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Abstract

Motivation—Family-based designs have been repeatedly shown to be powerful in detecting the
significant rare variants associated with human diseases. Furthermore, human diseases are often
defined by the outcomes of multiple phenotypes, and thus we expect multivariate family-based
analyses may be very efficient in detecting associations with rare variants. However, few statistical
methods implementing this strategy have been developed for family-based designs. In this report,
we describe one such implementation: the multivariate family-based rare variant association tool
(MFARVAT).

Results—mFARVAT is a quasi-likelihood-based score test for rare variant association analysis
with multiple phenotypes, and tests both homogeneous and heterogeneous effects of each variant
on multiple phenotypes. Simulation results show that the proposed method is generally robust and
efficient for various disease models, and we identify some promising candidate genes associated
with chronic obstructive pulmonary disease.
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1 INTRODUCTION

In spite of tens of thousands of genome-wide association studies (GWAS), the so-called
missing heritability (Manolio, Collins et al. 2009) reveals that analyses of common variants
detect only a limited number of disease susceptibility loci and a substantial amount of causal
variants may remain undiscovered by GWAS. Sequencing technology was expected to
supply this additional information by obtaining large stretches of DNA spanning the entire
genome, and improvements in this technology have enabled genetic association analysis of
rare/common causal variants. However, the ‘common disease rare variant’ hypothesis
implies that multiple rare variants can affect disease status and thus the proportion of
affected individuals sharing the same causal variants could be very small. Therefore,
analyses of rare variants suffer from genetic heterogeneity among affected individuals. In
this context, because affected relatives have more chance to share the same causal variants
(Shi and Rao 2011), and hence the genetic heterogeneity among affected relatives is
expected to be smaller, family-based analyses have been repeatedly addressed as an
important strategy.

Genetic association analyses simultaneously test a large number of variants, and stringent
significance levels imposed by the multiple testing problem highlight the importance of
powerful strategies. In particular, multiple measurements can be obtained from different but
related phenotypes, or from repeated measurements of a single phenotype at different time
points. Association analyses with multiple phenotypes often lead to substantial
improvements in statistical power (Schifano, Li et al. 2013) and such improvements are
inversely related to correlations between phenotypes (Lee, Park et al. 2014). Several
different methods have been proposed, including the scaled marginal model (Schifano, Li et
al. 2013) and the extended Simes procedures for population-based samples (van der Sluis,
Posthuma et al. 2013). The statistical power of these methods depends on the relationships
between the causal variants and the multiple phenotypes, which are usually unknown (van
der Sluis, Posthuma et al. 2013); this property applies to rare variant association analyses.
For instance, if the effects of the rare variants on each of the multiple phenotypes are in the
same direction, the burden test may be most efficient; but if the multiple genetic effects are
heterogeneous, SKAT may be more reasonable (Lee, Wu et al. 2012).

However, phenotypic relatedness between family members complicates parameter
estimation, particularly for dichotomous phenotypes. For this situation, very few approaches
other than FBAT statistics (Laird, Horvath et al. 2000), which can be used to conduct
multivariate genetic association analyses with large families, are available. FBAT statistics
preserve robustness against population substructure and have been extended for joint
analysis of multiple phenotypes and genotypes (Gray-McGuire, Bochud et al. 2009), and for
rare variant association analysis (Yip, De et al. 2011). However, FBAT statistics do not fully
use the information in the parental phenotypes, and loss of power can be substantial if the
number of founders is relatively large.

Recently, the FAmily-based Rare Variant Association 7est (FARVAT) based on quasi-
likelihood was proposed (Choi, Lee et al. 2014). FARVAT is robust against population
substructure, and includes burden, SKAT and SKAT-O statistics for both dichotomous and

Genet Epidemiol. Author manuscript; available in PMC 2017 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wang et al.

