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Abstract

Although the X chromosome has many genes that are functionally related to human diseases, the 

complicated biological properties of the X chromosome have prevented efficient genetic 

association analyses, and only a few significantly associated X-linked variants have been reported 

for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the 

inactivation of one allele in each X-linked variant in females; however, some X-linked variants can 

escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without 

prior knowledge about the gene expression process of X-linked variants, and misspecified 

information can lead to power loss. In this report, we propose new statistical methods for rare X-

linked variant genetic association analysis of dichotomous phenotypes with family-based samples. 

The proposed methods are computationally efficient and can complete X-linked analyses within a 

few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, 

which were then applied to rare-variant association analysis of the X chromosome in chronic 

obstructive pulmonary disease (COPD). Some promising significant X-linked genes were 

identified, illustrating the practical importance of the proposed methods.
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Introduction

Due to the relatively large size of the X chromosome, many X-linked genes have important 

functions, and significant associations of several X-linked variants have been identified for 

diverse phenotypes, including blood pressure, hematological traits, obesity, HDL 

cholesterol, and Type-1 diabetes [Ahituv, et al. 2007; Auer, et al. 2014; Blakemore, et al. 

2009; Cohen, et al. 2004; Gaukrodger, et al. 2005; Nejentsev, et al. 2009]. However, most 

successful results from genome-wide association studies have been from autosomes, and 

significant results for X-linked variants are relatively few in number. There are multiple 

potential reasons for this, but it is at least partially attributable to the complex biological 

properties of X-linked variants, which make efficient genetic association analyses more 

challenging. For instance, while females inherit X chromosomes from both parents, males 

inherit a single maternal X chromosome, and there is some empirical evidence that in 

females genes for some X-linked variants are expressed twice as highly as in males [Brown 

and Greally 2003; Carrel and Willard 2005; Shapiro, et al. 1979]. In contrast, dosage 

compensation for other X-linked variants can be achieved by the selection, and silencing of 

maternal or paternal genes via either random or nonrandom mechanisms [Lyon 1961]. Under 

nonrandom X chromosome inactivation (XCI), either the maternal or paternal genes are 

relatively more activated [Belmont 1996; Plenge, et al. 2002], and the amount of skewness is 

sometimes related to age or disease status [Amos-Landgraf, et al. 2006; Busque, et al. 1996; 

Chagnon, et al. 2005; Knudsen, et al. 2007; Minks, et al. 2008; Sharp, et al. 2000; Wong, et 

al. 2011]. However in spite of this knowledge about gene expression process of X-linked 

variants, there are very few statistical methods applicable to the complicated biological 

process of X-linked genes and thus development of new statistical methods is necessary.

Several statistical methods have been proposed for detecting statistically associated X-linked 

variants of phenotypes. In prospective analyses, genetic association can be simply detected 

by using only female subjects or by incorporating gender as a covariate, and thus in this 

report we focus on retrospective study designs. In retrospective analyses, genetic 

associations of autosomal variants are detected by comparing genetic distributions between 

affected and unaffected individuals, and the Cochran Armitage trend test, which compares 

minor allele frequencies (MAFs) in affected and unaffected individuals [Armitage 1955; 

Clayton 2008; Sasieni 1997; Zheng, et al. 2003; Zhu and Xiong 2012], is often utilized to 

assess the association. For X-linked variants, there is heterogeneity of genetic distributions 

between males and females, which is often handled by extending the Cochran-Armitage test 

for genetic association analyses of X-linked variants [Clayton 2008; Zheng, et al. 2007]. For 

family-based samples, the MQLS method [Thornton and McPeek 2007] has also been 

modified for use in common X-linked variant association analysis, and Schaid et al. [Schaid, 

et al. 2013] have proposed new methods for rare X-linked variant association analysis with 

family-based samples. For instance, since the complex biological properties of the X 

chromosome affect statistical power, XCI has been addressed by using the same coded 

values for males with hemizygous disease genotypes as those used with females with 

homozygous disease genotypes [Clayton 2008; Thornton, et al. 2012]. However XCI can be 

nonrandom and is sometimes completely escaped, which leads to some power loss for these 

approaches. Therefore, in this report we propose a family-based rare variant association test 
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for X-linked genes (FARVATX) that is applicable to various biological models. Due to the 

nature of our statistic, the proposed method can also be applied to family-based designs with 

dichotomous phenotype, and we show with extensive simulation studies that the proposed 

methods perform better than the existing approaches. We applied the coding strategy that 

was suggested by Wang et al. [Wang, et al. 2014] in population-based design. The proposed 

methods were applied to an association analysis of families with chronic obstructive 

pulmonary disease (COPD). Some promising genes were identified with the proposed 

methods, thereby illustrating the practical value of these methods.

