Y, Xie J. Increased IL-33 expression in chronic obstructive pulmonary disease. *Am J Physiol Lung Cell Mole*. 2015 Apr 1; 308(7):L619–27. [PubMed: 25595648]
24. Pushparaj PN, Tay HK, H'Ng SC, Pitman N, Xu D, McKenzie A, Liew FY, Melendez AJ. The cytokine interleukin-33 mediates anaphylactic shock. *Proc Nat Acad Sci U S A*. 2009 Jun 16; 106(24):9773–8.
25. Raeiszadeh Jahromi S, Mahesh PA, Jayaraj BS, Madhunapantula SR, Holla AD, Vishweswaraih S, Ramachandra NB. Serum levels of IL-10, IL-17F and IL-33 in patients with asthma: a case-control study. *J Asthma*. 2014 Dec; 51(10):1004–13. [PubMed: 24960440]
26. Prefontaine D, Lajoie-Kadoch S, Foley S, Audusseau S, Olivenstein R, Halayko AJ, Lemiere C, Martin JG, Hamid Q. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. *J Immunol*. 2009 Oct 15; 183(8):5094–103. [PubMed: 19801525]
27. Matsuyama Y, Okazaki H, Tamemoto H, Kimura H, Kamata Y, Nagatani K, Nagashima T, Hayakawa M, Iwamoto M, Yoshio T, Tominaga S, Minota S. Increased levels of interleukin 33 in sera and synovial fluid from patients with active rheumatoid arthritis. *J Rheumatol*. 2010 Jan; 37(1):18–25. [PubMed: 19918048]
28. Hayakawa H, Hayakawa M, Kume A, Tominaga S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. *J Biol Chem*. 2007 Sep 7; 282(36):26369–80. [PubMed: 17623648]
29. Palmer G, Talabot-Ayer D, Lamacchia C, Toy D, Seemayer CA, Viatte S, Finckh A, Smith DE, Gabay C. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. *Arthritis and Rheumatism*. 2009 Mar; 60(3):738–49. [PubMed: 19248109]
30. Qiu C, Li Y, Li M, Li M, Liu X, McSharry C, Xu D. Anti-interleukin-33 inhibits cigarette smokeinduced lung inflammation in mice. *Immunology*. 2013 Jan; 138(1):76–82. [PubMed: 23078031]
31. Zhao J, Wei J, Mialki RK, Mallampalli DF, Chen BB, Coon T, Zou C, Mallampalli RK, Zhao Y. F-box protein FBXL19-mediated ubiquitination and degradation of the receptor for IL-33 limits pulmonary inflammation. *Nature Immunol*. 2012 Jul; 13(7):651–8. [PubMed: 22660580]
32. Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A, Nambu A, Abe T, Kiyonari H, Matsumoto K, Sudo K, Okumura K, Saito H, Nakae S. IL-33 is a crucial amplifier of innate rather than acquired immunity. *Proc Nat Acad Sci U S A*. 2010 Oct 26; 107(43):18581–6.
33. Baumann C, Bonilla WV, Frohlich A, Helmstetter C, Peine M, Hegazy AN, Pinschewer DD, Lohning M. T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses. *Proc Nat Acad Sci U S A*. 2015 Mar 31; 112(13):4056–61.
34. Williams JW, Tjota MY, Clay BS, Vander Lugt B, Bandukwala HS, Hrusch CL, Decker DC, Blaine KM, Fixsen BR, Singh H, Sciammas R, Sperling AI. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. *Nature Comm*. 2013; 4:2990.
35. Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. *J Immunol*. 2007 Aug 15; 179(4):2551–5. [PubMed: 17675517]
36. Ali S, Huber M, Kollewe C, Bischoff SC, Falk W, Martin MU. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. *Proc Nat Acad Sci U S A*. 2007 Nov 20; 104(47):18660–5.

37. Lingel A, Weiss TM, Niebuhr M, Pan B, Appleton BA, Wiesmann C, Bazan JF, Fairbrother WJ. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors—insight into heterotrimeric IL-1 signaling complexes. *Structure*. 2009 Oct 14; 17(10):1398–410. [PubMed: 19836339]

38. Iwahana H, Yanagisawa K, Ito-Kosaka A, Zhao Kuroiwa K, Tago K, Komatsu N, Katashima R, Itakura M, Tominaga S. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. *Eur J Biochem/FEBS*. 1999 Sep; 264(2):397–406.

