

Babak Mokhlesi, M.D., M.Sc.
 Daniela Grimaldi, M.D., Ph.D.
 Guglielmo Beccuti, M.D., Ph.D.
 Varghese Abraham, M.D.
 Harry Whitmore, R.P.S.G.T.
 Fanny Delebecque, M.S.
 Eve Van Cauter, Ph.D.
*University of Chicago
 Chicago, Illinois*

References

1. Kendzerska T, Gershon AS, Hawker G, Tomlinson G, Leung RS. Obstructive sleep apnea and incident diabetes: a historical cohort study. *Am J Respir Crit Care Med* 2014;190:218–225.
2. Aronsohn RS, Whitmore H, Van Cauter E, Tasali E. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. *Am J Respir Crit Care Med* 2010;181:507–513.
3. Tahhani AA, Ali A, Raymond NT, Begum S, Dubb K, Mughal S, Jose B, Piya MK, Barnett AH, Stevens MJ. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. *Am J Respir Crit Care Med* 2012;186:434–441.
4. Grimaldi D, Beccuti G, Touma C, Van Cauter E, Mokhlesi B. Association of obstructive sleep apnea in rapid eye movement sleep with reduced glycemic control in type 2 diabetes: therapeutic implications. *Diabetes Care* 2014;37:355–363.
5. Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. *Ann N Y Acad Sci* 2014;1311:151–173.
6. West SD, Nicoll DJ, Wallace TM, Matthews DR, Stradling JR. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. *Thorax* 2007;62:969–974.
7. Shaw JE, Punjabi NM, Naughton MT, Willes L, Bergenstal RM, Cistulli PA, Fulcher GR, Richards GN, Zimmet PZ. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. *Am J Respir Crit Care Med* 2016;194:486–492.
8. Mokhlesi B, Finn LA, Hagen EW, Young T, Hla KM, Van Cauter E, Peppard PE. Obstructive sleep apnea during REM sleep and hypertension. results of the Wisconsin Sleep Cohort. *Am J Respir Crit Care Med* 2014;190:1158–1167.
9. Mokhlesi B, Grimaldi D, Beccuti G, Abraham V, Whitmore H, Delebecque F, Van Cauter E. Impact of fully compliant CPAP treatment of obstructive sleep apnea on glycemic control in type 2 diabetes: a proof of concept clinical trial. *Am J Respir Crit Care Med* 2015;191:A6417.
10. Kushida CA, Chediak A, Berry RB, Brown LK, Gozal D, Iber C, Parthasarathy S, Quan SF, Rowley JA; Positive Airway Pressure Titration Task Force; American Academy of Sleep Medicine. Clinical guidelines for the manual titration of positive airway pressure in patients with obstructive sleep apnea. *J Clin Sleep Med* 2008;4:157–171.
11. Rodway GW, Weaver TE, Mancini C, Cater J, Maislin G, Staley B, Ferguson KA, George CF, Schulman DA, Greenberg H, et al. Evaluation of sham-CPAP as a placebo in CPAP intervention studies. *Sleep* 2010;33:260–266.
12. Martínez-Cerón E, Barquiel B, Bezos AM, Casitas R, Galera R, García-Benito C, Hernanz A, Alonso-Fernández A, García-Rio F. Effect of CPAP on glycemic control in patients with obstructive sleep apnea and type 2 diabetes: a randomized clinical trial. *Am J Respir Crit Care Med* [online ahead of print] 24 Feb 2016; DOI: 10.1164/rccm.201510-1942OC.
13. American Diabetes Association. Standards of medical care in diabetes: 2016. *Diabetes Care* 2016;39:S1–S112.

Survival after Endobronchial Valve Placement for Emphysema: A 10-Year Follow-up Study

To the Editor:

Bronchoscopic lung volume reduction with endobronchial valves (BLVR) can improve lung function and exercise capacity in appropriately selected patients with emphysema (1–5). Although early data have been encouraging (6), it is not clear whether response to BLVR will translate into sustained survival benefit, as observed after lung volume reduction surgery (LVRS) (7).

