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Abstract

Motivation—Family-based designs have been repeatedly shown to be powerful in detecting the 

significant rare variants associated with human diseases. Furthermore, human diseases are often 

defined by the outcomes of multiple phenotypes, and thus we expect multivariate family-based 

analyses may be very efficient in detecting associations with rare variants. However, few statistical 

methods implementing this strategy have been developed for family-based designs. In this report, 

we describe one such implementation: the multivariate family-based rare variant association tool 

(mFARVAT).

Results—mFARVAT is a quasi-likelihood-based score test for rare variant association analysis 

with multiple phenotypes, and tests both homogeneous and heterogeneous effects of each variant 

on multiple phenotypes. Simulation results show that the proposed method is generally robust and 

efficient for various disease models, and we identify some promising candidate genes associated 

with chronic obstructive pulmonary disease.
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1 INTRODUCTION

In spite of tens of thousands of genome-wide association studies (GWAS), the so-called 

missing heritability (Manolio, Collins et al. 2009) reveals that analyses of common variants 

detect only a limited number of disease susceptibility loci and a substantial amount of causal 

variants may remain undiscovered by GWAS. Sequencing technology was expected to 

supply this additional information by obtaining large stretches of DNA spanning the entire 

genome, and improvements in this technology have enabled genetic association analysis of 

rare/common causal variants. However, the ‘common disease rare variant’ hypothesis 

implies that multiple rare variants can affect disease status and thus the proportion of 

affected individuals sharing the same causal variants could be very small. Therefore, 

analyses of rare variants suffer from genetic heterogeneity among affected individuals. In 

this context, because affected relatives have more chance to share the same causal variants 

(Shi and Rao 2011), and hence the genetic heterogeneity among affected relatives is 

expected to be smaller, family-based analyses have been repeatedly addressed as an 

important strategy.

Genetic association analyses simultaneously test a large number of variants, and stringent 

significance levels imposed by the multiple testing problem highlight the importance of 

powerful strategies. In particular, multiple measurements can be obtained from different but 

related phenotypes, or from repeated measurements of a single phenotype at different time 

points. Association analyses with multiple phenotypes often lead to substantial 

improvements in statistical power (Schifano, Li et al. 2013) and such improvements are 

inversely related to correlations between phenotypes (Lee, Park et al. 2014). Several 

different methods have been proposed, including the scaled marginal model (Schifano, Li et 

al. 2013) and the extended Simes procedures for population-based samples (van der Sluis, 

Posthuma et al. 2013). The statistical power of these methods depends on the relationships 

between the causal variants and the multiple phenotypes, which are usually unknown (van 

der Sluis, Posthuma et al. 2013); this property applies to rare variant association analyses. 

For instance, if the effects of the rare variants on each of the multiple phenotypes are in the 

same direction, the burden test may be most efficient; but if the multiple genetic effects are 

heterogeneous, SKAT may be more reasonable (Lee, Wu et al. 2012).

However, phenotypic relatedness between family members complicates parameter 

estimation, particularly for dichotomous phenotypes. For this situation, very few approaches 

other than FBAT statistics (Laird, Horvath et al. 2000), which can be used to conduct 

multivariate genetic association analyses with large families, are available. FBAT statistics 

preserve robustness against population substructure and have been extended for joint 

analysis of multiple phenotypes and genotypes (Gray-McGuire, Bochud et al. 2009), and for 

rare variant association analysis (Yip, De et al. 2011). However, FBAT statistics do not fully 

use the information in the parental phenotypes, and loss of power can be substantial if the 

number of founders is relatively large.