Page 3

quantitative phenotypes. In this report, we extend FARVAT to implement the multivariate
family-based rare variant association analysis tool (mFARVAT). mFARVAT includes both
homogeneous and heterogeneous approaches, and, in this respect, is similar to skatMeta
(Lee, Teslovich et al. 2013). The method can analyze both quantitative and dichotomous
phenotypes, and is robust against population substructure if the correlation matrix between
individuals can be estimated from large-scale genetic data. mFARVAT is implemented in C+
+, and is computationally fast even for extended families. Furthermore, mFARVAT was
applied to multiple phenotypes associated with chronic obstructive pulmonary disease
(COPD), and some promising results illustrate its practical value.

2 METHODS

For genetic association analyses either prospective or retrospective approaches can be
selected and the choice of strategy depends on the sampling scheme. However, it has been
shown that even for prospectively selected samples, retrospective analyses can preserve
virtually similar statistical power as prospective analyses. Additionally, retrospective
strategies are robust against non-normality of phenotypes, and are computationally less
intensive (Won and Lange 2013). Therefore, we consider retrospective analysis for both
prospectively and retrospectively selected samples, and genetic association is detected by
testing the independence of genotype distributions with phenotypes.

2.1 Notation and disease model

Association between M genetic variants and @ phenotypes is examined, and we denote the
coded genotype of individual /in family /at variant /7 and phenotype g by Xjj,and g,
respectively. We assume there are 7 families and n; individuals in family 7 Thus, the sample

n
size, NV, is Zizlm. We let

T11m
XM= : X=X, ..., XM and
x?L’ILnTTL
Y11q
Yi=| : |, Y=Y'...,Y9).
ynnnq

We also define

Z451 ( Yij1

I

The genetic variance-covariance matrix between individuals can be parameterized with the
kinship coefficient matrix (KCM), @. If we let m; ;- be the kinship coefficient between

ijM
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individual jand individual j*in family / and let gj;be the inbreeding coefficient for
individual jin family 7, @;is

1+d;i1 2m150 21,3
’27%1,1'2 1+dis  2m9,3 ‘

l o

2143 223 14di3

and we define

P
a0 ]
4’:‘00@3 ’

In the presence of population substructure, @ should be replaced with the genetic
relationship matrix (GRM) to provide statistically valid results (Thornton, Tang et al. 2012).
The variance-covariance matrix between the M additively coded markers is denoted by ¥,
and we assume that

COV(Xij, Xz”j’) ~ ZWij)i/jlvar(Xij)ZZWij)i/j/‘I’.

Then we can easily show that

var(vec(X)) = ¥ @ ®.

2.2 Choice of offset

It has been shown that the statistical efficiency of test statistics in retrospective analysis can
be improved by adjusting phenotypes for relevant covariates (Lange, DeMeo et al. 2002).
For our score statistic, we introduced a new parameter 5, for phenotype g of individual /in
family 7 which will be called the offset in the remainder of this report (Won and Lange
2013). We set

Kij1

t
J ?lu’:(l'l"il& s Hu‘zln") aTz]:YU - #”,T:Y — M.

e |
g

Fija

Statistical efficiency depends on 1, and thus its elements need to be carefully selected. The
offset pu can be either calculated by the best linear unbiased predictor (BLUP) with
covariates, as done for SKAT, or the disease prevalence can be used (Won and Lange 2013).
The most efficient p will depend on the sampling scheme. If families are randomly selected,
BLUP was shown to be most efficient for both dichotomous and quantitative phenotypes
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(Won and Lange 2013), while prevalence was recommended to study dichotomous
phenotypes if families with a large number of affected family members are selected
(Thornton and McPeek 2007, Won and Lange 2013). Therefore, we chose BLUP and
prevalence as offsets for quantitative phenotypes and dichotomous phenotypes, respectively.

2.3 Score for quasi-likelihood

) i—1 th
We let e;be an A dimensional vector in which the (J+Zi/:1ni') element is 1 and the

others are 0, and 1,, be a column vector with welements all equal to 1. We denote the effect
of rare variant /7 on phenotype gas B, which is the regression coefficients of the
phenotype on the causal variants. We consider the score statistic and thus B 4 is not needed
to be estimated. However, the false positive rates can be inflated and the statistic for each
Bmq has large false negative rates. Therefore, collapsed genotype scores were utilized to
prevent these problems. Under the null hypothesis, which is 11 = --- = B o = 0, the best
linear unbiased estimator (BLUE) for £(X") (McPeek, Wu et al. 2004) is

_ -1 A~
1,(10@7'1,) 1! &7'X™,

and if we let A=® 1 — &1, (1%, '1,) 1%, &, we can define S}} for the individual
in family /by

Sii=(T;el;) PAX™.