39. Oshikawa K, Yanagisawa K, Tominaga S, Sugiyama Y. Expression and function of the ST2 gene in a murine model of allergic airway inflammation. *Clin Exper Allergy*. 2002 Oct; 32(10):1520–6. [PubMed: 12372135]

40. Zhao J, Xia W, Nie M, Zheng X, Wang Q, Wang X, Wang W, Ning Z, Huang W, Jiang Y, Li M, Wang O, Xing X, Sun Y, Luo L, He S, Yu W, Lin Q, Pei Y, Zhang F, Han Y, Tong Y, Che Y, Shen R, Hu Y, Zhou X, Chen Q, Xu L. A haplotype of MATN3 is associated with vertebral fracture in Chinese postmenopausal women: Peking Vertebral Fracture (PK-VF) study. *Bone*. 2012 Apr; 50(4):917–24. [PubMed: 22270056]

41. Kumar S, Tzimas MN, Griswold DE, Young PR. Expression of ST2, an interleukin-1 receptor homologue, is induced by proinflammatory stimuli. *Biochem Biophys Res Comm*. 1997 Jun 27; 235(3):474–8. [PubMed: 9207179]

42. Trajkovic V, Sweet MJ, Xu D. T1/ST2--an IL-1 receptor-like modulator of immune responses. *Cytokine Growth Factor Rev*. 2004 Apr-Jun; 15(2–3):87–95. [PubMed: 15110792]

43. Kouzaki H, Iijima K, Kobayashi T, O’Grady SM, Kita H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. *J Immunol*. 2011 Apr 1; 186(7):4375–87. [PubMed: 21357533]

44. Chan WL, Pejnovic N, Lee CA, Al-Ali NA. Human IL-18 receptor and ST2L are stable and selective markers for the respective type 1 and type 2 circulating lymphocytes. *J Immunol*. 2001 Aug 1; 167(3):1238–44. [PubMed: 11466339]

45. Coyle AJ, Lloyd C, Tian J, Nguyen T, Eriksson C, Wang L, Ottoson P, Persson P, Delaney T, Lehar S, Lin S, Poisson L, Meisel C, Kamradt T, Bjerke T, Levinson D, Gutierrez-Ramos JC. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. *J Exper Med*. 1999 Oct 4; 190(7):895–902. [PubMed: 10510079]

46. Boraschi D, Tagliabue A. The interleukin-1 receptor family. *Vitamins Hormones*. 2006; 74:229–54. [PubMed: 17027517]

47. Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, Shepherd M, McSharry C, McInnes IB, Xu D, Liew FY. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. *J Immunol*. 2009 Nov 15; 183(10):6469–77. [PubMed: 19841166]

48. Hoshino K, Kashiwamura S, Kurabayashi K, Kodama T, Tsujimura T, Nakanishi K, Matsuyama T, Takeda K, Akira S. The absence of interleukin 1 receptor-related T1/ST2 does not affect T helper cell type 2 development and its effector function. *J Exper Med*. 1999 Nov 15; 190(10):1541–8. [PubMed: 10562328]

49. Mangan NE, Dasvarma A, McKenzie AN, Fallon PG. T1/ST2 expression on Th2 cells negatively regulates allergic pulmonary inflammation. *Eur J Immunol*. 2007 May; 37(5):1302–12. [PubMed: 17407196]

50. Ohto-Ozaki H, Kuroiwa K, Mato N, Matsuyama Y, Hayakawa M, Tamemoto H, Tominaga S. Characterization of ST2 transgenic mice with resistance to IL-33. *Eur J Immunol*. 2010 Sep; 40(9): 2632–42. [PubMed: 20662097]

51. Zhao J, Wei J, Bowser RK, Traister RS, Fan MH, Zhao Y. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3beta regulates IL-33 receptor internalization and IL-33 signaling. *J Immunol*. 2015 Jan 15; 194(2):795–802. [PubMed: 25472995]