Recently, the FAmily-based Rare Variant Association Test (FARVAT) based on quasi-

likelihood was proposed (Choi, Lee et al. 2014). FARVAT is robust against population 

substructure, and includes burden, SKAT and SKAT-O statistics for both dichotomous and 
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quantitative phenotypes. In this report, we extend FARVAT to implement the multivariate 

family-based rare variant association analysis tool (mFARVAT). mFARVAT includes both 

homogeneous and heterogeneous approaches, and, in this respect, is similar to skatMeta 

(Lee, Teslovich et al. 2013). The method can analyze both quantitative and dichotomous 

phenotypes, and is robust against population substructure if the correlation matrix between 

individuals can be estimated from large-scale genetic data. mFARVAT is implemented in C+

+, and is computationally fast even for extended families. Furthermore, mFARVAT was 

applied to multiple phenotypes associated with chronic obstructive pulmonary disease 

(COPD), and some promising results illustrate its practical value.

2 METHODS

For genetic association analyses either prospective or retrospective approaches can be 

selected and the choice of strategy depends on the sampling scheme. However, it has been 

shown that even for prospectively selected samples, retrospective analyses can preserve 

virtually similar statistical power as prospective analyses. Additionally, retrospective 

strategies are robust against non-normality of phenotypes, and are computationally less 

intensive (Won and Lange 2013). Therefore, we consider retrospective analysis for both 

prospectively and retrospectively selected samples, and genetic association is detected by 

testing the independence of genotype distributions with phenotypes.

2.1 Notation and disease model

Association between M genetic variants and Q phenotypes is examined, and we denote the 

coded genotype of individual j in family i at variant m and phenotype q by xijm and yijq, 

respectively. We assume there are n families and ni individuals in family i. Thus, the sample 

size, N, is . We let

We also define

The genetic variance-covariance matrix between individuals can be parameterized with the 

kinship coefficient matrix (KCM), Φ. If we let πij,ij' be the kinship coefficient between 
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individual j and individual j' in family i, and let dij be the inbreeding coefficient for 

individual j in family i, Φi is

and we define

In the presence of population substructure, Φ should be replaced with the genetic 

relationship matrix (GRM) to provide statistically valid results (Thornton, Tang et al. 2012). 

The variance-covariance matrix between the M additively coded markers is denoted by Ψ, 

and we assume that

Then we can easily show that

2.2 Choice of offset

It has been shown that the statistical efficiency of test statistics in retrospective analysis can 

be improved by adjusting phenotypes for relevant covariates (Lange, DeMeo et al. 2002). 

For our score statistic, we introduced a new parameter μijq for phenotype q of individual j in 

family i, which will be called the offset in the remainder of this report (Won and Lange 

2013). We set

Statistical efficiency depends on μ, and thus its elements need to be carefully selected. The 

offset μ can be either calculated by the best linear unbiased predictor (BLUP) with 

covariates, as done for SKAT, or the disease prevalence can be used (Won and Lange 2013). 

The most efficient μ will depend on the sampling scheme. If families are randomly selected, 

BLUP was shown to be most efficient for both dichotomous and quantitative phenotypes 
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(Won and Lange 2013), while prevalence was recommended to study dichotomous 

phenotypes if families with a large number of affected family members are selected 

(Thornton and McPeek 2007, Won and Lange 2013). Therefore, we chose BLUP and 

prevalence as offsets for quantitative phenotypes and dichotomous phenotypes, respectively.

2.3 Score for quasi-likelihood

We let eij be an N dimensional vector in which the  element is 1 and the 

others are 0, and 1w be a column vector with w elements all equal to 1. We denote the effect 

of rare variant m on phenotype q as βmq which is the regression coefficients of the 

phenotype on the causal variants. We consider the score statistic and thus βmq is not needed 

to be estimated. However, the false positive rates can be inflated and the statistic for each 

