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Abstract

Respiratory diseases are highly complex, being driven by
host-environment interactions and manifested by inflammatory,
structural, and functional abnormalities that vary over time.
Traditional reductionist approaches have contributed vastly to our
knowledge of biological systems in health and disease to date;
however, they are insufficient to provide an understanding of the
behavior of the system as a whole. In this Pulmonary Perspective, we
discuss systems biology approaches, especially but not limited to the
study of the lung as a complex system. Such integrative approaches
take into account the large number of dynamic subunits and their
interactions found in biological systems. Borrowing methods from
physics and mathematics, it is possible to study the collective
behavior of these systems over time and in a multidimensional
manner. We first examine the physiological basis for complexity in

the respiratory system and its implications for disease. We then
expand on the potential applications of systems biology methods to
study complex systems, within the context of diagnosis and
monitoring of respiratory diseases including asthma, chronic
obstructive pulmonary disease (COPD), and critical illness. We
summarize the significant advances made in recent years using
systems approaches for disease phenotyping, applied to data ranging
from the molecular to clinical level, obtained from large-scale asthma
and COPD networks. We describe new studies using temporal
complexity patterns to characterize asthma and COPD and predict
exacerbations as well as predict adverse outcomes in critical care. We
highlight new methods that are emerging with this approach and
discuss remaining questions that merit greater attention in the field.
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The respiratory system is highly complex,
both in health and disease. This has long
been recognized in the clinic, because
chronic diseases such as asthma and chronic
obstructive pulmonary disease (COPD) are
typically complex, multifactorial, and
influenced by external, environmental, and
internal inflammatory stimuli. Furthermore,
they tend to manifest themselves not in an
instant but over time (e.g., the temporal
behavior of asthma fluctuates over time in
response to constantly changing stimuli) (1).
The experienced clinician intuitively knows

to characterize and monitor disease stability
on the basis of multidimensional, constantly
changing factors (2). Likewise, in intensive
care, a multitude of physiological signals are
routinely assessed over time to determine
prognosis and direct intervention.

For these reasons, the respiratory
system is increasingly conceptualized as
a complex system. In biology, complex
systems are dynamic systems comprising
multiple nonlinearly interacting subunits
that operate under nonequilibrium
conditions (3). Interactions between the

subunits exhibit emergence (i.e., the
interactions between individual subunits
result in more complex, organized behavior
that cannot be readily deduced from the
components alone). These interactions are
often characterized by self-similar (fractal)
spatial structures and/or temporal behavior
with repeating motifs extending over
substantial parts of the structure or a

time period (long-range correlations;

i.e., “memory”) and distributions with long
tails that follow a power law, allowing for
“rare” sizes or events to occur (3). Fractal
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structures are ubiquitous in nature (e.g.,
lightning, deltas, trees, mountains, clouds,
coastlines). Within the respiratory system,
obvious self-similar structures are the
airway and vascular trees (4), and complex
temporal behavior is present in the
dynamics of breathing (5).

Systems biology may be defined as a
discipline that attempts to understand
biological systems, complex or otherwise,
from the interactions of their components,
using computational and mathematical
tools, which often overlap with those of
complexity science. In this article, we discuss
the use of systems biology approaches,
especially but not limited to the study of the
lung as a complex system. Such approaches
have captured the imagination of a rapidly
growing number of medical researchers (1, 2,
6-8). Although traditional reductionist
approaches have contributed vastly to our
knowledge of biological systems to date, they
limit our understanding of the behavior of
the system as a whole. Systems biology takes
into account the known components of a
biological entity, be it at the molecular,
cellular, organ, individual, or even
population level, and studies the interactions
between the different components and their
collective behavior over time. This has been
facilitated by advances in computing and
information technology that allow us to
model, collect, process, and interpret ever-
larger amounts of information.

