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Abstract

Tobacco smoke (TS) causes chronic obstructive pulmonary disease,
including chronic bronchitis, emphysema, and asthma. Rtp801, an
inhibitor of mechanistic target of rapamycin, is induced by oxidative
stress triggered by TS. Its up-regulation drives lung susceptibility to
TS injury by enhancing inflammation and alveolar destruction. We
postulated that Rtp801 is not only increased by reactive oxygen
species (ROS) in TS but also instrumental in creating a feedforward
process leading to amplification of endogenous ROS generation. We
used cigarette smoke extract (CSE) to model the effect of TS in wild-
type (Wt) and knockout (KO-Rtp801)mouse lung fibroblasts (MLF).
The production of superoxide anion in KO-Rtp801 MLF was lower
than that in Rtp801Wt cells after CSE treatment, and it was inhibited
in Wt MLF by silencing nicotinamide adenine dinucleotide

phosphate oxidase–4 (Nox4) expression with small interfering Nox4
RNA.We observed a cytoplasmic location of ROS formation by real-
time redox changes using reduction-oxidation–sensitive green
fluorescent protein profluorescent probes. Both the superoxide
production and the increase in the cytoplasmic redox were inhibited
by apocynin. Reduction in the activity of Sod and decreases in the
expression of Sod2 and Gpx1 genes were associated with Rtp801 CSE
induction. The ROS produced by Nox4 in conjunction with the
decrease in cellular antioxidant enzymatic defenses may account for
the observed cytoplasmic redox changes and cellular damage caused
by TS.
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Tobacco smoke (TS) causes chronic
obstructive pulmonary disease (COPD),
which is the third leading cause of mortality
in North America, and has a far-reaching
impact worldwide. TS contains thousands of
chemical compounds, many with potent
oxidant capabilities (1). These oxidants
trigger the production of reactive oxygen
species (ROS), causing oxidative stress and
leading to lung inflammation, which
involves the recruitment of neutrophils,

macrophages, and multiple lymphocyte
populations, including TH17, natural killer,
and cytotoxic lymphocytes. Over time, TS
leads to remodeling of the pulmonary
airway structures, which is characterized by
airway inflammation, an increase in airway
connective tissue, and mucus accumulation;
these processes underlie the key
manifestation of chronic bronchitis in
COPD. COPD also includes emphysema
characterized by alveolar destruction,

causing a marked reduction in gas exchange
area and ventilatory capacity. Emphysema
involves a complex interplay of
inflammation, excessive extracellular matrix
proteolysis (performed by elastin-degrading
proteases), and alveolar cell apoptosis
and autophagy (2, 3). Finally, it has been
recognized that emphysema caused by TS
involves accelerated aging, with increased
expression of markers of cellular senescence
and decreased telomere length and
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telomerase activity (4), all of which can
increase susceptibility to lung destruction
by TS (1).

Although lung diseases caused by TS
have long been ascribed to oxidative stress,
the first conclusive demonstration of the
role of oxidative stress in COPD originated
from data in mice deficient in the master
antioxidant transcription factor, nuclear
erythroid-related factor 2 (Nrf-2) (5). Nrf-2
regulates several of the key antioxidant
genes, including that encoding glutathione
peroxidase (Gpx), and several of the gene
products involved in glutathione synthesis
(6). Nrf-2 knockout mice developed more
severe and earlier alveolar inflammation,
cell death, and ultimately emphysema than
did wild-type (Wt) littermate control mice.

We hypothesized that TS triggers
cellular responses akin to those of
environmental stresses (7) such as hypoxia,
nutrient deprivation, or radiation. The

sensing of these stress cues converges at the
mechanistic target of rapamycin (mTOR).
mTOR is an important regulator of cell
growth, messenger RNA (mRNA)
translation, and activation of anabolic
processes (8). We have shown that Rtp801
(also known as DDIT4 for DNA damage
inducible transcript, Dig2 for
dexamethasone inducible gene, or REDD1
for regulated in development and DNA
damage responses) drives lung
susceptibility to TS, leading to
inflammation and alveolar destruction (9).
Rtp801 is induced by oxidative stress
triggered by TS (9), leading to mTOR
inhibition caused by the activation of Tsc2.
Rtp801 binds to Tsc2, displacing the
adaptor 14-3-3 protein (10). Although we
did not observe down-regulation of Nrf-2
or its target genes because of Rtp801
overexpression (T. Yoshida and R. M.
Tuder, unpublished observations), Nrf-2

knockout mice had increased lung Rtp801
expression when exposed to TS, as
compared with Wt mice (9). Importantly,
we found that RTP801 expression was
increased in the lungs of patients with
COPD who were exposed to TS (9),
underscoring its potential role in COPD
pathogenesis.