Methods

Notation

We assume that there are n families and ni individuals in family i, and the total sample size is 

denoted by . We assume that genotypes for M rare variants on the X 

chromosome are available. We let  be the coded genotype of an individual j in a family i 
for a variant m, with allowed values of 0, 1, or 2 for a female, and 0 or 1 for a male 

individual, depending on the number of minor alleles. We denote the disease prevalence by q 
and assume that yij is coded as 1 for affected individuals, q for individuals with missing 

phenotype, and 0 for unaffected individuals. In retrospective analyses, genetic association is 

detected by comparing genetic distributions of affected and unaffected individuals, and it has 

been shown that the statistical efficiency can be improved by modifying the phenotype 

[Lange and Laird 2002; Thornton and McPeek 2007]. We let μij be the offset that is define 

by disease prevalence or the best linear unbiased predictor (BLUP) from the linear mixed 

model [Won and Lange 2013], and set tij = yij – μij. Then, if we represent the column vectors 

that comprise  and tij for all individuals in a family i by  and Ti respectively, the 

genotype matrix and phenotype vector can be defined by

Variance covariance matrix

We assume that σmm' is a covariance between  and  when an individual j in a family i 
is a male, and the genetic variance-covariance matrix between M markers in males is

We assume that hij is an inbreeding coefficient for an individual j in a family i, and thus if an 

individual j is a male, hij becomes 0. πij,i'j' is a kinship coefficient between an individual j in 

a family i and an individual j' in a family i'. It should be noted that πij,i'j' is a function of 
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gender, and can be deductively calculated [Thornton, et al. 2012]. If i and i' are different, 

πij,i'j' becomes 0. We consider individuals j and j' in a family i, and if an individual j is a 

descendant of j', πij,ij' can be derived based on Table 1. We consider the case where 

individual j in a family i is not a descendant of j' in a large family. If we let m(j') and f(j') 
indicate the mother and father of j', respectively, πij,ij' can be recursively calculated as 

follows:

1. πij,ij' = πij,im'(j')/2, if j' is a male.

2. πij,ij' = πij,im'(j')/2 + πij,if(j'), if j' is a female.

If we define Φ by

then we have .

If we let lN be the N×1 column vector of which the elements are 1 for male and 2 for female, 

respectively, the best linear unbiased estimator for E(X) under the null hypothesis can be 

derived, with some modification of the methods of McPeek et al [McPeek, et al. 2004], by

, and Σ can be estimated by

Weighted quasi-likelihood score

We assume that Dd is a N×N diagonal matrix, and its diagonal elements are 1 or d if the 

corresponding individuals are males or females, respectively. X-linked gene expression 

processes are considered by replacing the genotype matrix X by DdX. DdX will be called the 

weighted quasi-likelihood score in the remainder of this report. The efficient choice of d is 

related to the gene expression process and can be obtained by considering the relative 

proportion of each genotype’s expression [Clayton 2008]. In particular, homozygous disease 

genotypes are not usually observed for rare variants; thus, an approximately efficient coding 

strategy can be chosen by comparing gene expression levels for heterozygous disease 

genotypes in females and hemizygous disease genotypes in males. Therefore under our 

coding strategy, XCI and escaped XCI (E-XCI) are efficiently tested with d = 0.5 and d = 1, 

respectively. We also have considered another simulation scenario for skewed XCI (S-XCI) 

owing to nonrandom XCI. S-XCI have been defined using an arbitrary threshold as 

inactivation of deleterious or normal allele in more than 75% cells [Abkowitz, et al. 1998]. 
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We assumed that the value of d was set as 0.75 or 0.25 to represent S-XCI toward to the 

deleterious allele or the normal allele, respectively.

Rare X-linked variant association tests for XCI, E-XCI, and S-XCI

The quasi-likelihood-based score [Won and Lange 2013] for DdX can be defined by

Because E(X) can be estimated by , the quasi-likelihood score 

becomes  where 

. If we let , we can 

simply show that

and thus we have

It has been empirically shown that weighting each variant can be an efficient strategy to 

improve statistical power for rare variant association analyses [Madsen and Browning 2009]. 