βmq has large false negative rates. Therefore, collapsed genotype scores were utilized to 

prevent these problems. Under the null hypothesis, which is β11 = ⋯ = βMQ = 0, the best 

linear unbiased estimator (BLUE) for E(Xm) (McPeek, Wu et al. 2004) is

and if we let , we can define  for the individual j 
in family i by

Based on MFQLS (Won, Kim et al. 2015), the score vector for the M variants can be defined 

by

and because var(vec(X)) ≈ Ψ⊗Φ, the variance-covariance matrix for S is approximately 

equal to

2.4 Homogeneous mFARVAT

The effects of each causal variant on a phenotype, estimated as the regression coefficients of 

the phenotype on the causal variants, can be in the same or different directions, and we 

propose two different statistics for these two scenarios. Our first statistic, homogeneous 

mFARVAT, assumes that effects of each causal variant on the multiple phenotypes are in the 

same direction, for example, when the phenotypes are highly correlated or longitudinal. For 

rare variant association analysis, burden tests regress phenotypes on the sum of genotype 

scores over rare variants. Therefore, association of the Q phenotypes with variant m can be 

built by testing whether βm1 + … + βmQ = 0, and we can provide a statistic based on .
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The importance of each variant is often different and statistical efficiency can be improved 

by weighting each variant based on its relative importance (Madsen and Browning 2009). 

Relative importance is usually expressed by a function of minor allele frequency (MAF). We 

assume that the weight for variant m is wm and W is an M×M diagonal matrix with diagonal 

elements wm; we choose wm = beta(pm, a1, a2) proposed by Wu et al (Wu, Lee et al. 2011), 

where pm is the MAF of variant m and a1 and a2 were set to be 1 and 25 respectively. 

beta(pm, a1, a2) is flexible because it can accommodate a broad range of scenarios by 

considering different a1 and a2, and Wu et al found that the choices of a1 and a2 were often 

efficient. Then the scores for the burden and SKAT tests are, respectively,

and

If we let

scores for burden and SKAT tests can be generalized as

where the optimal choice of ρ depends on the distribution of rare variant effects on the 

multiple phenotypes.

We denote the eigenvalues of  by . If we let  be an 

independent chi-square distribution with a single degree of freedom, we have

If we denote the p-value for  by , and let  and 

, the SKAT-O mFARVAT (mFARVATO) statistic is defined by
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Its p-value will be denoted as  in the remainder of this report, and can be 

calculated from the numerical algorithm for SKAT-O (Lee, Wu et al. 2012), with a small 

modification (see Supplementary Text 1 for the detailed algorithm).

2.5 Heterogeneous mFARVAT

The effect of each variant on a phenotype can be heterogeneous in certain situations, and it 

may be reasonable to consider such effects separately. Therefore, we can provide statistics 

based on vec(S), and, under the null hypothesis β11 = ⋯ = βMQ = 0, we have

If we assume that Iw is a w × w identity matrix and

we define the generalized score by

Then the burden and SKAT tests can be expressed as

If we let  be the eigenvalues of

then we have

P-values for  will be denoted by , and we let  and 

. We consider
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We let the p-value for  be  and the detailed algorithm to 

calculate the asymptotic p-value is provided in Supplementary Text 2.

2.6 The simulation model

To evaluate mFARVAT, we simulated large families that extend three generations and consist 

of 10 members (see Supplementary Figure 1). 5,000 haplotypes with 50,000 base pairs were 

generated under a coalescent model using the software COSI (Schaffner, Foo et al. 2005). 

Each haplotype was generated by setting the mutation rate at 1.5 × 10−8. Haplotypes were 

randomly chosen with replacement to build founder genotypes. Nonfounder haplotypes were 

determined in Mendelian fashion from pairs of parents under the assumption of no 

recombination. For each simulated haplotype, we defined variants with sample MAFs less 

than 0.01 as being rare, and 60 rare variants were randomly selected.

Phenotypes were generated under the null and alternative hypotheses, and we considered 

both quantitative and dichotomous phenotypes. Quantitative phenotypes were defined by 

summing the phenotypic mean, polygenic effect, main genetic effect and random error, and 

we assumed there was no environmental effect shared between family members. Phenotypic 

means were denoted by α1,…, αQ−1 and αQ. We assumed that α1 = 0, α2 = 0.3 for Q = 2, 

and α1 = α2 = α3 = 0, α4 = α5 = 0.3 for Q = 5. The polygenic effects for the Q phenotypes 

for each founder were independently generated from MVN(0,ΣB), and for nonfounders the 

average of maternal and paternal polygenic effects were combined with values 

independently sampled from MVN(0, 0.5ΣB). Random errors for the Q phenotypes were 

assumed to be independent, so the random error for phenotype q was independently sampled 

from N(0, σE,q
2). If Q = 2, we assumed that

and if Q = 5, they were

For c we chose 0.5 and 0.8.