We postulated that the
Rtp801expression is not only induced by
ROS in TS, but also instrumental in creating
a feedforward process leading to
amplification of endogenous ROS
generation. Furthermore, we investigated
the location and type of ROS produced
when cells were exposed to TS. In aggregate,
this investigation provides novel insights
into how the Rtp801/mTOR axis enhances
the underlying mechanisms involved in TS-
induced oxidative stress and ensuing injury.
We used mouse lung fibroblasts (MLF) as a
model system because they undergo several
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Figure 1. Cigarette smoke extract (CSE) induces Rtp801 overexpression and diminishes the viability of mouse lung fibroblasts (MLF). (A) Wild-type (Wt)
(n = 3) and knockout (KO) Rtp801 (KO-Rtp801) (n = 3) MLF (105) were exposed to 2% CSE for 4 hours, and the viability was assessed by trypan blue
exclusion. (B) Rtp801 mRNA overexpression in MLF after incubation for 4 hours in 2% CSE (Wt, n = 4; KO-Rtp, n = 3). (C) Western blot analysis of S6
phosphorylation (pS6) in Wt (n = 6, 4 shown) and KO-Rtp801 (n= 6, 4 shown) MLF after 4 hours of 2% CSE treatment. (D) Densitometric analysis of the
Western blot. Data represent the average of at least three independent experiments performed in triplicate, and error bars indicate SDs. Kruskal–Wallis
significance, *P< 0.001 (Wt: CTL versus 2% CSE, Figure 1B). ANOVA, *P< 0.05 for D. CTL, control.
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pathogenic processes similar to those of the
type I, type II, and endothelial cells in the
COPD lung (11).

Materials and Methods

Medium and reagents suppliers are available
in the online supplement; the xanthine
oxidase was obtained frommilk as described
by Waud (12).

Cell Lines and Cell Cultures
Primary MLF were purified from Wt,
Rtp801 knockout (KO-Rtp801), and Rtp801
overexpressing (Tg-TRE-RTP801) mice
whole lungs and were cultured as described
(see online supplement). Primary human
alveolar type II (ATII) cells were isolated
and maintained in their differentiated state
(13, 14). Cigarette smoke treatment and
cell viability were assessed (see online
supplement).

Cytochrome c Reduction Assay
The production of the superoxide was
quantified by the reduction of cytochrome c
(see online supplement).

Mitochondrial-Superoxide Production
MLF were preincubated for 10 minutes with
5 mM MitoSOX Red, and the fluorescence
was recorded in a plate reader (see online
supplement).

Nicotinamide Adenine Dinucleotide
Phosphate–Superoxide Production
Inhibition
One hundred micromolars of apocynin was
used, and the amount of superoxide was
estimated using MitoSOX Red or
cytochrome c reduction as above.

Gene Expression
The expression of genes in the MLF samples
after cigarette smoke extract (CSE)
treatment was assessed by quantitative
reverse transcriptase polymerase chain
reaction (see online supplement).

Sod, Catalase, and Glutathione
Peroxidase Activity Assays
Sod activity was measured using the
cytochrome c reduction inhibition assay as
described by McCord and Fridovich (15).
Catalase activity was evaluated according to
Bergmeyer (16). Gpx enzymatic activity was
evaluated according to Lawrence and Burk
(17). The protein content of crude extracts
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Figure 2. Production of superoxide radical (O2
.2) is lower in KO-Rtp801 MLF after CSE treatment.

(A) Total superoxide production in Rtp801Wt MLF (n = 3) and KO-Rtp801 (n = 3) growing cells under 2%
CSE incubation (60 min) measured by cytochrome c reduction assay inhibitable by superoxide
dismutase. (B) Mitochondrial superoxide formation after 2% CSE incubation of Wt MLF (n = 3) and KO-
Rtp801 (n = 3) as determined by the relative emission of fluorescence using MitoSOX Red mitochondrial
probe. (C) Rtp801 relative gene expression (22DDCt) in MLF Wt cells treated with small interfering Rtp801
(siRtp801) RNA (n = 3), and scrambled small interfering RNA as negative control (n = 3). (D) Superoxide
production in MLF transfected with siRtp801 RNA (open squares, n = 3) when compared with
scrambled RNA control (solid circles, n = 3) as determined by the cytochrome c reduction assay as
before. Data represent the average of at least three independent experiments performed in triplicate,
and error bars indicate SD. Kruskal–Wallis significance, *P< 0.05 or **P< 0.001 for A to C. ANOVA,
*P< 0.05 or **P< 0.001, and Student’s two-tailed t test, *P< 0.05 against untreated control cells in D.
ROS, reactive oxygen species; RFU, relative fluorescence units. NTC, no template control.
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was measured using the method described
by Lowry and colleagues (18).

