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Abstract

Background—Genome wide association studies (GWAS) of asthma have identified single
nucleotide polymorphisms (SNPs) that modestly increase the risk for asthma. This could be due to
phenotypic heterogeneity of asthma. Bronchial hyperresponsiveness (BHR) is a phenotypic
hallmark of asthma. We aim to identify susceptibility genes for asthma combined with BHR and
analyse the presence of ¢is-QTLs among replicated SNPs. Secondly, we compare the genetic
association of SNPs previously associated with (doctor diagnosed) asthma to our GWAS of asthma
with BHR.

Methods—A GWAS was performed in 920 asthmatics with BHR and 980 controls. Top SNPs of
our GWAS were analysed in four replication cohorts and lung cis-eQTL analysis was performed
on replicated SNPs. We investigated association of SNPs previously associated with asthma in our
data.

Results—368 SNPs were followed up for replication. Six SNPs in genes encoding AB/38FR,
NAFI1, MICA and the 17921 locus replicated in one or more cohorts, with one locus (17q21)
achieving genome wide significance after meta-analysis. Five out of 6 replicated SNPs regulated
35 gene transcripts in whole lung. Eight of 20 asthma associated SNPs from previous GWAS were
significantly associated with asthma and BHR. Three SNPs, in /L-33and GSDMB, showed larger
effect sizes in our data compared to published literature.

Conclusions—Combining GWAS with subsequent lung eQTL analysis revealed disease
associated SNPs regulating lung mRNA expression levels of potential new asthma genes. Adding
BHR to the asthma definition does not lead to an overall larger genetic effect size than analysing
(doctor’s diagnosed) asthma.

Keywords
Asthma; Bronchial hyperresponsiveness; Genetics; GWAS; Gene expression

Introduction

Asthma is a chronic inflammatory disease of the airways, characterized by respiratory
symptoms, reversible airflow obstruction and bronchial hyperresponsiveness (BHR). Asthma
can be seen as a complex genetic disease caused by (interacting) genes and environmental
factors. The heritability estimates of asthma vary between 40 and 70% (1). So far, genome
wide association studies (GWAS) have robustly identified 15 loci for asthma at a genome
wide significance level (2-12) (table E1).

Similarly to other complex disorders and traits, GWAS of asthma only identified risk alleles
with a modest increased risk for asthma, with odds ratios (ORs) in general ranging from 1.1
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to 1.4. One potential explanation for the modest contribution of genetics to asthma is its
phenotypic heterogeneity. Asthma has a large variation in age of onset, severity, disease
progression and presence of subphenotypes such as BHR and reversibility of airflow
obstruction. Whereas most of asthma GWAS published to date rely on self-reported doctor’s
diagnosis of asthma (Table E1), it may be advantageous to define asthma by objective
markers of the disease, such as BHR. This may result in less misclassification of asthma and
less phenotypic heterogeneity, which may enhance the power to identify certain
susceptibility genes (13).

It is often not clear how SNPs affect a trait under study. However, expression quantitative
trait loci (eQTL) analysis has facilitated unravelling mechanisms of how disease-associated
SNPs regulate gene transcription. SNPs can regulate expression of one or multiple nearby
genes (cis-eQTL) or genes more up- or downstream (frans-eQTL) (14). Thus, by combining
GWAS and eQTL analysis, gene transcripts can be identified that relate to the disease (15,
16). This may lead to the identification of new pathways in the pathogenesis of asthma.
Here, we report the results of a GWAS of asthma with BHR in the Dutch population, and
replication in four independent populations. We asses if the replicated top SNPs of our
GWAS are eQTLs in lung tissue, characterize genetic pathways involved in asthma and
associated top SNPs with subphenotypes. Finally, we compare our results to published
GWAS of (doctor diagnosed) asthma, to investigate if differences in asthma definitions (ie.
asthma with BHR vs. doctor diagnosed asthma/self-reported asthma) will lead to increased
risk estimates for asthma.