Based on MFQLS (Won, Kim et al. 2015), the score vector for the M variants can be defined
by

S=(s,...,$")=T'®AX,

and because var(vec(X)) ~ Y®®, the variance-covariance matrix for S is approximately
equal to

var(vec(S)) ~ ¥ @ (T'®APT).

2.4 Homogeneous mMFARVAT

The effects of each causal variant on a phenotype, estimated as the regression coefficients of
the phenotype on the causal variants, can be in the same or different directions, and we
propose two different statistics for these two scenarios. Our first statistic, homogeneous
mMFARVAT, assumes that effects of each causal variant on the multiple phenotypes are in the
same direction, for example, when the phenotypes are highly correlated or longitudinal. For
rare variant association analysis, burden tests regress phenotypes on the sum of genotype
scores over rare variants. Therefore, association of the Q phenotypes with variant /7 can be

built by testing whether B, + ... + Byno =0, and we can provide a statistic based on th S.
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The importance of each variant is often different and statistical efficiency can be improved
by weighting each variant based on its relative importance (Madsen and Browning 2009).
Relative importance is usually expressed by a function of minor allele frequency (MAF). We
assume that the weight for variant mis w,; and W is an MxM diagonal matrix with diagonal
elements w;,;; we choose w,, = beta(p,;, a1, ap) proposed by Wu et al (Wu, Lee et al. 2011),
where p,, is the MAF of variant /m7and a; and a, were set to be 1 and 25 respectively.
beta(p,, a1, ap) is flexible because it can accommodate a broad range of scenarios by
considering different a; and ayp, and Wu et al found that the choices of a; and a, were often
efficient. Then the scores for the burden and SKAT tests are, respectively,

1 t t t
WlQS"VlMlMWS Lo
and
L yswwsa
1! T'®APTL, ° e
If we let

R,Ijom:(l - p)L+p1 1

M "0

scores for burden and SKAT tests can be generalized as

1
M= — 1! SWRImWS'1
¢ T1LT'®ASTL, © g @

where the optimal choice of p depends on the distribution of rare variant effects on the
multiple phenotypes.

We denote the eigenvalues of &'/2WRY™W®'/2 by (A, ..., A° ). If we let x3 ,, be an
independent chi-square distribution with a single degree of freedom, we have
M

MSFmN NG

m=1

If we denote the p-value for M.S}'™ by p)MS}°™, and let pmEF ARV ATHe™=pA1SEe™ and
pmF ARV AT =pM S'™, the SKAT-O mFARVAT (mFARVAT ) statistic is defined by

mEF ARV ATHm =min{pM SH™ pMSH®, .. pMSE®, phrsfom).
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Its p-value will be denoted as meARVATg"m in the remainder of this report, and can be
calculated from the numerical algorithm for SKAT-O (Lee, Wu et al. 2012), with a small
modification (see Supplementary Text 1 for the detailed algorithm).

2.5 Heterogeneous mFARVAT

The effect of each variant on a phenotype can be heterogeneous in certain situations, and it
may be reasonable to consider such effects separately. Therefore, we can provide statistics
based on vec(S), and, under the null hypothesis B11 = --* = Basp = 0, we have

E{vec(8)}=0 and var{vec(S)}=¥ @ T'®APT.

If we assume that I, is a w x widentity matrix and

Ry =(1 = p)Lyq+pliugl) g,

we define the generalized score by

MSH=vec(S)" (I, ® W)R* (I, ® W)vec(S).

Then the burden and SKAT tests can be expressed as

M S =vec(S) (I, ® W)1,,, 1}, (I, © W)vec(S),

MSi*=vec(S)" (I, ® W)(I, ® W)vec(S).