We let the weight for variant m be wm, and the diagonal matrix for which the diagonal 

element m is wm be W. If we let pm be the MAF for a variant m, we used Beta(pm; 1, 25) as 

wm. Then scores for burden [Li and Leal 2008] and variance component [Neale, et al. 2011; 

Wu, et al. 2011] tests can be respectively defined by

These are extensions of FARVAT statistics [Choi, et al. 2014]. We let 

 and define

We let p-values for , and denote  by FARVAT-XB(d) and 

FARVAT-XC(d). It should be noted that the formal corresponds to the burden-type statistic 

and the latter does SKAT-type statistic. The SKAT-O-type statistic [Lee, et al. 2012b] can be 

defined by
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and we denote its p-values by FARVAT-XO(d). P-values can be calculated by the numerical 

algorithms for FARVAT statistics [Choi, et al. 2014].

If the biological gene expression processes of X-linked genes are not clear, the proposed 

statistics may be sensitive to the choice of d, and a robust statistic needs to be provided. We 

calculate FARVAT-XB(d) or FARVAT-XC(d) for various choices of d, and then combine them 

to a single p-value by using extended Fisher’s method for correlated p-values [Brown 1975]. 

We denote its p-value by FARVAT-XD where 0, 0.05, 0.1, …, 0.95, and 1 were considered 

for d1, …, and dL. The detailed algorithm is described in Supplementary Material.

Simulation Studies

To investigate the performance of the proposed methods, we performed simulation studies 

for various family structures (see Figure 1 for detailed information). We considered trios 

with a son or a daughter, and large families with 10 individuals that extended over three 

generations and had different numbers of males and females. MAFs were generated from a 

uniform distribution U(0, 0.01), and genotype frequencies were calculated under Hardy-

Weinberg Equilibrium (HWE). If we let pm be the MAF for a variant m, founders’ genotypes 

were generated with a binomial distribution B(2, pm), and offspring’s genotypes were 

obtained by simulated Mendelian transmission, assuming no recombination. Phenotypes for 

each individual were generated with a liability threshold model, and liabilities were 

determined by summing the phenotypic mean , polygenic effect , common 

environmental effect , main genetic effect and random error . Random errors were 

independently generated from . The polygenic effect for founders was 

independently generated from , and for non-founders, averages of maternal 

and paternal polygenic effects were combined with values independently sampled from 

. Common environmental effects were assumed to be the same for all 

individuals in each family and were generated from . For main genetic 

effects, we assumed that there were M rare variants, and genetic effects for each rare variant 

were obtained by the product of βm, the number of disease alleles, and d. If we let  be the 

proportion of phenotypic variance explained by the main genotype, βm were sampled from 

U(1.0, v) and v was calculated by
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Under the null hypothesis,  was set to be 0, and βm became 0. Liabilities for each 

individual were generated from the sum of the main genetic effects, polygenic effects, 

common environmental effects, and random errors, and they were transformed to being 

affected if they were larger than the threshold; otherwise, they were considered to be 

unaffected. The threshold was set to generate the assumed prevalence q. Disease prevalences 

are sometimes different between males and females, and this was considered by setting 

different prevalence rates for males and females in our simulations. Randomly selected 

families can have very few affected individuals, which leads to the large false negative 

finding. Therefore, we considered some ascertainment strategies. That is, families with less 

than two affected grandchildren were excluded from the simulation studies, and sampling 

was repeated until the desired number of families was obtained.

We also evaluated the proposed methods in the presence of population substructure. We 

assumed two underlying sub-populations, and each founder was randomly assigned to one of 

two sub-populations. The polygenic effect, common environmental effect, and random errors 

were generated with the same model used in the absence of population substructure. 

However, the phenotypic means of liabilities between two sub-populations were varied by 

0.5. The allele frequencies for the two subpopulations were generated with the Balding-

Nichols model [Balding and Nichols 1995]. We first generate pm for global population MAF 

from U(0, 0.05). Then, if we let FST denote Wright’s FST, MAFs for two sub-populations 

were independently sampled from Beta(pm(1 - FST)/FST, (1 - pm)(1 - FST)/FST). FST was 

assumed to 0, 0.005, 0.01, and 0.05.