This Pulmonary Perspective
summarizes a Scientific Symposium entitled
“Systems Biology and Clinical Practice: The
Twain Shall Meet?” that was held in May
2015 during the American Thoracic Society
International Conference in Denver,
Colorado. Here, we first examine the
physiological basis for complexity in the
respiratory system and its implications
for disease. We then discuss current
applications of the systems biology approach
to asthma and COPD and in critical care.
Finally, we provide an overview of future
potential contributions in the respiratory and
critical care fields (Figure 1).

Some of the results of these studies have
been previously reported in the form of an
abstract (9).

How Does Complexity Arise
in the Respiratory System?

The complexity of the structures and
biological processes in the healthy lung
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Figure 1. A vision for how systems biology can meet clinical practice: physicians will collect
information on their patients with asthma and chronic obstructive pulmonary disease or in the
intensive care unit related to variation in symptoms, lung function, biomarkers, structure, quality of life,
and other aspects of disease, which can then be integrated with information from environmental and
psychosocial factors, using advanced analyses to comprehensively describe behavior over time. This
approach enables them to arrive at more objective and precise clinical decisions and treatment
strategies and even provide accurate prognostic indicators.

arises from interactions observed at both
the microscopic and macroscopic scales,
such as extracellular matrix maintenance,
surfactant secretion, and control of
breathing. To gain insight into how the
complexity of the normal lung transitions
into pathological states, it is useful

to understand the processes that
contribute to the complexity of the
normal lung.

From Micro- to Macroscopic Scales,
and Vice Versa

Generally, complex behavior emerges from
nonlinear interactions among the subunits
of a system when pushed away from
equilibrium. There are many known
examples of mechanisms that contribute to
complexity within the lung. First, in
adaptive systems composed of many
autonomous “agents,” nonlinear
interactions can lead to complex behavior
(e.g., the collective migration of epithelial
cells during wound closure) (10, 11).
Second, such agents can also build complex
structures; indeed, the adaptive behavior of
lung cells during embryonic development
produces growth patterns from which the
complex fractal airway and vascular trees
arise (12). Third, signals propagating

through an existing complex structure
result in complex temporal behavior
(13). For example, airways open in an
avalanche-like progression with a size
distribution that follows a power law,
which means that the probability that a
large alveolar region simultaneously
pops open during inflation of a partially
collapsed lung is not negligible (14). The
avalanche behavior is a consequence of
pressure waves sequentially opening
airways while propagating through the
tree. Fourth, complexity may arise from
network behavior; the origin of long-
range correlations in tidal volume can be
traced back to the highly nonlinear
interactions among the five respiratory
neuron groups forming a network

in the respiratory rhythm generator
(15). Therefore, complexity is deeply
embedded in multiple instances

in the respiratory system, even in
health.

The link between the origins and
consequences of complexity may also be
bidirectional. Not only has complexity at the
macroscale been attributed to nonlinear
microscopic processes interacting with the
environment (16) but also it could influence
microscale processes. For example, type II
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alveolar epithelial cells in the lung secrete
surfactant, which reduces surface tension at
the air-liquid interface, allowing normal
breathing by minimizing alveolar collapse.
A single large stretch during a deep
inspiration has been shown to be a potent
stimulator of surfactant release (17). More
importantly, the variability of the breathing
pattern itself has also been found to up-
regulate surfactant secretion (18), which
may have a significant impact on how
patients will be mechanically ventilated in
the future (19). Macroscopic complexity
in physiological variables, such as
mechanical forces of tidal volume or
blood pressure acting on cells (20), can
regulate normal cell function. Therefore,
changes in macroscale complexity during
the course of disease may adversely affect
signaling and tissue remodeling at the
microscale.