Material and methods

Study subjects

Genotyping

The Dutch Asthma GWAS (DAG) cohort consists of in total 920 asthma cases and 980
controls, all from the northern of the Netherlands. The DAG cohort was genotyped in two
phases and meta-analysed afterwards. For the first phase, 468 cases were selected from a trio
and family study. The 469 controls were non-asthmatic spouses or pseudo-controls of
untransmitted alleles in our trio design (GWAS 1) (17-20). For the second phase (GWAS I1),
452 asthmatics were selected from previous clinical and genetic studies performed by our
research institute (17, 20-24). The 511 controls were selected from the COPACETIC study,
a geographically matched population-based study on lung cancer screening in male smokers
(25).

All asthmatics had a physician’s diagnosis of asthma, asthma symptoms, and BHR to either
histamine or methacholine. BHR was measured with a metacholine or histamine challenge

test, and defined as PCyq histamine. Controls had no asthma or COPD, nor any evidence of
significant airway obstruction. All studies were approved by the medical ethical committee.

DNA of subjects from GWAS | was genotyped on the Illumina 317 Chip (Illumina Inc, San
Diego, CA). The 452 cases of GWAS Il were genotyped with the Illumina 370 Duo Chip
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and the 511 controls with HHlumina Human Hap 600 (Illumina Inc, San Diego, CA). Details
of the genotyping procedure and quality control are provided in the online supplement.

The discovery GWAS (DAG cohort) included 294,932 SNPs and were analysed using a
logistic regression with an additive genetic model, and GWAS | and Il were meta-analysed
using Plink v1.07 (26). Potential population stratification was investigated with
EIGENSTRAT (27) and OR and standard error used for meta-analysis were derived from
logistic regression adjusted for 6 and 4 top eigenvectors in GWAS | and 1 respectively. Only
overlapping SNPs between all platforms were used for the meta-analysis.

GWAS

SNPs with p-values p<5*10~8 in our GWAS were considered genome wide significant. P-
values <1*1073 were considered to provide suggestive evidence of association and were
selected for replication in other populations. Subsequently, top results were meta-analysed
together with four replication cohorts using Plink in fixed and random effect models. SNPs
that replicated in one or more cohorts with a p-value of at least 10~ after meta-analysis
were selected for c/seQTL.

Replication populations
Replication was performed in the MAGICS (n=1352), ALSPAC (n=5562), TENOR
(n=2365) and SARP/CSGAJ/CAG (n=2377) studies (6, 28-30). All studies used a physician
diagnosis of asthma (online methods supplement).

eQTL mapping in lung tissue
EQTLs were analysed per selected SNP in a large scale lung eQTL dataset (16) using linear

regression in an additive genetic model using R 2.14.0, described in the online methods
supplement. P-values p<6*10~> were considered significant, based on Bonferroni correction.

Subphenotype association

The subphenotyping was performed using the SNPs selected after replication. We selected
subphenotypes which reflect the clinical heterogeneity of asthma. This resulted in 11
subphenotypes; age of onset before 4 and before 16 years, inhaled corticosteroid use, atopy,
eosinophil counts, FEV1% predicted, total IgE levels, severity of bronchial
hyperresponsiveness, and neutrophils, CD4* and eosinophils in airway wall biopsies (31).
The above subphenotypes were tested for association with SNPs using SPSS statistical
software ver.20.0 (SPSS Inc., Chicago, IL). Detailed methods are described in the online
methods supplement.

A p-value of p<0.05 was considered significant in the subphenotype analysis.

Asthma definition

A look-up in our data was performed on SNPs associated with asthma in previous GWA
studies. If SNPs were not available, proxy SNPs with linkage disequilibrium of r2 > 0.8 were
selected. ORs were compared between our cohort and the previous studies.
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Network analysis

Results

The literature search, GWAS on asthma and BHR and subsequent eQTL analyses revealed
several genes. All these genes were entered in a pathway analysis using STRING (32).
Entered genes were checked for enrichment on protein-protein interaction. If enrichment is
seen, FDR corrected significant Go biological processes and KEGG pathways were shown.
As a sensitivity analysis, only GWAS genes nominally significant in our dataset and genome
wide significant in previous studies, combined with replicated and eQTL genes were
analysed.

Patient characteristics of DAG cohort

The mean age of the included asthmatics was 34 years, 47% being males (table E2).
Asthmatics in GWAS | and Il had comparable characteristics. Most participants (77%) had
asthma onset in childhood (median age of onset being 6 years), 63% showed reversibility of
airflow obstruction (>9% of predicted) and 74% were atopic as evidenced by one or more
positive skin prick tests.