52. Garlanda C, Anders HJ, Mantovani A. TIR8/SIGIRR: an IL-1R/TLR family member with regulatory functions in inflammation and T cell polarization. *Trends Immunol*. 2009 Sep; 30(9): 439–46. [PubMed: 19699681]

53. Bulek K, Swaidani S, Qin J, Lu Y, Gulen MF, Herjan T, Min B, Kastelein RA, Aronica M, Kosz-Vnenchak M, Li X. The essential role of single Ig IL-1 receptor-related molecule/Toll IL-1R8 in regulation of Th2 immune response. *J Immunol.* 2009 Mar 1; 182(5):2601–9. [PubMed: 19234154]

54. Drazen JM, Arm JP, Austen KF. Sorting out the cytokines of asthma. *J Exper Med.* 1996 Jan 1; 183(1):1–5. [PubMed: 8551212]

55. Romagnani S. T-cell subsets (Th1 versus Th2). *Ann Allergy Asthma Immunol.* 2000 Jul; 85(1):9–18. quiz, 21. [PubMed: 10923599]

56. Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, McKenzie AN. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. *J Allergy Clin Immunol.* 2012 Jan; 129(1):191–8. e1–4. [PubMed: 22079492]

57. McKenzie GJ, Fallon PG, Emson CL, Grincis RK, McKenzie AN. Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. *J Exper Med.* 1999 May 17; 189(10):1565–72. [PubMed: 10330435]

58. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, McIlgorm A, Jolin HE, McKenzie AN. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. *J Exper Med.* 2006 Apr 17; 203(4):1105–16. [PubMed: 16606668]

59. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. *J Allergy Clin Immunol.* 2010 Feb; 125(2 Suppl 2):S73–S80. [PubMed: 20176269]

60. Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. *J Clin Investig.* 2004 Mar; 113(5):651–7. [PubMed: 14991059]

61. Paul WE, Zhu J. How are T(H)2-type immune responses initiated and amplified? *Nature Rev Immunol.* 2010 Apr; 10(4):225–35. [PubMed: 20336151]

62. Wedemeyer J, Tsai M, Galli SJ. Roles of mast cells and basophils in innate and acquired immunity. *Curr Opin Immunol.* 2000 Dec; 12(6):624–31. [PubMed: 11102764]

63. Kearley J, Buckland KF, Mathie SA, Lloyd CM. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. *Am J Respir Crit Care Med.* 2009 May 1; 179(9):772–81. [PubMed: 19179489]

64. Kropf P, Schopf LR, Chung CL, Xu D, Liew FY, Sypek JP, Muller I. Expression of Th2 cytokines and the stable Th2 marker ST2L in the absence of IL-4 during Leishmania major infection. *Eur J Immunol.* 1999 Nov; 29(11):3621–8. [PubMed: 10556817]

65. Ho LH, Ohno T, Oboki K, Kajiwara N, Suto H, Iikura M, Okayama Y, Akira S, Saito H, Galli SJ, Nakae S. IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcepsilonRI signals. *J Leukocyte Biol.* 2007 Dec; 82(6):1481–90. [PubMed: 17881510]

66. Moulin D, Donze O, Talabot-Ayer D, Mezin F, Palmer G, Gabay C. Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. *Cytokine.* 2007 Dec; 40(3):216–25. [PubMed: 18023358]

67. Tamagawa-Mineoka R, Okuzawa Y, Masuda K, Katoh N. Increased serum levels of interleukin 33 in patients with atopic dermatitis. *J Am Acad Dermatol.* 2014 May; 70(5):882–8. [PubMed: 24569114]

68. Allakhverdi Z, Smith DE, Comeau MR, Delespesse G. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. *J Immunol.* 2007 Aug 15; 179(4): 2051–4. [PubMed: 17675461]

69. Tjota MY, Williams JW, Lu T, Clay BS, Byrd T, Hrusch CL, Decker DC, de Araujo CA, Bryce PJ, Sperling AI. IL-33-dependent induction of allergic lung inflammation by FcgammaRIII signaling. *J Clin Investig.* 2013 May; 123(5):2287–97. [PubMed: 23585480]

70. Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir A, Sulem P, Jonsdottir GM, Thorleifsson G, Helgadottir H, Steinhorsdottir V, Stefansson H, Williams C, Hui J, Beilby J, Warrington NM, James A, Palmer LJ, Koppelman GH, Heinzmann A, Krueger M, Boezen HM, Wheatley A, Altmuller J, Shin HD, Uh ST, Cheong HS, Jonsdottir B, Gislason D, Park CS, Rasmussen LM, Porsbjerg C, Hansen JW, Backer V, Werge T, Janson C, Jonsson UB, Ng MC, Chan J, So WY, Ma R, Shah SH, Granger CB, Quyyumi AA, Levey AI, Vaccarino V, Reilly MP, Rader DJ, Williams MJ, van Rij AM, Jones GT, Trabetti E, Malerba G, Pignatti PF, Boner A, Pescalderung L, Girelli

D, Olivier O, Martinelli N, Ludviksson BR, Ludviksdottir D, Eyjolfsson GI, Arnar D, Thorgeirsson G, Deichmann K, Thompson PJ, Wjst M, Hall IP, Postma DS, Gislason T, Gulcher J, Kong A, Jonsdottir I, Thorsteinsdottir U, Stefansson K. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. *Nature Genet.* 2009 Mar; 41(3):342–7. [PubMed: 19198610]

71. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson WO, Consortium G. A large-scale, consortium-based genome-wide association study of asthma. *New Eng J Med.* 2010 Sep 23; 363(13):1211–21. [PubMed: 20860503]

72. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, Himes BE, Levin AM, Mathias RA, Hancock DB, Baurley JW, Eng C, Stern DA, Celedon JC, Rafaels N, Capurso D, Conti DV, Roth LA, Soto-Quiros M, Togias A, Li X, Myers RA, Romieu I, Van Den Berg DJ, Hu D, Hansel NN, Hernandez RD, Israel E, Salam MT, Galanter J, Avila PC, Avila L, Rodriguez-Santana JR, Chapela R, Rodriguez-Cintron W, Dette GB, Adkinson NF, Abel RA, Ross KD, Shi M, Faruque MU, Dunston GM, Watson HR, Mantese VJ, Ezurum SC, Liang L, Ruczinski I, Ford JG, Huntsman S, Chung KF, Vora H, Li X, Calhoun WJ, Castro M, Sienra-Monge JJ, del Rio-Navarro B, Deichmann KA, Heinzmann A, Wenzel SE, Busse WW, Gern JE, Lemanske RF Jr, Beaty TH, Bleecker ER, Raby BA, Meyers DA, London SJ, Mexico City Childhood Asthma S; Gilliland FD, Children's Health S, study H; Burchard EG, Genetics of Asthma in Latino Americans Study SoG-E, Admixture in Latino A, Study of African Americans AG, Environments; Martinez FD, Childhood Asthma R, Education N; Weiss ST, Childhood Asthma Management P; Williams LK, Study of Asthma P, Pharmacogenomic Interactions by R-E; Barnes KC, Genetic Research on Asthma in African Diaspora S. Ober C, Nicolae DL. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. *Nature Genet.* 2011 Sep; 43(9):887–92. [PubMed: 21804549]

73. Traister RS, Uvalle CE, Hawkins GA, Meyers DA, Bleecker ER, Wenzel SE. Phenotypic and genotypic association of epithelial IL1RL1 to human TH2-like asthma. *J Allergy Clin Immunol.* 2015 Jan; 135(1):92–9. [PubMed: 25091434]

74. Savenije OE, Mahachie John JM, Granell R, Kerkhof M, Dijk FN, de Jongste JC, Smit HA, Brunekreef B, Postma DS, Van Steen K, Henderson J, Koppelman GH. Association of IL33-IL-1 receptor-like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. *J Allergy Clin Immunol.* 2014 Jul; 134(1):170–7. [PubMed: 24568840]

75. Savenije OE, Kerkhof M, Reijmerink NE, Brunekreef B, de Jongste JC, Smit HA, Wijga AH, Postma DS, Koppelman GH. Interleukin-1 receptor-like 1 polymorphisms are associated with serum IL1RL1-a, eosinophils, and asthma in childhood. *J Allergy Clin Immunol.* 2011 Mar; 127(3):750–6. e1–5. [PubMed: 21281963]