Influence of Intrinsic versus Extrinsic
Factors

We have gained much information from
mechanistic association studies regarding
the factors influencing observable
macroscopic behavior (e.g., variability of
airway caliber and airway function over
time). Short-term variations in airway
function are dependent mainly on intrinsic
factors, such as mean airway caliber,
posture, bronchial reactivity, airway smooth
muscle loading, end-expiratory lung
volume, and viscoelastic properties of lung,
as well as extrinsic factors, such as
methacholine and bronchodilators (1, 15,
21-24). The sources of these variations
are difficult to disentangle, are different
between asthma and COPD, and have been
associated with disease severity and
inflammatory phenotypes (25). Whether
short-term variations of airway caliber are
related to airway remodeling is still
unknown. Meanwhile, from larger
epidemiological studies, we are starting to
see that long-term day-to-day variations
of lung function are strongly influenced
by the interaction of the respiratory
system with extrinsic environmental
factors, via correlations with, for example,
air pollution, viral infections, pollen,
medication, and diurnal changes of stimuli.
We know that intrinsic factors, such as
sex and airway structure, as indicated by
mean airway caliber, as well as asthma
control and disease severity (summarized in
References 1, 23, 26), also play a part.

Pulmonary Perspective

Relevance to Health and Disease

In health, a complex system may be tolerant
to gradual and small changes in one of its
subsystems or the interactions among
subsystems. However, due to the nonlinear
and networked nature of the interactions,
such small changes can often trigger grossly
amplified global effects once a threshold is
reached. This is when clinical symptoms
first appear and disease manifests itself (27).
An understanding of the origins and details
of complexity of the healthy respiratory
system can provide insight into how
pathological states emerge and hence help
inform the practical application of systems
biology approaches toward more effective
strategies for diagnosis, monitoring, and
treatment of pathological conditions.

What Can Systems Biology
Do for Me? A Respiratory
Clinician’s Wish List

What are the key clinical questions that
could potentially be answered by a systems
approach? Airway disease provides some
striking examples of clinical problems for
which such an approach could promote
understanding of underlying mechanisms
and improve outcomes.

Diagnosis

The clinician’s wish list begins with
diagnosis, as respiratory symptoms are
nonspecific, and objective measures are
often unavailable. Asthma is characterized
by typical patterns of symptoms (e.g.,
triggered by exercise/laughter/cold air)

and increased lung function variability.
However, respiratory symptoms

may be due to factors other than
bronchoconstriction, contributing to the
poor correlation between symptoms and
lung function (28, 29), and to difficulty in
diagnosis. Furthermore, although asthma is
most characteristically associated with
variability in symptoms and lung function,
and COPD most characteristically by
progressive symptoms and airflow limitation,
both conditions are heterogeneous (30, 31),
and their clinical features overlap, as
evidenced by the 15 to 20% of patients who
share both diagnoses (32).

Systems biology approaches should
enable us to uncover hidden patterns or
information, and the application of systems
biology to a broad range of available
measures, from symptoms through to

exhaled breath, provides hope for point-of-
care diagnosis of patients presenting with
respiratory symptoms (33). Clinical
recognition of temporal symptom patterns
has already led to computerized peak flow
algorithms for diagnosis of occupational
asthma using machine learning (34). For
wheezing in preschool children, which may
represent anything from self-limiting viral
infections to the initial manifestation of
lifelong asthma, recent guidelines
recommend a probability-based approach
to diagnose asthma on the basis of
wheezing episodes, interval symptoms,
atopy, and family history (35). However, at
present, this process involves the clinician
mentally combining a limited set of
subjective and objective data from each
individual child. Applying systems biology
approaches to the extensive clinical and
biomarker data collected over time from
cohort studies may generate new tools for
diagnosis of such children.

Monitoring

Once a diagnosis of airway disease is made,
we need sophisticated analyses for
monitoring progress and evaluating
treatment response. In clinical trials,
analysis of symptoms is often limited to
frequency (e.g., number of days/week) (36).
In clinical trials, mixed-model analysis of
lung function is increasingly used to take
advantage of multiple data points (36).
However, for clinical practice, lung function
analysis is often simplistic, dating back to
the era of paper diaries (with their high
rates of data fabrication) and manual
calculations, resulting in loss of
information. Common metrics, such as
diurnal peak expiratory flow (PEF)
variability, which simplifies twice-daily