Activity Gels
Concentrated supernatants containing
0.05 U of Sod activity were separated
electrophoretically, and the gel was stained
for activity with Nitroblue tetrazolium-
riboflavin-Ethylenediaminetetraacetic and
then developed under fluorescent light.

Glutathione Determination
MLF cell suspensions were used for
glutathione determination using the Elite
Glutathione GSH/GSSG Ratio Assay
following the manufacturer’s instructions
(eENZYME, LLC, Gaithersburg, MD).

Western Analysis
Proteins were separated by electrophoresis
and then transferred onto membrane
and blocked in 5% bovine serum
albumin–Tris-Buffered Saline Tween.
Membranes were incubated with primary
antibodies at 48C overnight and with HRP-
labeled goat antirabbit secondary antibody
for 1 hour and were detected using
enhanced chemiluminescence (see online
supplement).

Gene Silencing
One hundred nanomolars of small
interfering nicotinamide adenine
dinucleotide phosphate (NADPH)
oxidase–4 (Nox4) (siNox4) (sense or
antisense custom oligos), 10 nM of siNox4,
10 nM of siTsc2 (Ambion, Carlsbad, CA),
or 1 µM of Accell siRTP801 mix (GE
Dharmacon, Buckinghamshire, UK) were
used in Accell Delivery Media, and the
expression and superoxide production were
assessed (see online supplement). Silenced
MLF with siNOX4 (Ambion) or Accell
siRTP801 mix were disrupted and used for
glutathione determination.

Real-Time Redox Sensing
MLF were transduced with 200 plaque-
forming units per cell of the adenovirus
targeted to mitochondria (Mito-reduction-
oxidation [ro]–sensitive green fluorescent
protein [GFP]) or cytoplasm (Cyto-roGFP).
The fluorescence of CSE-treated MLF was
recorded (see online supplement), and
calculations were performed as described
by Waypa and Schumacker (19).

Rtp801 Overexpression in MLF
We created Rtp801-overexpressing mice
(Tg-TRE-RTP801) (20). TgRtp801
MLF were purified and cultured as
described above. The induction of
Rtp801 expression was performed by
transduction with 100 plaque-forming
units per cell of the transactivator
tet-off tTA-adenovirus (or CMV-GFP-
adenovirus as control). The expression of
the transgene was confirmed via reverse
transcriptase polymerase chain reaction,
and we then monitored the superoxide
production and gene expression (see
online supplement).

Statistics
Data represent the average of at least three
independent experiments, and error bars
indicate SD. We performed parametric
analysis with the Student’s two-tailed t test
when comparing two groups and one-way
analysis of variance with Fisher post hoc
testing when multiple comparisons were
performed. Those experiments, with three
to four independent experiments
(performed in triplicate each), were
analyzed with a more stringent
nonparametric test (Kruskal–Wallis).
Differences were statistically significant if
P< 0.05 or P< 0.001, as indicated in the
figures and legends. We performed all
calculations using ProStat software (Pearl
River, NY).

Results

Changes in Viability and Rtp801 Gene
Expression after TS Treatment of MLF
During the gaseous phase, TS dissolves in
media, forming CSE, which can be used to
model the effect of TS at the extracellular
lining fluid of the lung (21). CSE (2% in
media, see METHODS) treatment for 4 hours
diminished the viability of MLF (called here
after Wt cells) (Figure 1A), whereas it
induced Rtp801 expression, as we
described previously (9) (Figure 1B). In
contrast, MLF originating from KO-
Rtp801 showed no changes in viability to
CSE (Figure 1A). As anticipated on the
basis of the known function of Rtp801 in
suppressing mTOR (22), CSE-treated Wt
MLF (2% for 4 h) showed a decrease
in phosphorylated S6 in position Thr389

(9, 23), as assessed by densitometric
analysis of Western blots of cell lysates
(Figure 1D). As we have reported

previously, KO-Rtp801 cells maintained
their increased basal phosphorylated S6
levels after CSE (Figure 1C), which were
higher than those detected in CSE-treated
Wt MLF (9) (Figure 1D).These changes
were not accompanied by changes in
mTOR phosphorylation (data not
shown).