If we let (\F, .-, ¥, ) be the eigenvalues of

(216 (T'2AST) )1, 0 WIR, x (1, 0 W) (2o (T'2A2T)?),
then we have
MQ
J\IS{I,{etNZ/\lpxil under Hy.
=1

P-values for 11.5}'°" will be denoted by p) S}, and we let pm F ARV AT ' =pA1 S and
pmF ARV AT " =p M ST". We consider

mFARV AT =min {pz\fsgl‘*t,pM SHet .. pMSHeL, pMs{Iet} .
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We let the p-value form F ARV AT} be pm F ARV AT and the detailed algorithm to
calculate the asymptotic p-value is provided in Supplementary Text 2.

2.6 The simulation model

To evaluate mFARVAT, we simulated large families that extend three generations and consist
of 10 members (see Supplementary Figure 1). 5,000 haplotypes with 50,000 base pairs were
generated under a coalescent model using the software COSI (Schaffner, Foo et al. 2005).
Each haplotype was generated by setting the mutation rate at 1.5 x 1078, Haplotypes were
randomly chosen with replacement to build founder genotypes. Nonfounder haplotypes were
determined in Mendelian fashion from pairs of parents under the assumption of no
recombination. For each simulated haplotype, we defined variants with sample MAFs less
than 0.01 as being rare, and 60 rare variants were randomly selected.

Phenotypes were generated under the null and alternative hypotheses, and we considered
both quantitative and dichotomous phenotypes. Quantitative phenotypes were defined by
summing the phenotypic mean, polygenic effect, main genetic effect and random error, and
we assumed there was no environmental effect shared between family members. Phenotypic
means were denoted by ay,..., ap-1 and a o We assumed that a; = 0, a; = 0.3 for =2,
and a1 =ay=a3z=0, as = a5 = 0.3 for Q=5. The polygenic effects for the Q phenotypes
for each founder were independently generated from MMVA(0,Xg), and for nonfounders the
average of maternal and paternal polygenic effects were combined with values
independently sampled from MVAMQO, 0.5Zg). Random errors for the Q phenotypes were
assumed to be independent, so the random error for phenotype g was independently sampled
from MO, o 7). If Q= 2, we assumed that

|1 Ve 2 _1 2 _
2B_[\/§c 9 :|,0') 1,0 2,

and if Q=5, they were

c 1 V2e¢ 2¢ V2¢
\/§c \/§c 2 2c 2c l ,
V2 V2¢  2e 2 2c

" 1 c V2 2¢ \/56“
|
[ﬂc \/§c 2c 2c 2 J

For cwe chose 0.5 and 0.8.

The genetic effect at variant /7 for phenotype g was the product of B, and the number of
disease susceptibility alleles. Under the null hypothesis, B, was assumed to be 0. Under the
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alternative hypothesis, if we let 4.2 be the proportion of variance explained by rare variants,
B mqgwas sampled from (A0, v,), where

Vg= (O—%’q+0%’q)h§ .
(1 - hg)Z%:ﬁznq?Pm(l - pm)

Here 0]23# indicates the (g,g)™" element of Zg, and we assumed that /.2 = 0.02. BmgWas
generated for both heterogeneous and homogeneous scenarios. For homogeneous scenarios,
we assumed that the effects of each rare variant on different phenotypes are similar. For
example, the ratios between B, ..., and ;o were assumed to be 1:0.9 if Q = 2, and
1:0.9:0.8:0.7:0.6 if Q = 5. For heterogeneous scenario, the effects of each rare variant on
phenotypes were independently generated from (0, v,).

Simulation of dichotomous phenotypes was performed using the liability threshold model.
Once the quantitative phenotypes with genetic effect, polygenic effect and random error
were generated, they were transformed to being affected for quantitative phenotypes larger
than the threshold, and otherwise were transformed to unaffected. The threshold was chosen
to preserve the assumed disease prevalence. We assumed that prevalences of the multiple
phenotypes were 0.1 or 0.2 if =2, and 0.1, 0.2, 0.2, 0.3, or 0.3 if Q= 5. To allow for the
ascertainment bias of dichotomous phenotypes in our simulation studies, we assumed that
families with at least one affected individual were selected for analysis.