The genetic effect at variant m for phenotype q was the product of βmq and the number of 

disease susceptibility alleles. Under the null hypothesis, βmq was assumed to be 0. Under the 
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alternative hypothesis, if we let ha
2 be the proportion of variance explained by rare variants, 

βmq was sampled from U(0,vq), where

Here  indicates the (q,q)th element of ΣB, and we assumed that ha
2 = 0.02. βmq was 

generated for both heterogeneous and homogeneous scenarios. For homogeneous scenarios, 

we assumed that the effects of each rare variant on different phenotypes are similar. For 

example, the ratios between βm1, …, and βmQ were assumed to be 1:0.9 if Q = 2, and 

1:0.9:0.8:0.7:0.6 if Q = 5. For heterogeneous scenario, the effects of each rare variant on 

phenotypes were independently generated from U(0,vq).

Simulation of dichotomous phenotypes was performed using the liability threshold model. 

Once the quantitative phenotypes with genetic effect, polygenic effect and random error 

were generated, they were transformed to being affected for quantitative phenotypes larger 

than the threshold, and otherwise were transformed to unaffected. The threshold was chosen 

to preserve the assumed disease prevalence. We assumed that prevalences of the multiple 

phenotypes were 0.1 or 0.2 if Q = 2, and 0.1, 0.2, 0.2, 0.3, or 0.3 if Q = 5. To allow for the 

ascertainment bias of dichotomous phenotypes in our simulation studies, we assumed that 

families with at least one affected individual were selected for analysis.

3 RESULTS

3.1 Evaluation of mFARVAT with simulated data

To evaluate statistical validity, type-1 error estimates for both dichotomous and quantitative 

phenotypes were calculated at various significance levels using 20,000 replicates of two 

hundred extended families, so that each replicate sample contained 2,000 individuals. 

Supplementary Table 1 shows empirical type-1 error estimates for homogeneous mFARVAT 
(mFARVATHom) and heterogeneous mFARVAT (mFARVATHet) at the 0.05, 0.01, 0.001, and 

2.5×10−6 significance levels. The estimates are virtually equal to the nominal significance 

levels for both quantitative and dichotomous phenotypes. Quantile-quantile (QQ) plots in 

Supplementary Figures 2 and 3 also show consistent results, and we conclude that 

mFARVATHet and mFARVATHom are statistically valid.

Empirical power estimates were calculated at the 10−4 significance level with correlations 

0.5 and 0.8 for quantitative phenotypes (for the underlying quantitative phenotypes in the 

case of dichotomous phenotypes). We considered two different scenarios, in which either all 

or half the rare variants were causal, and assumed that 50%, 80% and 100% of causal 

variants were deleterious, with the rest being protective. Empirical power estimates were 

calculated with 2,000 replicates for six different statistics: (1) ; (2) 

; (3) ; (4) ; (5) ; (6) 

. Results are provided in Tables 1–3 and Tables 4–6, which represent 

respectively scenarios where all or half the rare variants are causal. Notably, each method 
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performed similarly in both scenarios, although the empirical power estimates improve if 

causal variants are more abundant.

We first examined the efficiency of the methods. Tables 1–6 confirm that the most efficient 

method depends on the disease model, which tends to be unknown. For example, when all 

the rare causal variants have deleterious effects on all phenotypes, burden mFARVAT 
(mFARVATB) outperforms all other approaches, but if there are variants with deleterious and 

protective effects, SKAT mFARVAT (mFARVATS) is the most efficient. SKAT-O mFARVAT 
(mFARVATO) is not always the best, but its empirical power estimates are usually very close 

to those of the most efficient approach. Therefore, our results are consistent with previous 

findings that mFARVATO is robust and efficient for various disease models (Lee, Wu et al. 