Production of Superoxide Radical
(O2

.2) in MLF after CSE Treatment
We first defined the time course of total
superoxide production in Rtp801 Wt MLF
when treated with 2% CSE by measuring
cytochrome c reduction. There was a
significant increase of superoxide in Wt
cells at 60 minutes of incubation. However,
CSE did not increase the levels of
superoxide in KO MLF when compared
with Wt MLF (Figure 2A). In line with
these findings, the silencing of Tsc2 (a
Rtp801 downstream inhibitor of mTOR
activation) with small interfering RNA
(siRNA) (see Figure E1 in the online
supplement) showed superoxide
production similar to that of KO-Rtp801
MLF (Figure 2A) after CSE treatment. As
expected, we found mitochondrial
superoxide formation after CSE incubation
of MLF, but to a lesser extent, as
determined by the relative emission of
fluorescence using a MitoSOX Red
mitochondrial probe (Figure 2B). We
further preincubated the MLF with
inhibitors of the mitochondrial electron
chain transfer (antimycin, rotenone, and
myxothiazol), as well as with the NADPH
inhibitor apocynin, and found no
significant inhibition on MitoSox Red
florescence after CSE incubation (data not
shown). These results were further
confirmed by inhibiting the Rtp801 gene
expression with an siRNA in Wt cells
(Figure 2C), which led to a significant
decrease in the induction of superoxide
anion after CSE treatment, with no
changes when scrambled siRNAs were
used as negative controls (Figure 2D).
The reduced/oxidized glutathione ratio
was evaluated in MLF after 2% CSE. The
pools of GSH were not changed in the
Wt MLF after CSE treatment; however,
the siRtp801-treated Wt MLF showed
an important increase in the GSH/GSSG
ratio (Table 1). The aggregate of these
findings indicates that CSE-induced
Rtp801 leads to increased superoxide
generation.
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Production of Superoxide Radical
by Nox4
MLF are known to particularly express
Nox4, which produces ROS intra- and
extracellularly (24). We determined the
presence of the Nox4 isoform in the plasma

membrane by cellular fractionation of Wt
MLF. Figure 3A shows the Western blots of
MLF cellular fractions: total cell membrane
(organelle plus plasma membranes),
purified plasma membrane, and cytosol,
before and after CSE treatment. The Nox4

isoform, which was detected as a 61-kD
band in total and plasma membrane
fractions, strongly trended toward
increased expression (P = 0.058) in MLF
incubated 4 hours with 2% CSE versus
controls. The total cell membrane and
cytosolic fractions showed a strong band of
z90 kD, which may represent the highly
stable Nox4/p22phox heterodimer. The
mRNA expression of Nox isoforms in MLF
treated with 2% CSE showed a small, but
not significant, increase in Nox4
expression in Wt MLF; in contrast, KO-
Rtp801 MLF had a significant decrease in
Nox4 gene expression (Figure E2A). The
levels of mRNA of the Nox2 gene in both
cell types were very low (103 compared
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Figure 3. Nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox4) is responsible for production of O2
.2 caused by CSE. (A) Localization of Nox4 by

Western blot on cellular fractions (total membrane [TM], organelles and plasma membranes; plasma membrane [purified from total membrane]; and
cytosol) of Wt Rtp801 MLF (n = 2); and ENPP1, a specific plasma membrane marker, and Nox4/b-actin ratios on the basis of electrophoretic density.
b-actin was used as a protein loading control. The values represent two experiments per condition in triplicate each (plasma membrane statistical variation:
control = 0.233, 2% CSE< 0.005). (B) 105 Wt MLF were transfected with NTC scrambled small interfering RNA (siRNA) (n = 5), and siNox4 (n = 5) and the
relative expression (22DDCt) of Nox4 gene measured after induction with 2% CSE. (C) Total superoxide production in NTC (n = 3) and siNox4 transfected Wt
MLF (n = 3) after 2% CSE incubation (60 min) measured by cytochrome c reduction assay inhibitable by superoxide dismutase. (D) Superoxide production
induced by CSE in Wt (n = 3) and KO-Rtp801 (n = 3) MLF cells inhibited by 30-minute preincubation with 100 mM apocynin (n = 3). Data represent the
average of at least three independent experiments performed in triplicate, and error bars indicate SDs. ANOVA significance, *P< 0.05 for B; Kruskal–Wallis
significance, *P< 0.05 or **P< 0.001 for C and D. Cyto, cytoplasmic fraction; ENPP1, ectonucleotide pyrophosphatase-phospho-diesterase 1;
MW, molecular weight.

