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Abstract

Rationale and Objectives—The effect of smoking cessation on centrilobular emphysema 

(CLE) and centrilobular nodularity (CN), two manifestations of smoking-related lung injury on 

CT images, has not been clarified. The objective of this study is to leverage texture analysis to 

investigate differences in extent of CLE and CN between current and former smokers.

Materials and Methods—Chest CT scans from 350 current smokers, 401 former smokers, and 

25 control subjects were obtained from the multicenter COPDGene Study, a HIPAA-compliant 

study approved by the institutional review board of each participating clinical study center. 

Additionally, for 215 of these subjects, a follow-up CT scan was obtained approximately five years 

later. For each CT scan, 5000 circular regions-of-interest (ROIs) of 35-pixel diameter were 

randomly selected throughout the lungs. The patterns present in each ROI were summarized by 

fifty computer-extracted texture features. A logistic regression classifier was leveraged to classify 

each ROI as normal lung, CLE, or CN, and differences in the percentages of normal lung, CLE, 

and CN by study group were assessed.

Results—Former smokers had significantly more CLE (p < 0.01) but less CN (p < 0.001) than 

current smokers, even after adjustment for important covariates such as patient age, GOLD stage, 

smoking history, FEV1, gas trapping, and scanner model. Among patients with longitudinal CT 

scans, continued smoking led to a slight increase in CLE (p = 0.13), whereas sustained abstinence 

from smoking led to further reduction in CN (p < 0.05).

Conclusion—The proposed texture-based approach quantifies the extent of CN and CLE with 

high precision. Differences in smoking-related lung disease between longitudinal scans of current 

and former smokers suggest that CN may be reversible upon smoking cessation.
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Introduction

Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality in the 

United States (1) and is projected to be the fourth leading cause of mortality worldwide by 

2030 (2). COPD, which is strongly associated with smoking, is characterized by persistent 

airflow obstruction and a reduced ratio of forced expiratory volume in 1 second to forced 

vital capacity (FEV1/FVC). Currently the most effective treatment for COPD is smoking 

cessation, which slows down the progressive decline in lung function (3,4) and leads to a 

transient improvement in FEV1 (5).

Smoking-related lung injury manifests on CT images as centrilobular nodularity (CN) and 

centrilobular emphysema (CLE). CN, or micronodules centered in the pulmonary lobule (6), 

is generally thought to represent smoking-related respiratory bronchiolitis and is the earliest 

and most common manifestation of smoking-related lung inflammation (7-13), which may 

subsequently lead to emphysema. CLE is associated with low attenuation values similar to 

the density of air due to the destruction of alveolar walls in lung tissue. The severity and 

extent of CLE and CN in patients with COPD is commonly assessed by radiologists reading 

CT images. Nevertheless, qualitative assessment of CT images for extent of CLE and, more 

notably, CN is associated with high inter-observer variability (14,15). For example, when 

9-11 pulmonogists and radiologists reviewed each of 395 CT scans at the COPDGene Study 

CT Imaging Workshop in 2010, average κ values for quantifying CLE and CN were 0.33 

and 0.12, respectively (15).

Whereas radiologist assessment of CT images is subject to high inter-observer variability 

(18,19), quantitative analysis of CT images facilitates precise and reproducible 

measurements. Densitometry is commonly used to quantify emphysema on CT images 

(16-19). However, densitometry may fail to detect mild degrees of CLE (15) and is not 

useful for detecting CN because smokers with CN may have overall normal lung density 

measurements. In contrast, texture-based methods have been introduced for quantifying both 

emphysema (20-22) and, more recently, CN (23). Using a texture-based approach, Ginsburg 

et al. (23) were able to classify CN and CLE regions-of-interest in the lung with 74% and 

95% accuracy, respectively. With the advent of this approach it has for the first time become 

possible to quantify CN and thereby investigate the effects of treatment or smoking cessation 

on CN measurements in patients with COPD.

The effect of smoking cessation on CLE and CN has been studied only minimally, with 

conflicting results (5,12,24-26). While one study found that CLE decreased (24) and another 

found no significant change in CLE (5), quantitative studies found that the apparent amount 

of emphysema actually increased upon smoking cessation (probably due to a decrease in 

smoking-related inflammation resulting in lower lung attenuation) (25,26). Whereas CLE 

can be quantified via densitometry, the high inter-observer variability in radiologist 

assessment of CN has been a severe impediment to evaluating the effect of smoking 

cessation on CN. Only one study evaluated the effect of smoking cessation on CN (5); they 

found a reduction in the number of micronodules evident on CT after smoking cessation. 