(or more frequent) measurements down to
a single averaged number per week, can
conceal clinically important differences in
underlying mechanisms, as seen by the lack
of increase in diurnal PEF variability during
severe viral asthma exacerbations (37).
Conventional criteria for identifying
worsening asthma, if simply based on
percent predicted PEF, fail to take into
account the patient’s background level of
variation in symptoms or lung function
(38). The availability of repeated measures
allows for systems approaches, particularly
with expanding use of electronic medical
records and ambulatory monitoring. Such
approaches may in addition include
fluctuations in biological disease markers,
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as a strength of these methods is the ability
to identify complex relationships. For
example, in newly diagnosed asthma or
COPD, can patients at risk of progression
to severe disease or accelerated decline in
lung function be identified early, before the
underlying mechanisms are obscured by
time and treatment? After a change in
treatment, which short-term measures will
identify a positive response or a loss of
control? With increasing interest in both
patient-centered measures and personalized
treatment, can sophisticated analyses allow
identification of specific treatable
mechanisms from specific symptom
features? Some possibilities offered by
systems approaches are discussed in the
next sections.

Treatment

A final example in the clinician’s wish list,
relevant to a broad range of diseases, is

a better understanding about patterns

of medication adherence and their
relationship with other variables and with
treatment response. Adherence is often
estimated from dispensing records or
patient self-report, both of which
overestimate actual use. Much greater
accuracy and granularity is provided by
electronic inhaler monitoring, but as yet we
lack suitable methods of analysis. Current
adherence metrics typically average
adherence over many months, but this
conceals gaps or trends in usage (39); “50%
adherence” may indicate erratic usage with
long gaps or regular low-dose treatment,
and these patterns have different risk
implications. Visual inspection of
medication data can identify basic
adherence patterns (40), and advanced
metrics could describe these patterns of
medication use more comprehensively, but
a systems approach could allow
examination of additional relevant data,
also taking into account the complex
relationships between medication usage
and patient characteristics (including
personality and attitudes); day-to-day
exposures such as pollution, temperature,
and pollens; and medication type. It

could then comprehensively assess their
combined effect on clinically important
outcomes, such as symptom control and
risk of adverse outcomes.

The examples provided above are
only a start. Human beings are complex
organisms with complex exposures, and
our approach to understanding disease
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mechanisms and treatment strategies should
not be limited by simplistic analysis
methods. A dialogue between clinicians and
systems biology scientists will stimulate
progress in both fields. In the next few
sections, we discuss how far systems biology
has come in addressing the wish list.

Phenotypic Fingerprinting:
Diagnosis in Asthma and
COPD

The diagnostic approach to asthma and
COPD is highly illustrative of the ambiguity
that still surrounds patient classification
even today. After difficulties in clearly
distinguishing these two entities during the
mid-20th century and introducing a
complex phenotype-driven approach (41),
decades of subsequent efforts produced
globally agreed criteria to define asthma
(30) and COPD (31). By itself, this
represented a first and solid step toward
subclassification of obstructive airway
diseases. Even though this is fulfilling its
purpose of globally improving the
standards of care tremendously well, the
inevitable overlap of disease features
between asthma and COPD in individual
patients has regained wide recognition (30,
32), thereby promoting a new phenotype-
driven approach on the basis of clinical and
biological features that are predictive of
therapy responsiveness regardless of the
diagnostic label of asthma or COPD (42).

Phenotype or Endotype?

Patients vary with respect to their clinically
observable characteristics, which can be
described as relatively stable (but not
invariable) phenotypes. There is little doubt
that adding biological information to
clinical features improves the phenotyping
of asthma and COPD (43), for which high-
throughput platforms for capturing
molecular mixtures are currently available
(44). This not only allows probabilistic
phenotyping of individual patients but also,
importantly, enables discovery of
unidentified molecular networks in disease
(45, 46). Such hypothesis generation greatly
facilitates traditional mechanistic research,
which adds information regarding causative
pathways to the various disease phenotypes
to arrive at disease endotypes (47). In fact,
as yet there are very few known endotypes
for asthma and COPD, other than those
based on blocking single cytokines (e.g.,

IL-5, IL-13), which still does not unravel
the causative involvement of
comprehensive biological mechanisms
(e.g., distinct type 2 cytokine pathways).
Molecular disease fingerprinting will
provide the new phenotypes for unraveling
the disease endotypes.