76. Ho JE, Chen WY, Chen MH, Larson MG, McCabe EL, Cheng S, Ghorbani A, Coglianese E, Emilsson V, Johnson AD, Walter S, Franceschini N, O'Donnell CJ, Consortium CA, Group CIW; Dehghan A, Lu C, Levy D, Newton-Cheh C, Group CHFW. Lin H, Felix JF, Schreiter ER, Vasan RS, Januzzi JL, Lee RT, Wang TJ. Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling. *J Clin Investig.* 2013 Oct; 123(10):4208–18. [PubMed: 23999434]

77. Tang Y, Guan Y, Liu Y, Sun J, Xu L, Jiang Y. The role of the serum IL-33/sST2 axis and inflammatory cytokines in chronic obstructive pulmonary disease. *J Interferon Cytokine Res.* 2014 Mar; 34(3):162–8. [PubMed: 24102578]

78. Byers DE, Alexander-Brett J, Patel AC, Agapov E, Dang-Vu G, Jin X, Wu K, You Y, Alevy Y, Girard JP, Stappenbeck TS, Patterson GA, Pierce RA, Brody SL, Holtzman MJ. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. *J Clin Investig.* 2013 Sep; 123(9):3967–82. [PubMed: 23945235]

79. Wu H, Yang S, Wu X, Zhao J, Zhao J, Ning Q, Xu Y, Xie J. Interleukin-33/ST2 signaling promotes production of interleukin-6 and interleukin-8 in systemic inflammation in cigarette smoke-induced chronic obstructive pulmonary disease mice. *Biochem Biophys Res Comm.* 2014 Jul 18; 450(1):110–6. [PubMed: 24866242]

80. Shang J, Zhao J, Wu X, Xu Y, Xie J, Zhao J. Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation. *Biochem Cell Biol.* 2015 Aug; 93(4):359–66. [PubMed: 26158865]

81. Pace E, Di Sano C, Sciarrino S, Scafidi V, Ferraro M, Chiappara G, Siena L, Gangemi S, Vitulo P, Giarratano A, Gjomarkaj M. Cigarette smoke alters IL-33 expression and release in airway epithelial cells. *Biochimica et Biophysica Acta*. 2014 Sep; 1842(9):1630–7. [PubMed: 24931101]

82. Holtzman MJ, Byers DE, Brett JA, Patel AC, Agapov E, Jin X, Wu K. Linking acute infection to chronic lung disease. The role of IL-33-expressing epithelial progenitor cells. *Ann Am Thorac Soc*. 2014 Dec; 11(Suppl 5):S287–91. [PubMed: 25525734]

83. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. American Thoracic Society. *Am J Respir Crit Care Med*. 1995 Nov; 152(5 Pt 2):S77–S121. [PubMed: 7582322]

84. Bhowmik A, Seemungal TA, Sapsford RJ, Wedzicha JA. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. *Thorax*. 2000 Feb; 55(2):114–20. [PubMed: 10639527]

85. Bucchioni E, Kharitonov SA, Allegra L, Barnes PJ. High levels of interleukin-6 in the exhaled breath condensate of patients with COPD. *Respir Med*. 2003 Dec; 97(12):1299–302. [PubMed: 14682411]

86. Soler N, Ewig S, Torres A, Filella X, Gonzalez J, Zauber A. Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. *Eur Respir J*. 1999 Nov; 14(5):1015–22. [PubMed: 10596683]

87. Hacievliyagil SS, Gunen H, Mutlu LC, Karabulut AB, Temel I. Association between cytokines in induced sputum and severity of chronic obstructive pulmonary disease. *Respir Med*. 2006 May; 100(5):846–54. [PubMed: 16214322]

88. Moermans C, Heinen V, Nguyen M, Henket M, Sele J, Manise M, Corhay JL, Louis R. Local and systemic cellular inflammation and cytokine release in chronic obstructive pulmonary disease. *Cytokine*. 2011 Nov; 56(2):298–304. [PubMed: 21880505]