However, in this study the percentage of lung affected by CN was estimated qualitatively by 
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radiologists. Thus, there is a need for quantitative analysis of the impact of smoking 

cessation on CN.

The purpose of this study was to investigate the differences in CN and CLE between current 

and former smokers and to evaluate the effect of smoking cessation on the extent of CN and 

CLE. On an independent training set, we trained a classifier to use 50 texture features to 

discriminate between textural patterns associated with CN, CLE, and normal lung tissue. 

After evaluating the precision of our texture-based classifier in quantifying the percentage of 

the lung affected by CN and CLE, we implemented this method to quantify CN and CLE in 

776 patients from the COPDGene Study, including 401 former smokers, 350 current 

smokers, and 25 control subjects who never smoked. Additionally, for 139 former and 76 

current smokers for which longitudinal CT scans were available we investigated changes in 

CN and CLE due to sustained smoking exposure and smoking cessation.

Materials and Methods

Subjects

Chest CT scans were obtained from the multicenter COPDGene Study (19), a cross-

sectional study approved by the institutional review board of each of the 21 participating 

clinical study centers. All image management is compliant with the Health Insurance 

Portability and Accountability Act. The COPDGene Study recruited 10,300 subjects, 

including 10,192 current or former smokers and 108 non-smokers. All subjects in this study 

were non-Hispanic whites or African Americans aged 45-80 years with no history of 

concomitant respiratory disorders other than asthma or COPD and no known or suspected 

lung cancer. Additional details regarding inclusion and exclusion criteria can be found in the 

COPDGene study design paper (19).

From the COPDGene Study cohort, we randomly selected 500 subjects with mild to 

moderate COPD (GOLD stages -1/0/1/2), including 250 current smokers and 250 former 

smokers, as well as 25 control subjects who never smoked (27). Additionally, we included 

100 current smokers and 151 former smokers who had undergone detailed visual CT scoring 

for severity of CLE and CN (28). An independent, randomly-selected training set including 

22 current smokers, 18 former smokers, and 19 non-smokers was used for developing the 

textural algorithm and training the classifier. In order to minimize issues caused by inter-

scanner differences, only subjects scanned on Siemens scanners (Definition, Definition-

Flash, Definition-AS+, Sensation-64) (Siemens Inc, Forchheim, Germany) were considered 

for this study. Thus, in total, 776 subjects were included: 350 current smokers, 401 former 

smokers, and 25 control subjects. Of these 776 subjects, 215 (139 former and 76 current 

smokers) returned approximately five years later for follow-up CT scans in Phase 2 of the 

COPDGene Study. Table 1 provides a more detailed description of the subjects included in 

this study.

Image Acquisition

All subjects underwent volumetric chest CT imaging at full inspiration. CT scans were 

reconstructed with a slice thickness of 0.75 mm and a slice interval of 0.5 mm to achieve 
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near isotropic voxels. Scans were acquired at 200 mAs and 120 kVp. A B31f reconstruction 

kernel was used to achieve medium smooth images. All scans underwent quality assurance 

by a trained research analyst to ensure compliance with study protocol, adequacy of 

inspiration, inclusion of all parts of the chest, and absence of motion artifact (19,29).

Radiologist Assessment

For 100 former and 151 current smokers, visual scoring of Phase 1 CT scans was performed 

independently by two radiologists with 7 and 12 years of experience reading chest CT 

images. The extent of CLE and CN was assessed according to a five-point scale in each of 

the five lobes and lingula: absent, <25%, 25% to 50%, 50% to 75%, and > 75% When the 

two radiologists' scores did not agree, the mean of the two readings was used for this study. 

The mean scores were then summed for all lobes and the lingula, so that the final radiologist 

score was on a 30-point scale.

Classifier Training

A classifier was trained to distinguish between patterns of normal lung, CLE, and CN based 

on a set of regions-of-interest (ROIs) selected by a chest radiologist with 6 years of 

experience. From the 59 subjects in the training cohort (see Table 1), a total of 868, 724, and 

640 non-overlapping circular ROIs of 35-pixel diameter were selected that illustrated normal 

lung, CLE, and CN, respectively. These ROIs were reviewed by a second chest radiologist 

(11 years of experience), who confirmed that each ROI was correctly labeled as normal lung, 

CLE, or CN. In order to ensure that the ROIs illustrating normal lung patterns included a 

diverse set of normal lung patterns, an additional 50 ROIs were randomly selected 

throughout the lung parenchyma of each of the non-smoking training subjects and were used 

to augment the training set. The patterns present in each ROI were summarized by fifty 

computer-extracted features describing the underlying textures of the lung parenchyma. 