GWAS results DAG cohort

A flow chart of all analyses is shown in figure 1. Figure E3 shows the Manhattan plot of the
discovery GWAS. There was no evidence for population stratification after meta-analysis of
the two discovery populations (A = 1.01, QQ plot figure E4). No SNP met the genome wide
significant threshold, yet 368 SNPs had suggestive results (p<10~4) (table E12) and were
selected for follow-up in 4 replication populations.

Replication of DAG cohort results

After replication and meta-analysis of the 368 suggestive SNPs, 7 SNPs at the 17q12 locus
met genome wide significance (p-values between 1.43*10714 and 2.55%10720) (table 1). Two
of these SNPs (rs11557467, rs2305480) were nonsynonymous. The 7 genome wide
significant SNIPs that passed Bonferroni correction significance threshold, can be tagged
with 2 SNPs: rs2305480 and rs2290400 (figure E5).

Four other SNPs, not at the 17q12 locus, replicated at nominal p-value in one or more of the
replication populations with a p-value of at least 107> after meta-analysis, yet they did not
reach the Bonferroni significance threshold for the meta-analysis of the replication cohorts
(chromosome 3; rs13091963 and rs1449302 near AB/ family, member 3 (NESH) binding
protein (ABI3BP), chromosome 4; rs4132177 near Nuclear Assembly Factor 1
ribonucleoprotein (NAF1)and chromosome 6; rs2596560 near MHC class I polypeptide-
related sequence A (MICA)). Table E7 provides information on function of the genes.

Lung eQTL analysis

The 2 tagging SNPs at the 17g12 locus and the 4 SNPs most strongly associated in the
replication studies were selected for eQTL analysis. Five of the 6 SNPs showed strong c¢/s-
eQTL effects, including genes not previously implicated with asthma; among others
ABI3BP, SFTAZ, RNF5, TUBB and ZFP57 (figure 2 and tables E8 and E9).

Allergy. Author manuscript; available in PMC 2017 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nieuwenhuis et al.

Page 6

The two tagging SNPs of the 1712 locus (rs2290400 and rs2305480) showed an overlap in
eQTLs likely due to significant LD between SNPs (r?=0.8). Out of the 7 significant eQTLs
for rs2305480 and 9 significant eQTLs for rs2290400, 7 transcripts, covering 5 genes,
showed an effect in the same direction (Figure 2).

Both SNPs on chromosome 3 (LD between SNPs r2=0.49) regulate AB/3BP gene transcript,
the presence of a minor allele being associated with down regulation of this transcript.
Rs2596560 on chromosome 6, is an eQTL for 16 gene transcripts, covering 13 different
genes. The top result is located in the ZFP57gene transcript (p-value: 2.66*10719).

Association with selected subphenotypes within asthma patients

Our subphenotype analysis within the group of asthmatics revealed several associations in
all selected SNPs associated with asthma, yet these p-values did not pass Bonferroni
corrected significance threshold (table E10).

The risk alleles of the two SNPs on chromosome 17q12 were associated with a higher level
of CD4" T-cells in asthma airway wall biopsies of asthmatics (rs2290400 T allele:
Beta=0.34, p=0.04 and rs2305480 G allele: Beta=0.40 p=0.02). Rs2305480 was associated
with a higher number eosinophils in airway wall biopsies of asthmatics (G allele: Beta=0.31
p=0.04). The risk alleles of both SNPs on chromosome 3 near AB/3BP were associated with
lower levels of total IgE measured in blood within asthmatics (rs1449302 T allele: Beta=
-0.19 p=0.02 and rs13091963 G allele: Beta=—0.22 p=<0.0095). The minor allele of
rs4132177 on chromosome 4 near NAF1, associated with a lower risk of atopy within
asthmatics (A allele: odds ratio=0.58, p=0.03). The risk allele of rs2596560 on chromosome
6 near MICA, associated with a higher risk of atopy within asthmatics (C allele: odds
ratio=1.50, p=0.03).