Methods

We reviewed the long-term outcome of BLVR in 19 patients with heterogeneous emphysema (Table 1) treated with Emphasys valves, placed to achieve occlusion of a single target lobe, between July 2002 and February 2004 (3, 4, 6). Survival data to November 2015 were compared, using Kaplan-Meier analysis, between those with (n = 5) and those without (n = 14) evidence of atelectasis on thoracic computed tomography scan performed 1 month postprocedure.

Results

In the atelectasis group, two of five patients (40%) were still alive compared with 2 of 14 (14%) of the nonatelectasis group (P = 0.017) (Figure 1).

Discussion

These data suggest that successful BLVR may be associated with a substantial, persisting survival benefit similar to that observed after LVRS. The most likely explanation for the occurrence of atelectasis in some, but not other, patients is the absence or presence of collateral ventilation between the target lobe and adjacent lung because of disruption of the interlobar fissures by emphysema. Patients in whom collateral ventilation is thought to be present (either measured directly or assessed using analysis of interlobar fissures on computed tomography scans) are not now recommended for BLVR. A second issue is a technical one around valve placement and airway anatomy. Sometimes it is difficult to achieve a satisfactory seal, and valves may need to have their placement adjusted. Overall, the response rate was similar to that observed in other trials in which patients were not selected on the basis of collateral ventilation (5).

Although it is possible that the difference in survival could be explained by some disparity in the baseline characteristics of the two groups other than collateral ventilation, this seems unlikely. The groups were well matched (Table 1), including for gas transfer, the lung function parameter most strongly associated with survival

Supported by the National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield National Health Service Foundation Trust and Imperial College, London, United Kingdom, who part fund M.I.P.'s salary. D.M.H. is a National Institute for Health Research Senior Investigator. N.S.H. was supported by The Wellcome Trust (G062414).

The views expressed in this publication are those of the authors and not necessarily those of the National Health Service, the National Institute for Health Research, or the Department of Health.

Author Contributions: Patients were recruited and studied by T.P.T., M.I.P., and N.S.H.; D.M.H. performed radiologic analysis; S.V.K. and P.L.S. interpreted the data; and N.S.H. and J.G. produced a first draft to which all authors contributed and that was approved by all authors in this final version.

Table 1. Baseline Characteristics

	All (N = 19)	Nonatelectasis (n = 14)	Atelectasis (n = 5)	t Test
Age, yr	58.7 (8.7)	59.6 (9.0)	56.0 (7.6)	0.4
Female, %	16	14	20	0.7
BMI, kg · m ⁻²	23.3 (4.1)	21.6 (2.9)	28.2 (2.9)	0.004
FFMI	16.1 (1.6)	15.8 (1.5)	17.5 (1.4)	0.05
SGRQ symptoms	63.7 (19.2)	63.3 (18.2)	64.9 (24.3)	0.9
SGRQ activity	78.5 (16.5)	76.9 (18.1)	83.2 (11.0)	0.5
SGRQ impacts	45.1 (13.5)	42.8 (13.9)	51.9 (11.0)	0.2
SGRQ total	58.4 (12.8)	56.5 (14.2)	63.5 (2.3)	0.3
FEV ₁ % pred	28.4 (11.9)	28.6 (11.8)	27.7 (13.3)	0.9
FVC, % pred	80.3 (22.4)	80.1 (18.2)	81.0 (34.3)	0.9
TLC, % pred	139.3 (15.6)	141.1 (16.0)	134.3 (14.7)	0.4
RV, % pred	260.5 (68.4)	264.4 (66.6)	249.4 (80.0)	0.7
RV/TLC	63.2 (12.0)	64.0 (10.8)	60.9 (16.1)	0.6
FRC, % pred	208.9 (38.9)	213.3 (37.9)	200.1 (44.1)	0.5
D _L CO, % pred	35.9 (10.9)	35.6 (11.2)	36.9 (11.1)	0.8
P _{aco} ₂	4.8 (0.6)	4.8 (0.5)	4.8 (0.8)	0.9
P _{ao} ₂	9.8 (1.5)	10.0 (1.4)	9.2 (1.7)	0.3
Exacerbation rate/yr	2.2 (1.9)	1.9 (1.5)	2.8 (2.7)	0.4
Peak workload, W	48.9 (18.0)	50.4 (20.0)	40 (11.8)	0.6
V _O ₂ , L/min	0.84 (0.22)	0.85 (0.23)	0.85 (0.26)	0.99
V _{CO} ₂ , L/min	0.78 (0.21)	0.79 (0.27)	0.79 (0.23)	0.98
V _E , L/min	29.7 (8.1)	29.5 (9.9)	29.5 (4.1)	0.99