These features, listed in Supplementary Table 1, included 10 first-order statistics and 22 run 

length and gap length features previously shown to be useful for distinguishing between 

normal lung, CLE, and CN (23). In addition, 18 features, designed to model the shapes and 

intensity distributions of both regions of CLE (i.e., low attenuation areas) and micronodules 

associated with CN (i.e., high attenuation areas), were computed for each ROI. Further 

details regarding the computation of these 18 radiology-derived features can be found in 

Appendix 1. These fifty texture features were used to train a logistic regression classifier 

(30) to accurately classify the ROIs in the training set as normal lung, CLE, and CN. When 

implemented in a six-fold cross-validation framework, the trained classifier accurately 

classified 95.9%, 93.7%, and 86.3% of ROIs depicting normal lung, CLE, and CN, 

respectively (see Figure 1). All image analysis and classifier training steps were performed 

using Matlab R2013a (The Mathworks, Inc., Natick, MA).

Classifier Precision Analysis

Since the classifier would be applied to quantify the amount of normal lung, CLE, and CN 

present in a subject's CT scan, we sought to identify the number N of randomly selected 

ROIs that is necessary to ensure precision and reproducibility of the percentages of normal 

lung, CLE, and CN provided by the logistic regression classifier. Specifically, our objective 

was to determine the value of N for which the percentages of normal lung, CLE, and CN 
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would not vary between repetitions by more than one percentage point. Consequently, for 

each subject in the training cohort random selection and subsequent classification of N ROIs 

was repeated 10 times, and the variability in the percentage of ROIs classified as normal 

lung, CLE, and CN was assessed. ROIs were selected by randomly sampling an x, y, and z 
coordinate within the lung parenchyma; thus, the selected ROIs were uniformly distributed 

across the entire lung. Values of N=1000, 2500, and 5000 were considered. When 5000 

ROIs were randomly selected for texture analysis and classification, standard deviations in 

percentages of normal lung, CLE, and CN remained below one percentage point for all 59 

training subjects (see Figure 2). Consequently, for all subsequent analyses 5000 ROIs were 

randomly selected for each CT scan in order to cap variability at one percentage point.

Texture-Based CT Analysis

Automated segmentation of the right and left lungs from the chest wall and mediastinum 

was performed on all 776 CT scans in the evaluation cohort, as well as the 215 follow-up CT 

scans, using Pulmonary Workstation Plus (VIDA Diagnostics, Inc., Coralville, IA). All 

subsequent image analysis was performed using Matlab R2013a (The Mathworks, Inc., 

Natick, MA). For each CT scan 5000 circular ROIs of 35-pixel diameter were randomly 

selected throughout the lungs. Heuristics were implemented to ensure that the selected ROIs 

(a) did not contain large airways by limiting the number of voxels with HU>-850 and (b) 

were sufficiently far from the periphery by ensuring that at least 95% of each ROI was 

contained in the lung parenchyma. Fifty texture features, listed in Supplementary Table 1, 

were calculated for each ROI; in conjunction with the trained logistic regression classifier, 

these fifty features were used to classify each ROI as normal lung, CLE, or CN. Finally, 

percentages of normal lung, CLE, and CN were obtained for each subject.

Statistical Analysis

Differences in the percentages of normal lung, CLE, and CN by study group were assessed 

using the two-sample Student's t-test. The effect of confounding factors, such as disease 

severity (FEV1), age, smoking duration, GOLD stage, gas trapping, and differences in 

scanner model, on differences between study groups was evaluated via multivariate 

regression analysis. Additionally, the two-sample Student's t-test was used to assess 

differences in the percentages of CN and CLE between longitudinal CT scans. Correlations 

between percentages and clinical features were calculated using Pearson's correlation 

coefficient. Because visual scores were ordinal, Spearman's rank correlation was used to 

assess correlations between percentages of normal lung, CLE, and CN and visual scores. All 

statistical analyses were performed using Matlab R2014b (The Mathworks, Inc., Natick, 

MA).

Results

One hundred randomly selected ROIs from a single subject in the test set, as well as the 

results of classifying these ROIs by the logistic regression classifier, are shown in Figure 3. 