Table 1. GSH/GSSG Ratio in Wt, siRtp801, and siNox4 MLF after 2% CSE

Treatment Wt siRTP801 siNOX4

Control 1.106 0.05 1.426 0.56 0.896 0.22
2% CSE 1.096 0.14 1.946 0.06 1.686 0.09

Definition of abbreviations: CSE, cigarette smoke extract; GSH/GSSG, reduced/oxidized glutathione
ratio; MLF, mouse lung fibroblasts; NOX4, nicotinamide adenine dinucleotide phosphate oxidase–4;
si, small interfering; Wt, wild type.
Data represent one experiment per condition in triplicates each.
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were treated with 2% CSE DMSO (open circles, n = 3) or control DMSO (solid circles, n = 3) and in the presence of 100 mM apocynin (open
squares, n = 3) or 10 mM myxothiazol (open triangles, n = 3). The percentage of oxidized probe was determined by the ratio of reduced probe
(measured with an excitation of 405 nm and emission of 535 nm) and oxidized probe (excitation of 485 nm and emission of 535 nm). Data
represent the average of at least three independent experiments performed in triplicate, and error bars indicate SD. Kruskal–Wallis significance,
*P< 0.05 or **P< 0.001. hrSOD2, human recombinant superoxide dismutase 2.
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with Nox4), and their expression showed
no changes after 4 hours of CSE treatment
(Figure E2B). We inhibited Nox4 gene
expression by z40–50%, with two
different siRNAs (no template control
scrambled and Tsc2 were used as negative
siRNAs controls) (Figure 3B). After siRNA
treatment, the Nox4 protein levels were
reduced as well, although not significantly
(data not shown). These decreased
expressions may account for the observed
reduction in superoxide, because only
siNox4-treated MLF showed a significant
decrease in superoxide levels after 2% CSE
incubation (60 min) (Figure 3C), which
persisted for .4 hours after TS treatment,
as judged by the cytochrome c reduction
inhibited by Sod (data not shown). In
contrast, there was an increase in the
pool of GSH after CSE exposure of
siNOX4-treated MLF, as determined by
the GSH/GSSG ratio (Table 1). MLF,
transduced with control scrambled no
template control, or siTsc2, remained
capable of producing superoxide after CSE
treatment (Figure 3C). To support these
observations, we further inhibited the
superoxide production induced by CSE by
preincubating MLF with 100 mM
apocynin, a NADPH oxidase (Nox)
inhibitor. Only the Wt MLF treated with
apocynin showed a significant inhibition
of superoxide after CSE incubation. In
contrast, the KO-Rtp801 MLF had no
changes (Figure 3D).

Cytoplasmic Location of ROS
Formation by Real-Time Redox
Changes Using roGFP Profluorescent
Probes
Because of the impact of cysteine oxidation
on their fluorescent properties, GFP
probes detect real-time redox changes. The
fluorescence signal ultimately reflects
the cellular GSH/GSSG ratio, on the basis of
the preferential depletion of GSH potential
caused by hydrogen peroxide, which is cell
permeable. MLF Wt cells transduced with
the redox-sensitive adenovirus encoding
the GFP probe targeting the cytoplasm
(Cyto-roGFP) showed a significant increase
in florescence when exposed to CSE, as
compared with untreated cells (Figures 4A
and 4C). The cells transduced with the
probe targeting the mitochondria (Mito-
roGFP) also showed an increase in
fluorescence with CSE, but it was not as
pronounced as that observed with the Cyto-
roGFP–transduced cells, given the higher

baseline levels in the Mito-roGFP used
(Figures 4B and 4D). Apocynin (100 mM)
inhibited cytoplasmic ROS fluorescence
production triggered by CSE in Wt cells
(Figure 4E), with no differences when the
cells were incubated with 10 mM of
myxothiazol (a mitochondrial electron
chain transfer complex III inhibitor). In
addition, the oxidation of the roGFP
mitochondrial probe was decreased when
the transduced cells were treated with CSE
in the presence of apocynin or myxothiazol
(Figure 4F). When antioxidant enzymes
were used extracellularly, we observed a
decrease of fluorescence in both
compartments when catalase was used
(Figures 4C and 4D). The extracellular
addition of human recombinant SOD2
showed no changes in the mitochondrial
redox status (Figure 4D) and a light,
nonsignificant inhibition of oxidation of the
cytoplasmic roGFP probe (Figure 4C).