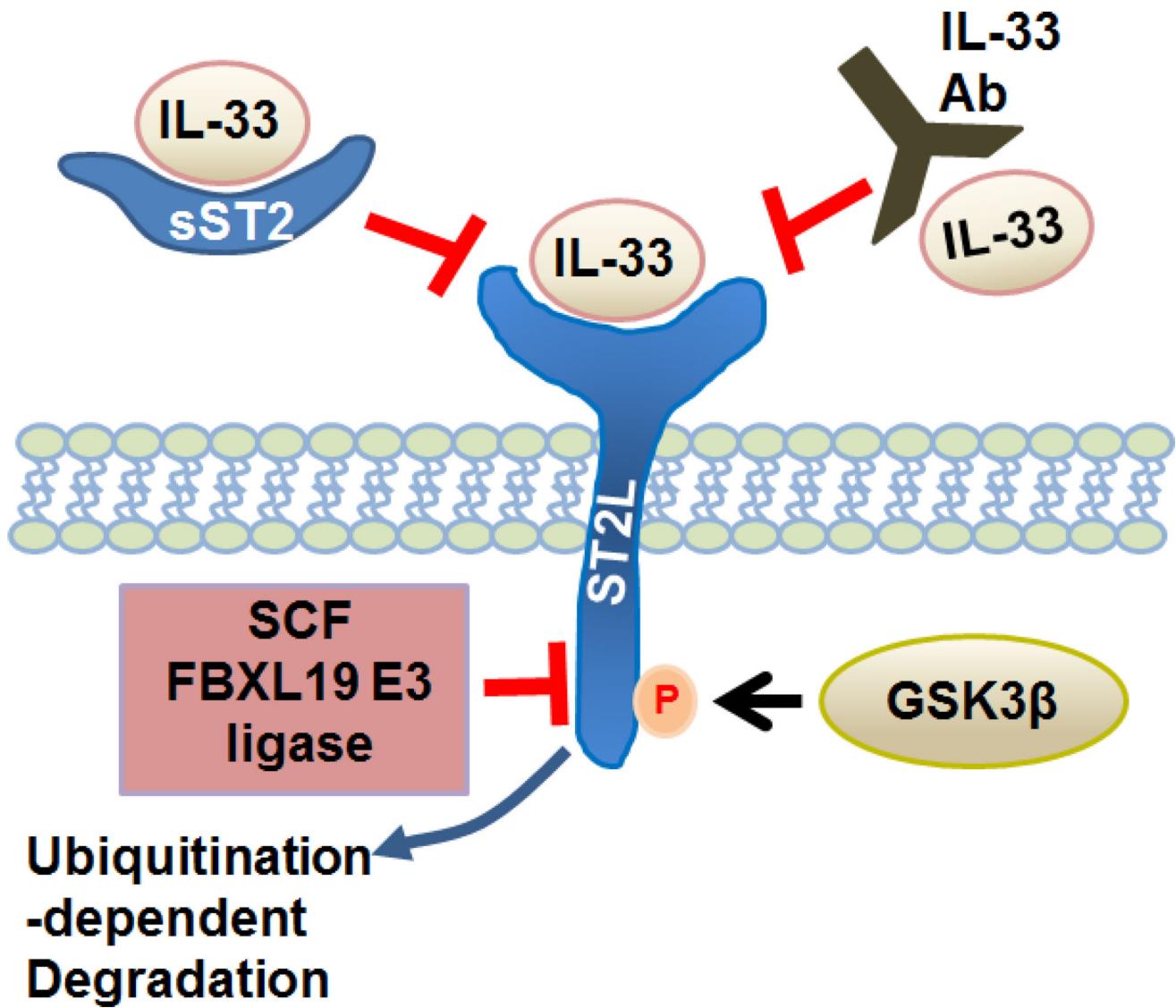
89. Rouhani F, Paone G, Smith NK, Krein P, Barnes P, Brantly ML. Lung neutrophil burden correlates with increased pro-inflammatory cytokines and decreased lung function in individuals with alpha(1)-antitrypsin deficiency. *Chest*. 2000 May; 117(5 Suppl 1):250S–1S. [PubMed: 10843938]