The percentages of ROIs classified as normal lung, CLE and CN for nonsmokers, former 

smokers, and current smokers are shown in Figure 4. Both former and current smokers had 

significantly fewer normal ROIs than nonsmokers (see Table 2), although there is no 
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difference in the amount of normal ROIs in former versus current smokers. An average of 

96.6% of ROIs from the CT scans of nonsmokers were classified as normal, compared to 

78.6% and 80.6% in former and current smokers, respectively. In contrast, an average of 

2.3% of ROIs in nonsmokers were classified as CN, compared to 4.5% in former smokers 

and 9.8% in current smokers. Also, an average of 1.2% of ROIs in nonsmokers were 

classified as CLE, 16.9% and 9.6% were classified as CLE in former and current smokers, 

respectively. Both former and current smokers had significantly more CLE ROIs than 

nonsmokers, and current smokers had significantly more CN ROIs than nonsmokers. 

Compared to current smokers, former smokers had significantly more CLE ROIs but fewer 

CN ROIs. These differences between current and former smokers remained statistically 

significant (p < 0.01) when confounding factors such as disease severity (FEV1), age, 

smoking duration, GOLD stage, gas trapping, and differences in scanner model were 

accounted for. Percentages of CLE and CN were somewhat affected by scanner model; 

specifically, the Siemens Sensation-64 scanner provided significantly different percentages 

of CN and CLE than the other Siemens scanners (p < 0.01). However, differences in scanner 

model had an insignificant effect on measurements of CLE (p = 0.52) and CN (p = 0.15) 

when other factors—age, GOLD stage, pulmonary function, gas trapping, and smoking 

history—were considered.

The percentage of ROIs with CLE correlated strongly with both visual CLE scores (ρ = 

0.84, see Figure 5) and the amount of emphysema according to densitometry (ρ = 0.75). In 

contrast, percentage of ROIs with CN correlated only moderately with visual CN scores (ρ = 

0.31). The percentage of CLE ROIs increased with GOLD stage and was inversely related to 

both lung function and time since smoking cessation (see Table 4). The percentage of ROIs 

with CN was inversely related to GOLD stage, as well as the percentages of emphysema and 

gas trapping according to densitometry (see Table 4). Percentage of CN ROIs was unrelated 

to lung function and time since smoking cessation.

Of 139 former smokers who returned for a follow-up CT scan, 134 remained abstinent while 

5 started smoking again prior to their follow-up CT scan. Former smokers who remained 

abstinent had significantly fewer CN ROIs in Phase 2 than Phase 1 (see Table 3 and Supp. 

Figure 1), although the number of CLE ROIs did not change significantly between CT scans. 

The high proportion of CN ROIs in current smokers persisted on longitudinal follow-up in 

those who continued to smoke. No significant difference in percentage of CN or CLE ROIs 

was found in those who quit smoking or in those who restarted smoking, perhaps due to 

small numbers in these groups (see Table 3 and Figure 6). Current smokers in Phase 1 who 

continued to smoke in Phase 2 saw further increase in percentage of CLE, although this 

difference was not statistically significant (p = 0.13).

Discussion

In this study we leveraged computer-extracted texture features and trained a logistic 

regression classifier to quantify the extent of CLE and CN present in CT scans. This 

classifier was applied to calculate the percentage of lung affected by CLE and CN in 776 

former and current smokers in the COPDGene Study and, thereby, to investigate differences 

in CLE and CN between current and former smokers. Additionally, longitudinal changes in 
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percentages of lung affected by CLE and CN were evaluated on 215 smokers, many of 

whom remained abstinent from smoking and some of whom ceased smoking between 

longitudinal CT scans.

Although both former and current smokers had the same overall amount of ROIs showing 

CLE or CN (p = 0.21), the CT manifestations of COPD appeared to be different for these 

two groups (see Table 2). While former smokers had fewer CN ROIs than current smokers, 

they also had more than twice as many CLE ROIs as current smokers. These differences in 

the amount of CLE and CN ROIs were statistically significant (p < 0.01) even when 

controlling for the effects of age, GOLD stage, lung function, amount of gas trapping, 

smoking duration, and scanner model. These findings echo previous studies, which reported 

a reduction in the presence of CN on CT following smoking cessation (5) and an increase in 

the apparent amount of quantitative emphysema in former versus current smokers (24). The 

latter trend may be attributed in part to the “healthy smoker effect” (31), where current 

smokers are, in general, healthier than former smokers because subjects who experience 

respiratory symptoms quit smoking. In fact, in our study cohort former smokers had reduced 

lung function (measured by FEV1) compared to current smokers (p < 0.01), corroborating 

the “healthy smoker effect”. Additionally, due to the partial volume effect, smoking-induced 

inflammation can mask emphysema in current smokers.