2012).

We also compared the performance of mFARVATHet and mFARVATHom using simulated 

data. Tables 1–6 show that if the effects of each rare variant on phenotypes are 

heterogeneous, mFARVATHet performs better than mFARAVATHom, and vice versa. In 

addition, when the effects of causal variants go in different directions, as in cases where 

some variants are deleterious while others are protective, the gap between the power of 

mFARVATHet and mFARAVATHom is larger than in a scenario where such effects are in the 

same direction. Interestingly, for each method the statistical power difference between 100% 

and 50% deleterious causal variants seems to be larger for family-based samples than that 

for population-based designs (Lee, Emond et al. 2012).

Results for dichotomous phenotypes tend to be similar to those for quantitative phenotypes, 

although statistical power for the former is usually smaller. This difference may be explained 

by the fact that dichotomous phenotypes were transformed from quantitative phenotypes. 

Moreover, overall the power is seen to be inversely related to correlations among 

phenotypes. There is some power loss when c is increased from 0.5 to 0.8. Notably, when 

more phenotypes are included in the analysis, mFARVAT performs more effectively.

Last, we compared the proposed method with univariate analyses using FARVAT (Choi, Lee 

et al. 2014). The minimum p-value adjusted by Bonferroni correction was selected to 

calculate the power of univariate analyses. We considered two scenarios: multiple 

phenotypes are associated with variants and only a single phenotype is associated with 

variants. Results in Tables 1–6 show that for the former scenario multivariate rare variant 

analyses perform better than univariate analyses. For the latter scenario, univariate rare 

variant analyses outperform multivariate analyses (see Supplementary Table 2).

3.2 Application to real data

We applied mFARVAT to whole-exome sequencing data from the Boston Early-onset COPD 

Study (Silverman, Chapman et al. 1998). Sequencing was performed at the University of 

Washington Center for Mendelian Genomics. Quality control was performed using PLINK 

(Purcell, Neale et al. 2007), vcfTools (Danecek, Auton et al. 2011), and PLINK/SEQ at 

Brigham and Women’s Hospital. Quality control included Mendelian error rates (< 1%), 

Hardy-Weinberg equilibrium (HWE, p > 10−8), and average sequencing depth (> 12). 

Relatedness of individuals was evaluated by comparing KCM and GRM. Heterozygous/
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homozygous genotype ratio, Mendelian errors, proportion of variants in dbSNP and 

proportion of non-synonymous variants were used to identify outliers. After additionally 

filtering out samples with missing phenotypes or covariates, 254 samples from 49 families 

were obtained.

We considered five COPD-related phenotypes: forced expiratory volume in one second pre-

bronchodilator (FEVPRE); forced vital capacity post-bronchodilator (FVCPST); forced 

expiratory flow 25–75% pre-bronchodilator (DPRF2575); FEVPRE divided by FVCPRE 

(RATIO); and DPRF2575 divided by FVCPRE (F2575RAT). Sex, age, height, and pack-

years of cigarette smoking were utilized to estimate BLUP offsets. It should be noted that 

genotypes were not used to estimate offsets. The correlation structure of the phenotypes is 

shown in Supplementary Table 3.