The Data

Building the data has understandably taken
time, but now proof-of-principle papers are
being published, mainly in severe asthma to
date. The systems biology approach used by
Ghebre and colleagues (48) showed that,
using a limited array for sputum cytokines
in patients with a clinical diagnosis of
severe asthma or moderate to severe
COPD, it was possible to distinguish novel
groups of patients regardless of their
original diagnostic label. Importantly, the
Ghebre study included validation in an
independent cohort, which is essential and
often still lacking in this research area (49).
Among patients with COPD, such an
approach also appears to be effective.
Gene expression profiling captures
phenotypes of patients in relation to
frequent exacerbations (50) and sensitivity
to inhaled steroids (51), thereby discovering
novel biological pathways in COPD. Similar
findings have recently been published
among children with severe asthma when
using gene expression profiles of peripheral
blood leukocytes (52) and in adults with
asthma on the basis of transcriptomics of
epithelial cells or laser-dissected airway
smooth muscle (53, 54). The next step will
be to apply similar methodology to broader
population samples.

Added Value?

The bottom line of these studies seems to be
that comprehensive assessment of molecular
fingerprints at the RNA or protein level may
provide added value to currently existing,
mostly singular molecular markers of
disease. When integrated with clinical
information, such molecular fingerprints
will contribute substantially to a gradual
shift from conventional clinical diagnoses to
stratified and individualized phenotyping of
patients (6). The U-BIOPRED (Unbiased
BIOmarkers in PREDiction of respiratory
disease outcomes) project is currently
delivering its molecular fingerprints and its
bioclinical handprints for severe asthma
(www.ubiopred.eu). As more prospective
studies arise, the systems approach enables
us to be better at interpreting cellular,
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molecular to whole physiology studies from
a holistic point of view, aided by multiscale
modeling (55), and integrating these results
with traditional clinical understanding.
Furthermore, this concept is applicable in
other areas of respiratory medicine (43)—in
fact, medicine in general.

Variability Analysis:
Monitoring in Asthma and
COPD

As a complex system, the lung involves
dynamic changes in structure and function
that result in the emergence of the clinical
manifestations, or phenotype, of diseases
like asthma and COPD (2). In the next few
sections we demonstrate that monitoring of
the variability of physiologic variables over
time enables us to more comprehensively
describe the complex behavior of the lung.
It should be noted that temporal variations
over time are not a necessary condition

of complexity; however, they occur
frequently in biological systems and are
often inadequately addressed using
simplistic measures and basic statistical
approaches. Many of the methods that can
be used to study temporal behavior are
borrowed from complexity science and
have been associated with key clinical
outcomes. Thus, coupled with the
consideration of multiple variables,
variability over time is a key component
within the systems biology approach to
studying respiratory diseases. This
potentially leads to a deeper understanding
of the pathophysiology of disease and, in
the case of asthma and possibly COPD, an
opportunity to predict future control.

Assessment of Disease Status and
Future Risk

Fluctuations in lung function are a critical
component of asthma. For many years, the
diurnal variation in PEF has been
recognized to be more severe in patients
with greater symptoms of asthma and in
those with more difficult to control, or
brittle, asthma (56, 57). Indeed, monitoring
the variability in PEF within the first