Definition of abbreviations: BMI = body mass index; D_LCO = diffusing capacity of the lung for carbon monoxide; FFMI = fat-free mass index; FRC = functional residual capacity; pred = predicted; SGRQ = St. George's Respiratory Questionnaire; RV = residual volume; TLC = total lung capacity. Values are mean (SD). Exercise parameters are values obtained during symptom-limited incremental cycle ergometry.

in chronic obstructive pulmonary disease (8), as well as for cardiopulmonary exercise parameters and exacerbation history.

The absence of a control group is, of course, a limitation for the interpretation of these data, but they do nevertheless support the idea that BLVR, similar to LVRS, can improve the natural history of chronic obstructive pulmonary disease and support equipoise

between the procedures. The indications for endobronchial valves and LVRS overlap considerably: heterogeneous emphysema with an appropriate target area and hyperinflation and gas trapping in patients who are not too frail to be able to cope safely with the intervention or are outside the lung function safety criteria (9). Direct comparison studies of adequate duration are now needed

Figure 1. Prolonged transplant-free survival in which atelectasis occurs after bronchoscopic lung volume reduction with endobronchial valves. The upper line shows significantly improved survival in patients (n = 5) in whom radiological atelectasis occurred after endobronchial valve placement compared with the lower line (n = 14), for which atelectasis did not occur (P = 0.017).

to compare outcomes between these two treatment modalities so that clinicians and patients can make informed choices about whether to proceed with a bronchoscopic or surgical approach. ■

Author disclosures are available with the text of this letter at www.atsjournals.org.

Acknowledgment: The authors thank Emphasys Medical Inc. (Redwood, CA) for providing the valves used in the original procedures.

Justin Garner, M.B. B.S.
Samuel V. Kemp, M.D.

*National Institute for Health Research Respiratory Biomedical Research Unit
at Royal Brompton and Harefield National Health Service Foundation Trust
and Imperial College London
London, United Kingdom*

Tudor P. Toma, Ph.D.
*Lewisham and Greenwich National Health Service Trust
London, United Kingdom*

David M. Hansell, M.D.
Michael I. Polkey, Ph.D.
Pallav L. Shah, M.D.
Nicolas S. Hopkinson, Ph.D.
*National Institute for Health Research Respiratory Biomedical Research Unit
at Royal Brompton and Harefield National Health Service Foundation Trust
and Imperial College London
London, United Kingdom*

ORCID ID: 0000-0003-3235-0454 (N.S.H.).