3 RESULTS
3.1 Evaluation of mMFARVAT with simulated data

To evaluate statistical validity, type-1 error estimates for both dichotomous and quantitative
phenotypes were calculated at various significance levels using 20,000 replicates of two
hundred extended families, so that each replicate sample contained 2,000 individuals.
Supplementary Table 1 shows empirical type-1 error estimates for homogeneous mFARVAT
(MFARVATH0™) and heterogeneous mFRARVAT (mFARVAT! ) at the 0.05, 0.01, 0.001, and
2.5x1076 significance levels. The estimates are virtually equal to the nominal significance
levels for both quantitative and dichotomous phenotypes. Quantile-quantile (QQ) plots in
Supplementary Figures 2 and 3 also show consistent results, and we conclude that
MFARVAT e and mFARVAT! 0™ are statistically valid.

Empirical power estimates were calculated at the 10~ significance level with correlations
0.5 and 0.8 for quantitative phenotypes (for the underlying quantitative phenotypes in the
case of dichotomous phenotypes). We considered two different scenarios, in which either all
or half the rare variants were causal, and assumed that 50%, 80% and 100% of causal
variants were deleterious, with the rest being protective. Empirical power estimates were

calculated with 2,000 replicates for six different statistics: (1) mF ARV ATSEt; 2
mF ARV ATH™; (3) mF ARV ATE"; (4) mF ARV ATH™; (5) mF ARV AT!I"; (6)

mFARV ATgom. Results are provided in Tables 1-3 and Tables 4-6, which represent
respectively scenarios where all or half the rare variants are causal. Notably, each method
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performed similarly in both scenarios, although the empirical power estimates improve if
causal variants are more abundant.

We first examined the efficiency of the methods. Tables 1-6 confirm that the most efficient
method depends on the disease model, which tends to be unknown. For example, when all
the rare causal variants have deleterious effects on all phenotypes, burden mFARVAT
(mFARVAT g) outperforms all other approaches, but if there are variants with deleterious and
protective effects, SKAT mFARVAT (mFARVAT ) is the most efficient. SKAT-O mFARVAT
(MFARVAT ) is not always the best, but its empirical power estimates are usually very close
to those of the most efficient approach. Therefore, our results are consistent with previous
findings that mFARVAT o is robust and efficient for various disease models (Lee, Wu et al.
2012).

We also compared the performance of mFARVAT et and mFARVATO using simulated
data. Tables 1-6 show that if the effects of each rare variant on phenotypes are
heterogeneous, mFARVAT! € performs better than mFARAVATOM and vice versa. In
addition, when the effects of causal variants go in different directions, as in cases where
some variants are deleterious while others are protective, the gap between the power of
MFARVAT! e and mFARAVAT! 0 s larger than in a scenario where such effects are in the
same direction. Interestingly, for each method the statistical power difference between 100%
and 50% deleterious causal variants seems to be larger for family-based samples than that
for population-based designs (Lee, Emond et al. 2012).

Results for dichotomous phenotypes tend to be similar to those for quantitative phenotypes,
although statistical power for the former is usually smaller. This difference may be explained
by the fact that dichotomous phenotypes were transformed from quantitative phenotypes.
Moreover, overall the power is seen to be inversely related to correlations among
phenotypes. There is some power loss when cis increased from 0.5 to 0.8. Notably, when
more phenotypes are included in the analysis, mFARVAT performs more effectively.

Last, we compared the proposed method with univariate analyses using FARVAT (Choi, Lee
et al. 2014). The minimum p-value adjusted by Bonferroni correction was selected to
calculate the power of univariate analyses. We considered two scenarios: multiple
phenotypes are associated with variants and only a single phenotype is associated with
variants. Results in Tables 1-6 show that for the former scenario multivariate rare variant
analyses perform better than univariate analyses. For the latter scenario, univariate rare
variant analyses outperform multivariate analyses (see Supplementary Table 2).