Asthma definition

We compared the effect sizes of our results with the published GWAS results (table 2). Of
the 24 SNPs previously reported, 20 SNPs (83%) were present in our genotyped dataset with
either the same SNP or a proxy SNP (r2>0.93). Of these 20 SNPs, 8 (40%) had the same
direction of effect with p-values p<0.05. The other 12 SNPs were not significantly
associated, yet odds ratios were in the same directions as described in the literature. The
SNPs in the genes GSDMB and /L-33had a larger effect size in the DAG cohort than
reported in the literature. Other SNPs showed similar or smaller effect sizes.

Network analysis

After the GWAS analysis (table 1), the literature search (table 2) and eQTL analyses (table
E9), 37 different genes were included in STRING. The proteins encoded by these genes
showed significant protein-protein interaction enrichment (figure E6). In total 43 interactions
were observed, where 5.4 interactions were expected (p<1.0*10712). 101 Significant GO
biological processes and 24 significant KEGG pathways were found (table E110). Of our
novel replicated genes found in eQTL analysis, AB/3BP was involved in the (positive)
regulation of cell adhesion (1.23*1073). The sensitivity analysis excluding GWAS genes not
significant in our dataset (28 genes) showed similar enrichment for protein-protein
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interaction (number of protein-protein interactions observed: 20; expected 2.34, enrichment
p value: 1.16*10712),

Discussion

We associate asthma with presence of BHR to four regions of the genome after replication in
four independent cohorts: the 17q12 locus (being genome wide significant), and provide
evidence for association with three other loci: ABI3BR, NAF1,and M/CA. We confirm
previous observations, that the 17q12 locus is associated with a doctor’s diagnosis of asthma
and extend these observations by showing that it is also associated with asthma combined
with BHR. Analyses of the top associated SNPs revealed that 5 out of 6 SNPs were strong
eQTLs, which led to the identification of new gene transcripts of interest for asthma. The
combination of the suggestive findings from our GWAS, the significant nominal replication
in one or more replication cohorts as well as the functional effects on gene transcription in
the lung provides suggestive evidence for the role of these genes in asthma. Furthermore,
adding BHR as an objective marker of asthma does not result in larger genetic effect sizes
when compared to published studies that use a doctor’s diagnosis of asthma.

Seven SNPs on chromosome 17q provided genome wide significant associations with
asthma in our analysis. The 17912 locus is replicated in many studies and is one of the
strongest loci for asthma (3, 5, 6, 8, 33, 34). Previous reports indicated that the 17q12 SNPs
regulate gene expression of 6 genes: ORMDL3, GSDMA, IKZF3, CRKRS, GSDMB and
ZPBPZin lung tissue (16) and lymphoblastoid cells (35, 36). We found ¢/s-eQTLs in lung
tissue for two additional genes; PNMT and PERLDI.

The function of the 17912 locus is still not known. To get more inside in the possible
function of the locus, we performed additional association analyses of our top SNPs with
phenotypes related to asthma, allergy and airway inflammation that are available in our
study (table E10). In these analyses we found that risk alleles of our tagging SNPs at the
17912 locus were associated with an increased number of CD4™ cells in the airway wall
biopsies of asthmatics, suggesting involvement of these genes in the Th2 pathway in asthma.
Moreover, a role of the 17921 genes in the relation of eosinophils with asthma was
suggested by the association of rs2305480 with the number of eosinophils in airway wall
biopsies in asthmatics. Recently, OrmdI3 was shown to promote eosinophil trafficking to the
sites of inflammation in a mouse model, and our data in asthma patients are consistent with
this observation (37).

One SNP on chromosome 6 near M/CA associated with atopy within asthmatics. This last
finding is of interest, since M/CA has been associated previously with allergic diseases in a
GWAS study (38). In this previous study, having the risk allele of the SNP rs9266772 in
MICA was associated with a higher risk of atopy (LD between rs9266772 and rs2596560
(our SNP) r2=0.1). In our study, we found that having the risk allele associates with a higher
chance of being atopic within asthma. Furthermore, another study showed that levels of
soluble MICA in blood is five times higher in paediatric children with a history of
respiratory allergic symptoms after house dust mite exposure, compared to healthy children
of the same age (39).
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Our GWAS revealed AB/3BPas a new candidate gene involved in asthma. In the GO
biological processes analysis AB/3B8P was involved in (positive) regulation of cell adhesion.
A study using Ab/3b knock-out mice showed that Ab/3bp controls mesenchymal stem cell
proliferation and differentiation in bone marrow, lung and liver, interacting with Integrin-
beta-1 (40). Thus, we speculate that AB/3BP may be involved in matrix remodelling in
asthma, which could be subject of further study.