References

1. Davey C, Zoumot Z, Jordan S, McNulty WH, Carr DH, Hind MD, Hansell DM, Rubens MB, Banya W, Polkey MI, et al. Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HiFi study): a randomised controlled trial. *Lancet* 2015; 386:1066–1073.
2. Klooster K, ten Hacken NHT, Hartman JE, Kerstjens HAM, van Rikkoort EM, Slobos D-J. Endobronchial valves for emphysema without interlobar collateral ventilation. *N Engl J Med* 2015;373: 2325–2335.
3. Hopkinson NS, Toma TP, Hansell DM, Goldstraw P, Moxham J, Geddes DM, Polkey MI. Effect of bronchoscopic lung volume reduction on dynamic hyperinflation and exercise in emphysema. *Am J Respir Crit Care Med* 2005;171:453–460.
4. Toma TP, Hopkinson NS, Hillier J, Hansell DM, Morgan C, Goldstraw PG, Polkey MI, Geddes DM. Bronchoscopic volume reduction with valve implants in patients with severe emphysema. *Lancet* 2003;361:931–933.
5. Sciurba FC, Ernst A, Herth FJF, Strange C, Criner GJ, Marquette CH, Kovitz KL, Chiaccierini RP, Goldin J, McLennan G; VENT Study Research Group. A randomized study of endobronchial valves for advanced emphysema. *N Engl J Med* 2010;363:1233–1244.
6. Hopkinson NS, Kemp SV, Toma TP, Hansell DM, Geddes DM, Shah PL, Polkey MI. Atelectasis and survival after bronchoscopic lung volume reduction for COPD. *Eur Respir J* 2011;37:1346–1351.
7. Criner GJ, Cordova F, Sternberg AL, Martinez FJ. The National Emphysema Treatment Trial (NETT) part II: lessons learned about lung volume reduction surgery. *Am J Respir Crit Care Med* 2011;184:881–893.
8. Boutou AK, Shrikrishna D, Tanner RJ, Smith C, Kelly JL, Ward SP, Polkey MI, Hopkinson NS. Lung function indices for predicting mortality in COPD. *Eur Respir J* 2013;42: 616–625.
9. Zoumot Z, Jordan S, Hopkinson NS. Emphysema: time to say farewell to therapeutic nihilism. *Thorax* 2014;69:973–975.

Copyright © 2016 by the American Thoracic Society

It Is Too Early to Say No Place for High-Frequency Oscillatory Ventilation in Children with Respiratory Failure

To the Editor:

In their article on early high-frequency oscillatory ventilation in pediatric acute respiratory failure, Bateman and colleagues (1) reported that early use of high-frequency oscillatory ventilation (HFOV) was associated with a longer duration of mechanical ventilation. I am concerned that using propensity score to compare early and late use of HFOV is not equal in terms of severity, which will lead to misleading interpretations of the study result. If we look at the Pediatric Risk of Mortality score in two groups, there was a significant difference at baseline (11.5 vs. 7; $P < 0.001$). In addition, there was a greater prevalence of patients with cancer in the early HFOV group compared with in the conventional mechanical ventilation (CMV)/late HFOV group (17% vs. 7%; $P < 0.001$). This might lead to worse outcome in the early HFOV group, even though the degree of hypoxia was comparable at the beginning. I and colleagues have also published a few studies related to the use of HFOV, including a recent randomized controlled trial comparing HFOV and CMV with lung volume recruitment (2, 3). We actually showed the benefit of HFOV above CMV, especially with regard to oxygenation response. We did not find a significant difference in mortality because of our small sample size.

In my experience, HFOV would most benefit children with no underlying disease who suffer with severe oxygenation failure (oxygenation index >15 , not >8). As mentioned in the accompanying editorial (4), the dramatically worse oxygenation index and organ dysfunction in patients receiving early HFOV appeared to persist afterward. Moreover, there may still be concerns that other unmeasured factors such as patients' clinical status or physician practice pattern could lead to clinical deterioration in early use of HFOV. ■

Author disclosures are available with the text of this letter at www.atsjournals.org.

Rujipat Samransamruajkit, M.D.
*Chulalongkorn University
Bangkok, Thailand*

References

1. Bateman ST, Borasino S, Asaro LA, Cheifetz IM, Diane S, Wypij D, Curley MAQ; for the RESTORE Study Investigators. Early high-frequency oscillatory ventilation in pediatric acute respiratory failure: a propensity score analysis. *Am J Respir Crit Care Med* 2016;193: 495–503.
2. Samransamruajkit R, Prapphal N, Deelodegenavong J, Poovorawan Y. Plasma soluble intercellular adhesion molecule-1 (sICAM-1) in pediatric ARDS during high frequency oscillatory ventilation: a predictor of mortality. *Asian Pac J Allergy Immunol* 2005;23: 181–188.
3. Samransamruajkit R, Rassameehirun C, Pongsanon K, Huntrakul S, Deerojanawong J, Sritippayawan S, Prapphal N. A comparison of clinical efficacy between high frequency oscillatory ventilation and conventional ventilation with lung volume recruitment in pediatric acute respiratory distress syndrome: a randomized controlled trial. *Indian J Crit Care Med* 2016;20:72–77.