2 weeks after withdrawal of inhaled
corticosteroids may help predict loss of
asthma control (58). Similarly, a drop in
PEF combined with increased symptoms
during a 1-week period have been shown to
define a so-called “action point” beyond
which a worsening of asthma will occur
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within the next 5 days (59). However, as
indicated above, these studies were based
on simple PEF metrics. Detrended
fluctuation analysis (DFA), has been used
to show that intrinsic fluctuations in PEF
over time demonstrate complex fractal-type
(self-similar) behavior (60), also termed
long-range correlations (i.e., variability of
PEF measured over a long time window
relates to the variability of PEF over shorter
time scales). Analysis of these fluctuations
can in turn be used to predict future lung
function: In both mild-moderate and severe
asthma, asthma control assessed using a
Global Initiative for Asthma-based score
was associated with higher fluctuation
content (ie., greater self-similarity) (61).
Furthermore, the fluctuation properties of
PEF can be used to generate conditional
probabilities of a future asthma exacerbation
for an individual within the next month (62).

In contrast, PEF variability has not to date
been useful for monitoring of patients with
COPD, with mixed results relating to symptoms
in comparison to asthma (63). As in asthma, a
drop in PEF precedes an exacerbation of
COPD, but its predictive value for exacerbation
is low (64). Nevertheless, using DFA, PEF
fluctuations in patients with COPD have been
shown to be related to exacerbation frequency
(65). Advanced analyses of PEF may provide
more information where simple measures of
PEF variability have failed, particularly when
integrated with other clinical measures and
biomarkers.

More Sensitive Lung Function
Measures?

Lung function can also be characterized by
respiratory impedance (pressure over flow at
a given frequency), measured by the forced
oscillation technique (FOT). In 2001,

Que and colleagues demonstrated that
respiratory system resistance measured by
FOT was more variable in patients with
asthma than in healthy control subjects,
even across time spans as short as

15 minutes (66). This variability has
subsequently been demonstrated in a
number of other studies involving both
adults and children (22, 67-69). One study
has even suggested that home monitoring
of FOT for just 2 minutes a day over only
8 days could yield sufficient information to
calculate a conditional probability of lung
function deterioration over the subsequent
week (70). More recently, it was even
possible to obtain individualized measures
of risk (71). Increasing FOT impedance has

also been associated with loss of airflow
pattern complexity in patients with
increasing severity of airflow limitation (72).

Implications for COPD?

When measured using FOT, patients with
COPD have increased day-to-day variability
in impedance compared with healthy
control subjects, and even higher than that
of patients with asthma (73), despite the fact
that COPD is traditionally viewed as a
disease of progressive obstruction.
Although DFA of respiratory system
impedance was not able to differentiate
COPD from asthma or healthy control
subjects, a distance-based time series
analysis was able to distinguish asthma and
COPD in the majority of cases (22). In
moderate COPD, there are larger differences
between inspiratory and expiratory FOT
reactance compared with patients with
asthma and healthy control subjects (74),
and this difference is more variable over time
and correlates well with dyspnea (75). Home
monitoring of lung function by FOT in
patients with COPD has recently been shown
to be feasible and reliable (76), suggesting a
great potential role for monitoring of FOT
variability in COPD.

In terms of disease monitoring, we are
seeing a rapid increase in the number of
technologies that enable home monitoring
of PEF or FOT impedance and
communication via smartphone
applications (e.g., Asthma Health App,
http://apps.icahn.mssm.edu/asthma/). If
incorporated into the systems approach of
making sense of data from multiple sources
and comprehensively describing behavior
over time, this may revolutionize the way
we routinely care for patients with asthma,
COPD, and other chronic lung diseases.

Temporal Phenotyping:
Extending Variability
Analyses for Both Diagnosis
and Monitoring

We have already seen that fractal-type
fluctuations of lung function over time may
help to assess disease status and risk (58, 60,
62, 65, 72, 77, 78) and to monitor therapy
success (58, 60, 79). Furthermore, in asthma,
fluctuations in inflammatory markers such as
fractional exhaled nitric oxide are related to
symptoms (62, 80), and the degree of
concordance between the temporal changes
in the biomarker and the temporal changes
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in daily symptoms may even serve as a
measure of disease stability (62). There is also
some evidence that such analyses could be
used to phenotype asthma and COPD (61,
65). Can these analyses add to the increased
importance of phenotyping and endotyping
in the context of personalized health and
phenotype-specific treatment?