Five out of 6 top SNPs acted as eQTLs in lung tissue for one or several gene transcripts. In
addition to the eQTL effects of the chromosome 17g12 SNPs, we also identified one SNP in
in MICA to be associated with among others four new gene transcripts on chromosome 6¢21
(SFTAZ, RNF5, TUBBand ZFP57). In the GO biological processes RNF5was involved in
responses to bacteria, external stimulus, biotic organism, organic substance and chemical
stimulus. The KEGG pathway analysis showed that 7UBB was involved in the endoplasmic
reticulum mediated phagocytosis. So far, no link with asthma is known.

Furthermore, rs2596560 on chromosome 6 regulates HLA-DQBI, which is involved in
antigen presentation and has been associated with asthma in multiple studies (9, 29).
Moreover, the SNP regulates NOTCH4, a potent regulator of SMADS3, another asthma gene
found by GWAS (41). NOTCH4 has already been associated with lung function in asthma
(42, 43).

Combining GWAS and eQTL analysis revealed new candidate genes in our study. We
identified a strong enrichment of ¢/s-eQTLs among our top SNPs, which is consistent with
the literature (14). We confirm that eQTL analysis can be used as a tool to associate different
gene transcripts to a disease SNP, thereby providing insight into new candidate genes and
possibly functional mechanisms in asthma (16).

We hypothesized that an asthma definition combined with the presence of BHR could lead
to stronger effects of the SNPs on the disease risk compared to a doctor’s diagnosis of
asthma. However, our data did not support this general notion, as we only found three SNPs
with an increased risk estimate compared to the published literature. This may indicate that
BHR itself is a complex trait, regulated by multiple genetic and environmental factors, such
as smoking and corticosteroid use. Another explanation could be that not only the effect of a
single SNP is involved in asthma, but epistasis of different SNPs associate with asthma. If
this is the case, SNPs by themselves could only have a small influence on the risk estimate,
as seen in our study.

There are several strengths and limitations to be considered when interpreting our work. We
analysed asthmatics with rich phenotypic measurements, including airway wall biopsies in
98 asthmatics. Although most asthmatics came from the same geographical region,
ascertainment schemes were different (families, clinical cases) and patients of varying ages
and asthma severity were combined in our analysis. Second, although we gathered almost
1,000 well characterized asthmatics, by current standards our sample size is limited.

Although we identified several associations of our top SNPs to different asthma
subphenotypes, these associations would not survive a strict correction for multiple testing.
To increase the sample size of the control population, we selected geographically matched
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controls that had normal lung function and no respiratory symptoms, although they had
significant smoking history. Nevertheless, we found several hits that were replicated in
several populations.

Our replication cohorts did not include BHR in the diagnosis of asthma. Therefore it could
be that our finding (asthma diagnosis with BHR) is diluted in the replication phase. GWA
studies tend to overestimate the ORs, this phenomenon is called the ‘winners curse” and has
been described in literature (44). Since we compared the GWAS results from the literature to
our results, it could be that the ORs of SNPs from literature have an upwards bias. It could
therefore be that the differences we find in our paper are smaller due to the ‘winners curse’.
Nowadays, GWAS'’s are often performed on imputed data to expand the coverage of the
genome. Although we only present a GWAS with genotype data, we did perform a GWAS
on the hapmap 2 version 21 imputed data, but did not find any different region compared to
the genotyped analysis.

EQTLs are known to be tissue specific. A drawback of our approach may be that whole lung
tissue was used, which consists of different cellular subpopulations. Moreover, strong LD
between SNPs (for example on chromosome 17) may further complicate the interpretation of
our results, since a causal SNP is hard to determine in a region of strong LD. Nevertheless,
our positive associations of SNPs with gene expression in lung tissue, relevant to asthma as a
disease, provides further guidance for future studies of these transcripts in asthma.

In conclusion, the combination of GWAS and lung eQTL analysis led to the identification of
potential new genes for asthma; ABI3BF, NAFIand MI/CA. Future studies are necessary to
investigate the mechanisms of the new genes found that may potentially contribute to asthma
development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
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