3.2 Application to real data

We applied mFARVAT to whole-exome sequencing data from the Boston Early-onset COPD
Study (Silverman, Chapman et al. 1998). Sequencing was performed at the University of
Washington Center for Mendelian Genomics. Quality control was performed using PLINK
(Purcell, Neale et al. 2007), vcfTools (Danecek, Auton et al. 2011), and PLINK/SEQ at
Brigham and Women’s Hospital. Quality control included Mendelian error rates (< 1%),
Hardy-Weinberg equilibrium (HWE, p > 1078), and average sequencing depth (> 12).
Relatedness of individuals was evaluated by comparing KCM and GRM. Heterozygous/
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homozygous genotype ratio, Mendelian errors, proportion of variants in dbSNP and
proportion of non-synonymous variants were used to identify outliers. After additionally
filtering out samples with missing phenotypes or covariates, 254 samples from 49 families
were obtained.

We considered five COPD-related phenotypes: forced expiratory volume in one second pre-
bronchodilator (FEVPRE); forced vital capacity post-bronchodilator (FVCPST); forced
expiratory flow 25-75% pre-bronchodilator (DPRF2575); FEVPRE divided by FVCPRE
(RATIO); and DPRF2575 divided by FVCPRE (F2575RAT). Sex, age, height, and pack-
years of cigarette smoking were utilized to estimate BLUP offsets. It should be noted that
genotypes were not used to estimate offsets. The correlation structure of the phenotypes is
shown in Supplementary Table 3.

We assumed that variants with MAFs less than 5% were rare, and we considered only genes
with at least two rare variants and a minor allele count (MAC) of at least four. As a result,
8126 genes and 88,373 rare variants were analyzed. Our statistic requires the correlation
matrix between individuals to obtain ®. If there exists population substructure, GRM should
be utilized for & and otherwise KCM is adequate. We found no significant population
substructure, and KCM was used for ®. The Bonferroni-corrected 0.05 genome-wide
significance level is 6.15E-6. QQ plots in Supplementary Figures 6 show the statistical
validity of our analysis. Manhattan plots are shown in Supplementary Figure 7. The top 10
most significant results from mFARVAT el and mFARVAT0™ are shown in Table 7. We
could not find any genome-wide significant results with association analysis of multiple
phenotypes. The most significant result was found for KRTAP5-9on chromosome 11, with
MFARVAT! (p-value = 1.00x10™4), but the p-value for KRTAP5-9 from mFARVAT! 0 is
2.72x1074. The smaller p-value of mFARVAT" may indicate that effect of each rare variant
on the multiple phenotypes is heterogeneous.

4 DISCUSSION

Extended families have complex correlation structure and association analyses using
extended families are very complicated, in particular for dichotomous phenotypes. For
instance, the unbalanced nature of family-based samples can lead to inflation or deflation of
sandwich estimators for the variance-covariance matrix, and results from generalized
estimating equation can be invalid (Wang, Lee et al. 2013). An alternative approach is to use
a generalized linear mixed model. However, calculating maximum likelihood estimators
requires numerical integration, which is computationally very intensive, and approximations
to avoid this can introduce serious bias (Gilmour, Anderson et al. 1985, Schall 1991).
Therefore in spite of the efficiency of extended families for rare variant association analysis,
few methods have been suggested for family-based association analyses. In this report, we
propose a new method of family-based analysis of rare variants associated with dichotomous
phenotypes, quantitative phenotypes, or both. The proposed method enables multivariate
analyses of extended families to detect rare variants. Extensive simulation studies show that
mFARVAT works well for dichotomous and quantitative phenotypes. Our method is
computationally efficient and association analyses at the genome-wide scale are
computationally feasible for extended families. In our analyses, an Intel (R) Xeon (R)
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E5-2620 0 CPU at 2.00GHz, with a single node and 80 gigabyte memory, required six
minutes to analyze the real data on two phenotypes. mFARVAT is implemented in C++ and
freely downloadable from http://healthstat.snu.ac.kr/software/mfarvat.