The Current Limitations of Cluster
Analyses

Cluster analyses represent one example in
which systems biology approaches have gained
increasing acceptance. Powerful observer-
independent statistical clustering methods have
been used to phenotype patients with asthma
on the basis of symptoms and biomarkers
(81-83). All of these clustering methods,
however, are population based, cross-sectional,
and measured at one point in time. They do
not consider temporal fluctuations or trends in
symptoms and biomarkers. They have also
largely been conducted in patients with a
single diagnostic label. Furthermore, very often
it is not considered that the clinical
phenotype—and thus the related omics
endotypes—may change in the context of
changes in the environment. In a dynamic
chronic disease such as asthma, in which
symptoms are strongly determined by the
environmental interaction, it is therefore
crucially important to develop observer-
independent clustering methods, which
quantify and characterize this interaction
(“interactome”) with the environment.

Combining Variability Analyses with
Clustering

Time series of fluctuations in day-to-day
lung function may be an ideal basis to
develop such a method of temporal
phenotyping of asthma and its relationship
with changes in the environment. Delgado-
Eckert and colleagues (9) have developed a
fluctuation-based clustering (FBC) method
and prospectively validated it in the
EFRAIM (Mechanisms of Early Protective
Exposures on Allergy Development study)
cohort of 696 children with asthma. Using
the earth-movers distance method (84),
which has been used in other fields such as
astronomy, the authors clustered the
patients on the basis of their twice-daily
FEV, and PEF fluctuation and distribution
properties within a period of 4 weeks. In
addition, the method uses a data-driven
cluster stability algorithm that allows the
inclusion of patients with missing
measurements. To clinically validate the
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FBC method in a blinded manner, they
compared the predominant clinical
characteristics of the clusters found with
previously published clinical asthma
phenotypes in this cohort (85). Out of the
four clusters derived, two clusters contained
a significant overrepresentation of children
with well-known clinical characteristics of
asthma, whereas children from a farming
environment and healthy control subjects
predominated the other clusters. Because
patient-related features and environmental
features influence the FBC clusters, the
method may represent an interesting novel
clustering dimension, which takes into account
how a chronic disease interacts with the
environment and how stable it is over time.
This method is in its infancy and holds
promising future implications for how
we examine disease over time in a
comprehensive, truly multidimensional
manner. It may help us better classify disease
status on the basis of other time-varying
variables (e.g, pattern of adherence to treatment
or symptom or treatment changes over time).

Variability Analysis:
Monitoring in the Intensive
Care Unit

The systems approach lends itself
particularly well to the wealth of
physiological data collected in the intensive
care unit (ICU) setting. By measuring the
degree and character of fluctuations of
the inter-beat and inter-breath time
intervals time series over windows in time,
discarding poor-quality waveforms,
beats or breaths, it is possible to
monitor heart and respiratory rate
variability (HRV and RRV) over time as
a means to evaluate the integrity of the
whole system. There has been extensive
research highlighting the association
between loss of variability and illness
incidence and severity, showing that HRV
and RRV assessment may provide added
value when compared with traditional
forms of clinical assessment by
improving our ability to diagnose onset
or severity of critical illness and predict
extubation outcomes. In this way, HRV and
RRV monitoring may help reduce the risk
of patient deterioration, morbidity,
mortality, and healthcare burden (86-89).
A variety of time series analysis
techniques exist to quantify and characterize
patterns of variation over intervals in time

(90). Predictive modeling using machine
learning techniques can then be used to
transform multivariate variability metrics
into clinically relevant measures, such as
probability or likelihood of a clinical event,
useful for decision support.