Antioxidant Enzymes Associated with
Rtp801 CSE Induction
Table 2 and Figure 5 summarize the effect
of CSE on antioxidant activity/expression
in MLF after 4 hours of CSE treatment. In
summary, CSE decreased Sod, whereas it
minimally increased Gpx enzymatic
antioxidant activities; it decreased Sod2,
Gpx1, and Prdx1 and increased Sod3 gene
expression in Wt MLF. We found
significantly lower Sod1 and increased Gpx
activities, as well as a significant increase of
Prdx1 expression in KO-Rtp801 cells after
CSE incubation.

To further validate the role of Rtp801 in
the enhancement of the oxidative stress
triggered by TS, we overexpressed the

Rtp801 transgene (TgRtp801) in MLF to test
whether its overexpression recapitulates the
effects downstream of TS (without the
potential confounding effects of lingering
oxidants caused by TS in the media). The
induction of Rtp801 with the transactivator
(AdtTA) caused overexpression of Nox4
(Figure 6A), accompanied by increased
levels of extracellular superoxide
(Figure 6B). On the other hand, no changes
in superoxide production were detected in
mitochondria, as determined by MitoSOX
Red (Figure 6C). The transactivation of the
TgRtp801 in MLF induced a decrease in the
expression of the antioxidant enzymes Sod2
and Gpx1 (Figure 6D), similar to that which
was observed with the CSE treatment of
Wt MLF.

RTP801 and Antioxidant Enzyme
Expression in Human ATII Cells and
Lungs
To enhance the relevance of our findings, we
extended our studies to human ATII cells
isolated from the lungs of patients with
COPD, smokers without COPD, and
nonsmokers, which retain the molecular
characteristics of the lungs in each of these
groups. We found a significant increase in
RTP801 gene expression in human ATII
cells (from nonsmokers) after 3% CSE
treatment (one-half of the concentration
used to assess cellular injury determined by
prior studies [25]) (Figure 7A). In contrast
to MLF, human type II cells showed an
increase in SOD2 expression, as well as
diminished catalase expression (Figure 7A).
There was a reduction in GPX1 gene
expression in primary human ATII cells
after treatment with 3% CSE for 4 hours,

Table 2. Antioxidant Enzyme Activities and Gene Expression in Wt and KO-RTP801
Mouse Lung Fibroblasts

Enzyme

Wt (2% CSE versus Ctl) KO-Rtp801 (2% CSE versus Ctl)

Enz. Activity Expression Enz. Activity Expression

Total Sod ↓ ↓ * NA ↓ ↓ * NA
Sod1 ↓ ↓ ↓ ↑ ↓ ↓ ↓ * ↑
Sod2 ↓ ↓ * ↓ ↓ * ↑ ↓
Sod3 ↑ ↑ * ND ↓
Cat ↓ ↓ ↑ ↓ ↑
Gpx ↑ ↓ * ↑ * ↑
Prdx1 ND ↓ * ND ↑ *

Definition of abbreviations: Cat, catalase; CSE, cigarette smoke extract; Ctl, control; Enz., enzyme;
Gpx, glutathione peroxidase; KO, knockout; NA, does not apply; ND, not determined; Prdx1,
peroxiredoxin-1; Sod, superoxide dismutase; Wt, wild type.
Changes after treatment with 2% CSE for 4 hours versus control. Kruskal–Wallis analysis.
*P< 0.05 against control cells.
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which correlated to the decrease observed
in MLF (Figure 7A). There were no
significant differences in the basal gene
expressions of RTP801, SOD1, SOD2, and
GPX1 antioxidant enzymes in primary
human ATII cells from nonsmokers or
moderate smokers or in ATII cells from G3-
G4–characterized lungs (Figure 7B). Only the
basal expression levels of the CAT gene were
significant higher in ATII cells from G3-G4

lungs compared with nonsmoker control
lungs. The expression of antioxidant
enzymes in whole human lung lysates
characterized as normal and COPD
G0-G1, G2, and G3-G4 showed a
significant decrease in SOD2 expression
only in G2 lungs. Interestingly, the levels of
expression of CAT and GPX1 genes were
decreased in all the COPD-characterized
lungs (Figure 7C).