We assumed that variants with MAFs less than 5% were rare, and we considered only genes 

with at least two rare variants and a minor allele count (MAC) of at least four. As a result, 

8126 genes and 88,373 rare variants were analyzed. Our statistic requires the correlation 

matrix between individuals to obtain Φ. If there exists population substructure, GRM should 

be utilized for Φ and otherwise KCM is adequate. We found no significant population 

substructure, and KCM was used for Φ. The Bonferroni-corrected 0.05 genome-wide 

significance level is 6.15E-6. QQ plots in Supplementary Figures 6 show the statistical 

validity of our analysis. Manhattan plots are shown in Supplementary Figure 7. The top 10 

most significant results from mFARVATHet and mFARVATHom are shown in Table 7. We 

could not find any genome-wide significant results with association analysis of multiple 

phenotypes. The most significant result was found for KRTAP5-9 on chromosome 11, with 

mFARVATHet (p-value = 1.00×10−4), but the p-value for KRTAP5-9 from mFARVATHom is 

2.72×10−4. The smaller p-value of mFARVATHet may indicate that effect of each rare variant 

on the multiple phenotypes is heterogeneous.

4 DISCUSSION

Extended families have complex correlation structure and association analyses using 

extended families are very complicated, in particular for dichotomous phenotypes. For 

instance, the unbalanced nature of family-based samples can lead to inflation or deflation of 

sandwich estimators for the variance-covariance matrix, and results from generalized 

estimating equation can be invalid (Wang, Lee et al. 2013). An alternative approach is to use 

a generalized linear mixed model. However, calculating maximum likelihood estimators 

requires numerical integration, which is computationally very intensive, and approximations 

to avoid this can introduce serious bias (Gilmour, Anderson et al. 1985, Schall 1991). 

Therefore in spite of the efficiency of extended families for rare variant association analysis, 

few methods have been suggested for family-based association analyses. In this report, we 

propose a new method of family-based analysis of rare variants associated with dichotomous 

phenotypes, quantitative phenotypes, or both. The proposed method enables multivariate 

analyses of extended families to detect rare variants. Extensive simulation studies show that 

mFARVAT works well for dichotomous and quantitative phenotypes. Our method is 

computationally efficient and association analyses at the genome-wide scale are 

computationally feasible for extended families. In our analyses, an Intel (R) Xeon (R) 
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E5-2620 0 CPU at 2.00GHz, with a single node and 80 gigabyte memory, required six 

minutes to analyze the real data on two phenotypes. mFARVAT is implemented in C++ and 

freely downloadable from http://healthstat.snu.ac.kr/software/mfarvat.

However, in spite of the analytical flexibility and efficiency of the method, some limitations 

still remain. First, GRM should ideally be used as the correlation matrix Φ to provide 

robustness against population substructure; however, proper estimation of GRM requires 

large-scale common variants. In the absence of such data, the transmission disequilibrium 

test (Laird, Horvath et al. 2000) is a unique alternative. Second, the proposed statistics are 

for retrospective designs and power loss is expected if samples are prospectively gathered. It 

has been shown that appropriate choice of offset minimizes power loss in certain scenarios 

but further investigation is still necessary. Third, mFARVAT cannot be used directly to 

analyze X-linked variants. The distribution of X-linked genetic variants in the male is 

different from that in female, and thus different statistics for males and females are required. 

This issue will be investigated in future work.

Over the last decade, we have recognized that a substantial amount of unidentified genetic 

risk exists, and much effort has been expended to investigate this risk. Our methods provide 

an efficient strategy to analyze rare variant associations in family-based samples, and it may 

increase understanding of heritable diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Numerical algorithm to calculate 

If we let

the projection matrix onto a space spanned by Z̅ becomes

If we let
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 becomes

As was shown by Lee et al (Lee, Wu et al. 2012), if we let

we have

where ut(IMQ − Π)ZZt(IMQ − Π)u, ut(IMQ − Π)ZZtΠu and utΠu are mutually independent. 

Therefore, if we let , we have

Conditional probability can be numerically calculated as was suggested by Lee et al (Lee, 

Emond et al. 2012, Lee, Wu et al. 2012):

Numerical algorithm to calculate 

We assume

Then the projection matrix on a space spanned by Z̅ is

If we let
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 becomes

As was suggested by Lee et al (Lee, Wu et al. 2012), if we let

we have

Therefore, if we let , we have

 can be calculated as in (Lee, 

Emond et al. 2012, Lee, Wu et al. 2012).
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