Results

Evaluation with simulated data

We estimated type-1 error rates and powers of the proposed methods, and results from the 

proposed method were compared with PedGene-Burden and PedGene-Kernel statistics 

[Schaid, et al. 2013]. In particular, PedGene-Burden and PedGene-Kernel cannot handle S-

XCI model and they were not considered for S-XCI model. We considered five different 

extended family structures (A-1) – (A-5) as shown in Figure 1. We assumed that there were 

200 extended families and 30 rare variants in each gene. Empirical type-1 errors were 

calculated at the 0.05 and 0.01 significance levels with 5,000 replicates for dichotomous 

phenotypes. Supplementary Tables S1 and S2 show that type-1 error estimates of our 

proposed methods consistently preserved the nominal significance levels for any biological 

expression process, whereas the statistical validity of PedGene-Burden and PedGene-Kernel 

depends on family structure and type-1 error estimates of PedGene-Burden are violated for 

(A-1), (A-2), (A-4), and (A-5) of E-XCI. Supplementary Tables S3 – S6 show the type-1 

error estimates when disease prevalences for males and females are different. Disease 

prevalences were set to be 0.36 and 0.12 for males and females respectively in 

Supplementary Tables 3-4, and 0.12 and 0.36 in Supplementary Tables 5-6. Results show 

that the proposed methods always preserve the nominal significance levels. However type-1 

error estimates of PedGene-Burden and PedGene-Kernel for E-XCI model setting 

consistently preserved the nominal significance levels.
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In order to evaluate statistical efficiency, we considered five different extended family 

structures (A-1) – (A-5), and calculated the empirical power estimates for each. We assumed 

that there are 30 rare variants in each gene and 20 of them are causal. The number of 

deleterious causal rare variants was assumed to be 10, 12, 16, or 20. We assumed that  was 

0.01 and empirical power values at the 0.05 significance level were estimated with 5,000 

replicates. Figure 2, Supplementary Fig. S2 and S3 show that FARVAT-XB was the most 

powerful statistic if all risk variants are deleterious. If half of rare causal variants were 

deleterious and the other rare causal variants were protective,FARVAT-XC was the most 

powerful statistic. FARVAT-XO and FARVAT-XD were not always most efficient, but 

differences of power estimates among FARVAT-XO, FARVAT-XD and the most efficient 

statistic were always small. It should be noted that FARVAT-XD is robust against the choice 

of mis-specified d. Supplementary Fig. S1 shows that PedGene-Burden is the most efficient 

statistic under E-XCI if all rare causal variants were deleterious, but it should be noted that 

empirical type-1 errors from PedGene-Burden were violated.

Evaluation with simulated data in the presence of population substructure

We estimated the type-1 error rate and power for the proposed methods in the presence of 

population substructure, and compared them to the same statistics from PedGene-Burden 

and PedGene-Kernel. In our proposed method, the presence of population substructure can 

be handled by adjusting the phenotypes with an EIGENSTRAT-based approach [Schaid, et 

al. 2013; Won, et al. 2012]. Specifically, principal component (PC) scores were estimated 

from the genetic relation matrix [Price, et al. 2006], and phenotypes were regressed on PC 

scores with the linear mixed model, which considers the correlation between family 

members. Residuals were then utilized as tij for the proposed methods. The type-1 error 

estimates for trios were calculated at the 0.05 and 0.01 significance levels with 5,000 

replicates. We assumed that there were 30 rare variants available in a gene and family 

structure (B-1) and (B-2) in Figure 1. Supplementary Table S7 shows inflation of type-1 

error estimates for all methods unless phenotypes are adjusted with PC scores, and, in 

particular, PedGene-Kernel has the largest bias of type-1 error estimates.

The statistical efficiency was also evaluated with 5,000 replicates at the 0.05 significance 

level in the presence of population substructure. We assumed that  is 0.05, and that there 

are 30 rare variants in a gene. Twenty rare variants were assumed to be causal, and each 

causal variant can have either deleterious or protective effects on phenotypes. Figure 3 

shows that FARVAT-XB was the most efficient when all rare causal variants are deleterious, 

and PedGene-Kernel was the most powerful if 50% of rare causal variants was deleterious. 

FARVAT-XO and FARVAT-XD are not always the most efficient, but their power loss when 

compared to the most efficient statistic is always small.