Cellular Protection of Extracellular
Antioxidant Enzymes in the Viability of
MLF Exposed to Cigarette Smoke
We found extracellular superoxide
dismutase activity in the culture medium of
both control and 2% CSE–treated MLF
(Figure E3A). We then investigated the
viability of MLF after treatment with CSE
in the presence of Sod, which produces
H2O2 as a catalytic product. Because H2O2
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is cell permeable, it may be responsible for
the observed decrease in cell viability.
Accordingly, the addition of catalase aimed
at eliminating H2O2 was predicted to
improve cell viability after CSE treatment.
Figure E3B shows the worsening effect of
Sod on the viability of MLF treated for
4 hours with 2% CSE, which was reversed

significantly by the presence of catalase.
Moreover, Sod treatment alone did not
change fluorescence in the MLF transduced
with either Cyto-roGFP or Mito-roGFP
probes when incubated with CSE (Figures
4C and 4D, respectively). In contrast, when
the cells were incubated with CSE and Sod
plus Cat, there was a significant decrease in

the oxidation of the roGFP probes (Figures
4C and 4D).

Discussion

Every puff of TS contains thousands of
reactive chemicals that ultimately cause
oxidative and nitrosative stress (26). These
compounds interact with endogenous
sources of oxidants, including those
originating from lung cells, potentially
leading to lung cellular injury, a key
determinant of COPD. Our data
demonstrate that Rtp801, which is involved
in suppressing mTOR signaling, was
necessary and sufficient in amplifying the
oxidative stress caused by TS. We found
that this effect was mediated by activation
of Nox4, causing increased production of
cytoplasmic ROS, whereas there was a more
modest participation of ROS originating
from the mitochondria after up to 4 hours
of CSE challenge. Moreover, cells
expressing Rtp801 had decreased levels of
antioxidants. On the other hand, we
observed that KO-Rtp801 MLF had
decreased ROS levels on exposure to
CSE, accompanied by increased cell
survival, which is largely supportive of
our previous in vivo observations of
protection of KO-Rtp801 mice from TS
(9). The aggregate of these findings
underscores the extent to which TS alters
the cellular signaling involved in oxidant
generation and antioxidant protection,
largely involving Rtp801/mTOR signaling
triggered by reactive oxidants present
in TS.

To understand the amplification of the
oxidative stress associated with the TS
induction of Rtp801, we assessed the
production of the superoxide radical. Our
results showed significant extracellular
(cytochrome c reduction inhibited by Sod)
and intracellular (MitoSox Red) production
of the radical superoxide in Rtp801 Wt
MLF when treated with CSE. This
superoxide production was associated with
a decrease in cell viability and the induction
of Rtp801. Using a cell-site–specific
reporter probe, we determined that
CSE-triggered ROS production was
predominantly cytoplasmic rather than of
mitochondria origin, which was largely
supported by the cytoplasmic-extracellular
(such as cytochrome c reduction and
Cyto-roGFP probe) and the mitochondria-
specific redox probes (such as MitoSox Red
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and Mito-roGFP). These findings led us to
focus on cytoplasmic sources of superoxide,
which largely involve oxidases and oxygenases,
including NADPH oxidase, xanthine oxidase,
and lipoxygenase, among others.

Nox have been implicated largely in
environmental responses associated with

inflammation, because they produce
superoxide anion and H2O2 (27). In the
context of our studies, the potential Nox
candidates for producing superoxide
consist of Nox1, Nox2, Nox4, and Nox5
because they are the most commonly
expressed Nox members in vascular cells.

In support of the contribution of Nox to the
generation of CSE-induced oxidative stress,
we observed a reduction in superoxide
generation with the Nox inhibitor
apocynin. Moreover, we found that the
specific suppression of Nox4 transcript with
siRNA significantly decreased the
superoxide generation induced by CSE.
These findings are consistent with the
cytoplasmic redox changes detected with
the compartment-specific oxidative stress
probe Cyto-roGFP. Nox4 has been localized
to focal adhesions, endoplasmic reticulum,
nucleus, and mitochondria (27). Moreover,
activation of Nox4 appears to require the
translocation of Nox4 and p22phox to the
plasma membrane, reflecting its activation
and thus the production of extracellular
superoxide. There is a growing evidence of
stimulation of Nox4 by Akt (28–31), with
the interaction with mTOR (32, 33), and
perhaps by PKC after induction by TS (34).
mTORC2 induction after mTORC1
inhibition is a possible mechanism of Nox4
activation mediated by Akt. In fact,
activation of mTORC2 is redox sensitive
(35). Moreover, Nox4 can also produce
ROS released extracellularly (24). Our
findings of extracellular Nox4-produced
superoxide and the presence of extracellular
Sod3 enzymatic activity in cells exposed to
CSE may explain the production of H2O2,
which might permeate back into the cells,
as judged by the increase in the cytoplasmic
redox measured by the Cyto-roGFP probe.
In addition, Nox4 may enhance H2O2

production because of its superoxide
dismutation activity (36). Altogether, this
process further underscores its potential
role in the enhancement of oxidative stress
driven by Rtp801 after TS, linking this
prototypic environmental stress with the
Rtp801-mTOR-Nox4 axis.