Clinical Impact

The potential clinical value of monitoring
variability has been investigated with respect
to early warning of sepsis (24, 91, 92) as well
as prognostication of organ failure and the
impact of sedation (93, 94). In addition,
increased age leads to degradation of the
multiscale self-similar behavior seen in
RRV, with loss of long-range fractal scaling,
signifying loss of complexity (5). Altered
RRYV is associated with the presence and
severity of lung illness, including restrictive
lung disease (95) and the prediction of
severity of asthma exacerbations (60).
Reduced variability may indicate loss of
adaptability or ability to tolerate an
increased workload of breathing; several
small studies (96, 97), in addition to a
recent large multicenter study (98), have
demonstrated that reduced RRV (degree and
complexity) during a spontaneous breathing
trial before extubation is associated with an
increased risk of postextubation failure,
defined as reintubation within 48 hours.
These data suggest that RRV offers added
value over traditional methods, with evidence
of both superior and complementary
predictive capacity (98). To what degree
these findings will be reproducible in other
populations and what impact this
information might have on extubation
decisions remain to be determined.

The role of variability monitoring in
ICU monitoring and the physiologic
meaning of variability remain exciting
avenues of research. Although fairly
compelling observational studies exist,
interventional trials are now required to
determine the impact of this approach on
patient care outcomes and cost.

Conclusions and Implications

In summary:

1. Systems biology approaches and
complexity science are relevant to
studying the respiratory system, as
respiratory diseases are typically
complex, influenced by a multitude of
intrinsic factors and extrinsic stimuli, and
vary over time. Purely reductionist
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approaches are useful, yet need to be
complemented by systems approaches
that involve quantitative and integrative
methods that study the system as a whole.

system, will further add to the
understanding of disease phenotypes and
their stability over time and potentially
offer predictors of future behavior.

characterized patients observed over
longer time periods using serial
measurements of biomarkers and advanced
analyses to comprehensively describe
behavior over time.

The development of novel integrative
and quantitative techniques inspired by the
systems approach, coupled with increasing
availability of data from present and future
clinical trials, will continue to spur on the
field of respiratory medicine. It is our vision
that in the near future, physicians will collect
information on their patients with asthma
and COPD or in the ICU related to variation
in symptoms, lung function, biomarkers,
structure, quality of life, and other aspects of
disease, which can then be integrated with
information from environment and
psychosocial factors (Figure 1). This
innovative phenotypic information goes
beyond traditional diagnoses, to the benefit
of patients and caregivers. They can then
make full use of this information to arrive
at clinical decisions and treatment strategies
and even provide prognostic indicators
with clinically useful accuracy.

Author disclosures are available with the text
of this article at www.atsjournals.org.

2. A multitude of potential sources of
complexity are known to exist in the The Future for Systems Biology:
respiratory system. Understanding the Where to from Here?
general nonlinear mechanisms by which ~ We have demonstrated the clinical utility of
complexity arises and how they interact  systems biology approaches, accounting for
can provide insight into how the complexity of the lung, in diagnosis,
pathological states emerge and hence monitoring, and treatment. Such tools are
may help us better develop targeted already available at our disposal. However,
intervention and treatment strategies. one limitation is that so far systems biology
3. Systems biology approaches enable us to  approaches have mostly been applied in
integrate new molecular results with observational studies, which are often only
traditional clinical measures, bridging the  hypothesis generating in nature. To take
gap between the two and facilitating the ~ further advantage of the systems approach,
concept of molecular phenotyping in future studies need to include prospective
diagnosis of asthma and COPD. Such validation of risk groups identified by
approaches have included the use of systems approaches, by studying their long-
techniques to monitor and identify subtle term outcomes. We now have sufficient
changes in patterns in lung function and  evidence to run investigator-initiated
other biomarkers over time in asthma, clinical trials to show that treatment
COPD, and critical illness. Thus, a strategies based on such risk groups are
systems approach provides added value to  more effective than conventional “all in
conventional methods of both diagnosis ~ one” treatment approaches. The design of
and monitoring. such future clinical studies will be markedly
4. Novel methods, such as temporal different from classical approaches,
phenotyping of the underlying complex  involving larger data sets of well-
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