Evaluation of robustness against biological expression process

The gene expression process of X-linked variants is usually unknown, and the misspecified 

gene expression process may affect the performance of the proposed methods. We evaluated 

the robustness of the proposed methods with simulated data for (A-3) family structure. The 

empirical type-1 error estimates were calculated with 5,000 replicates at the 0.05 and 0.01 
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significance levels and supplementary Table S8 shows that type-1 error estimates of 

FARVAT-XO and FARVAT-XD consistently preserved the nominal significance levels. For 

evaluation of statistical powers,  was assumed to be 0.01 and the empirical power 

estimates were calculated with 5,000 replicates. We assumed that there are 30 rare variants, 

and among them 20 rare variants are causal. Supplementary Fig. S5 shows that FARVAT-XO 
with correctly specified biological model is the most efficient, but if it is misspecified, the 

power loss is usually substantial. FARVAT-XD is not the most efficient but the difference of 

its statistical powers with those for FARVAT-XO with correctly specified biological model is 

very small. Therefore, we can conclude that the performance of FARVAT-XO is affected by 

choice of d, and FARVAT-XD is generally a robust choice for various biological processes.

Application to COPD data

The proposed methods were applied to rare variant association analyses of COPD using 

families from the Boston Early-Onset COPD Study with whole exome sequencing. Using 

moderate COPD or greater (FEV1 < 80% predicted with FEV1/FVC < 0.7) to define 

affection status, there were 64 unaffected males, 83 unaffected females, 55 affected males, 

and 100 affected females. There were 49 families and each family had at least two affected 

individuals. The whole exome of all individuals was sequenced with a Nimblegen V2 

capture and Illumina platform. Sequencing data were preprocessed with the Genome 

Analysis ToolKit [McKenna, et al. 2010]. SNVs with Mendelian transmission errors, 

missing call rates (>1%), significant deviation from Hardy–Weinberg equilibrium (P<10−8), 

read depth less than the average (12), and minor allele count of all variants in each gene (<5) 

were excluded. Seven genes in pseudo-autosomal regions and 186 genes with a single rare 

variant were excluded from our analyses. In total, we analyzed 629 rare variants in 183 

genes on the X chromosome. There were 35,326 common autosomal variants with a MAF 

larger than 0.05, and they were utilized to calculate the genetic relationship matrix. 

Supplementary Figure S4 shows the genetic relationships of the dataset on the first five PC 

scores. Phenotypes were regressed with age, pack years, height, and 5 PC scores from the 

EIGENSTRAT method [Price, et al. 2006], and residuals were utilized as response variables 

to provide robustness of the proposed methods against population substructure. Figures 4 

and 5 show quantile-quantile (QQ) plots of PedGene-Burden, PedGene-Kernel, and the 

proposed methods. QQ plots for PedGene-Burden and PedGene-Kernel show some evidence 

about inflation under random XCI and E-XCI, whereas the proposed methods are 

consistently valid. The most significant results were summarized in Table 2. The 0.05 

exome-wide significant level adjusted by Bonferroni correction is 2.7E-04, and q-values 

[Storey 2002] were also provided in Table 2. Table 2 showed one exome-wide significant 

gene, CXorf59 gene, with PedGene-Kernel for random XCI. However some inflation of 

results from PedGene-Kernel was confirmed with QQ plots and is not clear whether this 

significant association is valid. Some other promising results are also summarized in Table 2 

and the second most significant results were obtained for the synovial sarcoma on X 

chromosome 5 (SSX5) gene using the proposed method. The significant association of SYT-
SSX fusion gene with primary synovial sarcoma of the lung was reported [Hisaoka, et al. 

1999], and the expression of SSX family genes (SSX1, SSX2, SSX4, and SSX5) were 

known to be related with lung cancer [Tureci, et al. 1998]. Furthermore, the COL4A6 
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isoform have been shown to be more highly expressed in lung [Hudson, et al. 1993] and 

these significant results will be investigated as further studies.

Discussion

X-linked genes contribute to various biological mechanisms, including sexual dimorphism 

[Carrel and Willard 2005; Ober, et al. 2008; Tarpey, et al. 2009]. However, the complex 

biological processes associated with the expression of X-linked genes, such as random XCI, 

E-XCI, and S-XCI, complicate genetic association analyses with X-linked genes. Several 

methods for rare X-linked variants association analyses have been developed, but most 

cannot account for biologically plausible models. The limited discovery of significantly 

associated X-linked variants may be partially attributable to the absence of statistically 

efficient methods for detecting X-linked variants, and efficient analytical strategies for X-

linked variants have been proposed as a potential mechanism to alleviate so-called “missing 

heritability” problems [Maher 2008; Manolio, et al. 2009].