In fact, Nox may play distinct roles in
TS-induced inflammation. Neutrophil Nox2
appears to mediate protection against
emphysema in mice exposed chronically to
TS (37); furthermore, the decrease in Nox3
expression because of genetic deletion of Toll-
like receptor 4 causes spontaneous emphysema
in mice, underscoring Nox3’s protective
effect, because it is predominantly expressed
by lung endothelial cells (38).

Oxidative stress involves an imbalance
resulting from increased levels of oxidants
and/or decreased cellular antioxidant
defenses. To counteract the possible harmful
effects of the superoxide anion, cells rely on
antioxidant actions of the superoxide
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dismutase family, acting in conjunction with
catalase, Gpx, and peroxiredoxin, which
reduce H2O2 formed during dismutation of
superoxide. We observed a significant
decrease in the total Sod activity in both Wt
and KO-Rtp801 cells in response to the
oxidative shift induced by CSE in MLF.
Such low Sod levels were associated, in part,
with an important reduction of Sod1
activity in both cell types (Figure 5B).
However, Rtp801 Wt MLF had a more
dramatic reduction in Sod2-specific activity
and Sod2 expression caused by CSE.
Extracellular Sod showed a small,
nonsignificant increase in activity in Rtp801
Wt MLF after CSE incubation, which is
related with the observed induction of the
Sod3 gene. The increase of superoxide by
Nox4 and its dismutation by Sod3 may
account for the production of H2O2 and
possible toxicity, if cytoplasmic catalase,
Gpx, or peroxiredoxin are decreased in the
cells. Furthermore, we found that Gpx
enzymatic activity was induced more
significantly only in KO-Rtp801 MLF after
CSE treatment, with a lower level of
induction in Wt MLF (Figure 5D), which
may be related to a decrease in Gpx1 gene
expression (Figure 5F). In addition, the
expression of Prdx1 isoform was decreased
in Rtp801 Wt cells after CSE treatment,
probably accounting for the higher

susceptibility of these cells to CSE-induced
oxidative stress. The decrease in Sod
activity after TS treatment has been
documented in whole lung of mice (39) and
rat alveolar macrophages (40) and in
alveolar macrophages of elderly smokers
(41). Conversely, overexpression of
cytoplasmic Sod1 and extracellular Sod3
protects mice against TS-induced
emphysema (42). In line with the protective
role of SOD3 overexpression (43), there is
one polymorphism in the SOD3 gene that
correlates with the risk of emphysema (44).

There are important limitations in
experimental studies of TS-induced COPD,
including the differential response of rodent
versus human cells, the specific behavior of
the different structural alveolar cells (type I
and II epithelial cells, endothelial cells,
interstitial fibroblasts), and mild mouse lung
disease-related phenotype when compared
with human disease. Notwithstanding these
limitations, few studies have focused on the
pattern of expression of antioxidant
enzymes in smokers’ and COPD lungs and
in experimental models of the disease.
Importantly, we found that human ATII
cells from patients with COPD have
up-regulated RTP801 expression, a finding
that is in line with our prior whole lung
expression studies (9). Our finding of Gpx1
expression reduction in MLF can be

extended to ATII cells from nonsmokers
treated with CSE, and whole lungs from
patients with COPD.

Conclusions
The results of this study support our
proposed scheme of cellular TS-induced
damage (Figure E3C). Rtp801 enhances the
TS-induced oxidative stress by inhibiting
mTORC1 and possibly activating mTORC2,
which can phosphorylate Akt and PKC, thus
enhancing Nox4 activity. The ROS produced
by Nox4 in conjunction with the decrease in
cellular antioxidant enzymatic defenses are
responsible for the observed cytoplasmic
redox changes and cellular damage. This
investigation provides new and relevant
insights into the role of the Rtp801-mTOR-
Nox4 axis in the enhancement of TS-induced
oxidative stress and cellular damage. n
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