However, in spite of the analytical flexibility and efficiency of the method, some limitations
still remain. First, GRM should ideally be used as the correlation matrix ® to provide
robustness against population substructure; however, proper estimation of GRM requires
large-scale common variants. In the absence of such data, the transmission disequilibrium
test (Laird, Horvath et al. 2000) is a unique alternative. Second, the proposed statistics are
for retrospective designs and power loss is expected if samples are prospectively gathered. It
has been shown that appropriate choice of offset minimizes power loss in certain scenarios
but further investigation is still necessary. Third, mFARVAT cannot be used directly to
analyze X-linked variants. The distribution of X-linked genetic variants in the male is
different from that in female, and thus different statistics for males and females are required.
This issue will be investigated in future work.

Over the last decade, we have recognized that a substantial amount of unidentified genetic
risk exists, and much effort has been expended to investigate this risk. Our methods provide
an efficient strategy to analyze rare variant associations in family-based samples, and it may
increase understanding of heritable diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Numerical algorithm to calculate pmFArv aTHom

If we let

-1

Z='?W, and Z2=21,,,(1, 1,,,) ,

the projection matrix onto a space spanned by Z becomes

N-2ZZ'2)Z .
If we let
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1

Q
J1LT'®ASTL,

u=w"1/28t1

,u~MVN(0,1,,,),

sy MQ

MS}F™ becomes

MSTom o' B TWRWE Tu=(1 — p)u'ZZ u+pM*u'ZZ u.

As was shown by Lee et al (Lee, Wu et al. 2012), if we let

7(p)=M? zz+( 7227,
7'z

we have

MSHom=(1-p)u'(1,,,~M)ZZ'(I,,,~M)u+2(1—p)u’(1,,,~ 1) ZZ Tu+7(p)u'Tly,

MQ MQ

where uf(l 10~ MZZ{1 ps0 - Mu, u{lI pso - MZZTu and uu are mutually independent.
Therefore, if we let Py, =min{pMS§™, pMS}%, ..., pMSyS%, pMSF™}, we have

P (A{ngom < on( mln) A’{SHom < Q (Pmin))
=B{P(MSH™ < Qpy(Puin) -, MSH™ < Q, (P u'Tlu=r)}.

Conditional probability can be numerically calculated as was suggested by Lee et al (Lee,
Emond et al. 2012, Lee, Wu et al. 2012):

P(MS;™ < Qpo(Puin)s- -, MS]™™ < Q, (Payin) |u'Tlu=r)).

Numerical algorithm to calculate meARVATOHet

We assume

1,,) "

Z= Var(vec(S))1/2(I ®W), and Z= ZlMQ( oo

Then the projection matrix on a space spanned by Z is

0=Z(Z 2)Z'.

If we let

Genet Epidemiol. Author manuscript; available in PMC 2017 September 01.
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u=var(vec(S)) "/?vec(S), u~MV N (0, L)

M S[* becomes

]\/ISEet:utvar(vec(S)) 2 (I,®@W)var(vec(S)) Ty :(l—p)utZZtu+p(]\1Q)2utﬁtu.

As was suggested by Lee et al (Lee, Wu et al. 2012), if we let

r(p)=(MQ)*2Z+ 7227,
Z 7

we have

]\JSEEt:(l—p)ut (I H)ZZt(IMQ —Mu+2(1—p)u’ (Lo ~I)ZZ'Tu+7(p)u'Tlu,

MQ

Therefore, if we let Py, =min{pMS§5t, pMSH, ... pMS}S,, pMSTt}, we have

P (MSE < Qpy (Pain)s -, MSH < Q, (Pain))
=E{P(MS}* < Qpy(Puin), - - - ,]\,[Si{ft <Q, (Pyin)[u'Tlu=n)}.

P(MS;t < Qpo(Pain); - -, M Siet < Q,, (Puin)[u'Tlu=) can be calculated as in (Lee,
Emond et al. 2012, Lee, Wu et al. 2012).
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