In this report, we proposed a novel method for family-based association test of X-linked 

genes (FARVATX), which can accommodate random XCI, E-XCI, and S-XCI. The 

performance of FARVATX was evaluated with simulated data. We assumed that the 

magnitude of X-linked gene expression differed by gender and that the proportion of males 

and females in each family was different. The results from the simulation studies showed 

that PedGene-Burden and PedGene-Kernel statistics suffer from inflation of the type 1 error 

rate if the proportions of males and females are different or population substructure is 

present. However, FARVATX preserves the nominal significance level in both the absence 

and presence of population substructure.

Furthermore, FARVATX is computationally less intensive than other available methods. Its 

application to sequencing data for COPD was completed within an hour. FARVATX 
software supports various input file formats, including plink and variant call format files, 

and multi-threaded analyses can be automatically conducted. The software for the proposed 

methods is written in C++ and can be downloaded from http://healthstat.snu.ac.kr/software/

farvatx/.

Despite the analytical flexibility of the proposed methods, there are still some limitations. 

First, we found that the proposed methods are slightly conservative unless the sample size is 

sufficiently large, and it has been shown that small sample size adjustments by using 

resampling method leads to additional power improvement [Lee, et al. 2012a]. Second, the 

statistical power depends on the definition of rare variants, but it is still unclear. A variable 

threshold approach [Price, et al. 2010] that exhaustively searches the optimal MAF threshold 

may be a useful option for addressing this issue, and further extensions for the proposed 

methods are necessary. Third, the proposed methods assume that MAFs are same for males 

and females under the null hypothesis, and effects of each genetic variant for males and 

females are similar under the alternative hypothesis. If these are not satisfied, the false 

negative finding rates for the former and false positive findings rates for the latter cannot be 

controlled, and males and females should be separately analyzed. These problems will be 

investigated in future studies.
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The recent rapid improvement of sequencing technology provides the opportunity to identify 

rare X-linked variants associated with complex human diseases. However, our understanding 

of sex-specific genetic architecture and the biological processes associated with the 

expression of X-linked genes is still limited, and statistical methodology development to 

uncover them is necessary. The proposed methods may help us identify additional rare X-

linked variants associated with complex traits, thereby leading to about a better 

understanding of the underlying biological processes associated with X-linked genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Family structures considered in our simulation studies.
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Figure 2. Empirical power estimates for random XCI
Empirical powers were calculated for five different extended family structures (A-1) – (A-5). 

ha
2 was assumed to be 0.01 and the empirical power estimates were calculated with 5,000 

replicates. We assumed that there are 30 rare variants, and among them 20 rare variants are 

causal. Rare causal variants can have either deleterious or protective effect on disease, and 

the number of causal rare variants with deleterious effect was assumed to be 10, 12, 16, or 

20.
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Figure 3. Empirical power estimates for random XCI in the presence of population substructure
Empirical powers were calculated for two different trio structures (B-1) and (B-2). ha

2 was 

assumed to be 0.05 and the empirical power estimates were calculated with 5,000 replicates. 

We assumed that there are 30 rare variants, and among them 20 rare variants are causal. Rare 

causal variants can have either deleterious or protective effect on disease, and the number of 

causal rare variants with deleterious effect was assumed to be 10, 12, 16, or 20.
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Figure 4. QQ-plots of results from rare variant association analyses of COPD
QQ-plots are provided for PedGene-Burden, and PedGene-Kernel, and their 95% confidence 

interval is provided. Age, Pack-years of smoking, height, and 5 PCs were included as 

covariates for the linear mixed model and BLUP was utilized as offset.
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Figure 5. QQ plots of results from rare variant association analyses of COPD
QQ plots are provided for FARVAT-XB, FARVAT-XC, FARVAT-XO, and FARVAT-XD, 

and their 95% confidence interval is provided. Age, Pack-years of smoking, height, and 5 

PCs were included as covariates for the linear mixed model, and BLUP was utilized as 

offset.

Choi et al. Page 19

Genet Epidemiol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 20

Table 1

X chromosomal and autosomal kinship coefficients for two individuals in a nuclear family.

Relationship of individuals ij and ij′ πij,ij′ (X chromosome) πij,ij′ (autosome)

Brother & Brother 1/4 1/4

Sister & Sister 3/4 1/4

Brother & Sister 1/4 1/4

Mother & Son 1/2 1/4

Mother & Daughter 1/2 1/4

Father & Son 0 1/4

Father & Daughter 1/2 1/4
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