90. Mato N, Bando M, Kusano A, Hirano T, Nakayama M, Uto T, Nakaya T, Yamasawa H, Sugiyama Y. Clinical significance of interleukin 33 (IL-33) in patients with eosinophilic pneumonia. *Allergol Int*. 2013 Mar; 62(1):45–52. [PubMed: 23000728]

91. Ampawong S, Chaisri U, Viriyavejakul P, Prapansilp P, Grau GE, Turner GD, Pongponratn E. A potential role for interleukin-33 and gamma-epithelium sodium channel in the pathogenesis of human malaria associated lung injury. *Malaria J*. 2015; 14(1):389.

92. Kurtzhals JA, Reimert CM, Tette E, Dunyo SK, Koram KA, Akanmori BD, Nkrumah FK, Hviid L. Increased eosinophil activity in acute Plasmodium falciparum infection—association with cerebral malaria. *Clin Exper Immunol*. 1998 May; 112(2):303–7. [PubMed: 9649195]

93. Martinez-Rumayor A, Camargo CA, Green SM, Baggish AL, O'Donoghue M, Januzzi JL. Soluble ST2 plasma concentrations predict 1-year mortality in acutely dyspneic emergency department patients with pulmonary disease. *Am J Clin Pathol*. 2008 Oct; 130(4):578–84. [PubMed: 18794051]


94. Bajwa EK, Volk JA, Christiani DC, Harris RS, Matthay MA, Thompson BT, Januzzi JL, National Heart L, Blood Institute Acute Respiratory Distress Syndrome N. Prognostic and diagnostic value of plasma soluble suppression of tumorigenicity-2 concentrations in acute respiratory distress syndrome. *Crit Care Med*. 2013 Nov; 41(11):2521–31. [PubMed: 23939353]

95. Yang SH, Lin JC, Wu SY, Huang KL, Jung F, Ma MC, Wang Hsu GS, Jow GM. Membrane translocation of IL-33 receptor in ventilator induced lung injury. *PloS One*. 2015; 10(3):e0121391. [PubMed: 25815839]

96. Yin H, Li X, Yuan B, Zhang B, Hu S, Gu H, Jin X, Zhu J. Heme oxygenase-1 ameliorates LPS-induced acute lung injury correlated with downregulation of interleukin-33. *Int Immunopharmacol*. 2011 Dec; 11(12):2112–7. [PubMed: 21945667]

97. Martinez-Gonzalez I, Roca O, Masclans JR, Moreno R, Salcedo MT, Baekelandt V, Cruz MJ, Rello J, Aran JM. Human mesenchymal stem cells overexpressing the IL-33 antagonist soluble IL-1 receptor-like-1 attenuate endotoxin-induced acute lung injury. *Am J Respir Cell Molec Biol*. 2013 Oct; 49(4):552–62. [PubMed: 23656573]

98. Mato N, Fujii M, Hakamata Y, Kobayashi E, Sato A, Hayakawa M, Ohto-Ozaki H, Bando M, Ohno S, Tominaga S, Sugiyama Y. Interleukin-1 receptor-related protein ST2 suppresses the initial stage of bleomycin-induced lung injury. *Eur Respir J*. 2009 Jun; 33(6):1415–28. [PubMed: 19196821]
99. Yagami A, Orihara K, Morita H, Futamura K, Hashimoto N, Matsumoto K, Saito H, Matsuda A. IL-33 mediates inflammatory responses in human lung tissue cells. *J Immunol*. 2010 Nov 15; 185(10):5743–50. [PubMed: 20926795]

FIG. 1.

Regulation of IL-33/ST2 pathway by sST2, IL-33 neutralizing antibodies, and GSK3 β -regulated ubiquitin-proteasome system. Administration of sST2 or IL-33 antibody (Ab) targets extracellular IL-33 to prevent IL-33/ST2L interaction. FBXL19 and GSK3 β regulate ST2L stability and internalization, thus reducing IL-33/ST2L downstream signaling. Targeting IL-33/ST2 pathway is a potential therapeutic strategy for treating pulmonary inflammatory diseases.