Even apparently healthy smokers who do not experience abnormal lung function can 

manifest CLE (5) or CN (5,25) on CT images. In fact, we found that control subjects who 

never smoked had an average of 1.1% and 2.3% CLE and CN, respectively. It is interesting 

to note that the percentage of CN in former smokers was not significantly different from the 

percentage of CN in nonsmokers, which suggests that CN may be reversible upon smoking 

cessation. However, a prospective study would be necessary to prove this.

Former smokers in Phase 1 who remained abstinent from smoking in Phase 2 of the 

COPDGene Study saw significant further reduction in the number of CN ROIs on their 

Phase 2 scans. This further corroborates the idea that CN may actually be reversible. 

Nevertheless, no reduction in the percentage of lung affected by CN was seen in smokers 

who quit smoking between Phases 1 and 2, possibly due to the small number of such 

subjects.

The gold standard for measuring CLE and CN is radiologist assessment. Although 

percentage of CLE correlated strongly with both visual CLE scores and densitometric 

measures of emphysema, correlation with visual scores was stronger (ρ = 0.84 compared to 

ρ = 0.75). This supports the idea that texture features more closely model radiologists' visual 

processes than densitometry. The percentage of CN found by our approach was only 

moderately correlated with visual CN score. This may be due to the fact that CN is a subtle 

pattern that is not detected and quantified consistently by radiologists (15) or due to blood 

vessels being misclassified as CN.

In order to assess changes in percentages of CLE and CN due to disease progression, 

therapy, or smoking cessation, precise percentages are requisite. Our approach, which 

involved randomly selecting and classifying 5000 ROIs in each CT scan, resulted in highly 
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precise measurements of CN and CLE; standard deviations in repeated measurements of 

percentages of normal lung, CN, and CLE were consistently below one percentage point. 

This small amount of variation was due to the fact that a subset of ROIs was randomly 

selected to represent the entire lung parenchyma. Thus, repeated tests result in different sets 

of randomly selected ROIs and hence slightly different measurements of CN and CLE. In 

comparison, densitometry, which involves the analysis of every voxel in the lung, is more 

precise. However, simple density measurements are ineffective for detecting CN because 

smokers with CN may have overall normal lung intensities. Consequently, our approach is 

the first that is capable of precisely quantifying both CN and CLE, two distinct 

manifestations of COPD on CT images.

Nevertheless, there were several limitations to our study. Firstly, the performance of the 

classifier is limited by the quality of training patterns selected and labeled by radiologists. 

Although the radiologists who trained our classifier had 6 and 11 years of experience in 

thoracic radiology, radiologist detection of CN and CLE is known to be subjective and 

inconsistent (15). This may have negatively affected classifier performance. Secondly, 

subjects included in our study were not age-matched, and former smokers were, on average, 

seven years older than current smokers. Nevertheless, the effect of age-related differences 

between former and current smokers was accounted for in our statistical analysis. Thirdly, 

four different scanner models were used for image acquisition in this study, although it is 

well-known that densitometric measures of CLE are dependent on scanner model and 

reconstruction kernel (23,32,33). In fact, we found that differences in scanner model may 

have impacted texture-based measurements of CN and CLE, although this effect was 

masked by confounding factors. In particular, CLE and CN measures obtained from images 

acquired on a Siemens Sensation 64 scanner were significantly different from CLE and CN 

measures obtained on the other three Siemens scanners. Nevertheless, this effect of 

differences in scanner model on texture measures could probably be mitigated by applying 

intensity standardization to the HU intensities prior to texture analysis. Also, since the 

current study included only subjects scanned with Siemens scanners with 64 or more 

detector rows, further training and development will be necessary to apply this technique to 

other scanner makes and to scans obtained at lower radiation doses. Fourthly, since this 

study assessed texture patterns on 2-dimensional images, it is fundamentally limited in its 

ability to differentiate CN from small vascular structures. This limitation could be overcome 

by analyzing texture patterns in 3 dimensions. In conclusion, the proposed texture-based 

approach was shown to quantify the extent of CN and CLE with high precision, providing 

the potential to enable tracking of disease progression and response to therapy. This study 

found that CT manifestations of COPD are significantly different between current and 

former smokers. Our findings that former smokers have less CN than current smokers and 

that sustained abstinence leads to further reduction in the amount of CN suggests that CN 

may be reversible upon smoking cessation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

The central tenet underlying the computation of radiology-derived features is that although 

CN is associated with high attenuation values and CLE is associated with low attenuation 

values, not all high attenuation values indicate CN and not all low attenuation values 

indicate CLE. Rather, the sizes and characteristics of regions of high and low intensities are 

crucial for accurate detection of CN and CLE, respectively. A threshold of -950 HU has been 

shown to be the most valid threshold for defining emphysema (34). Consequently, we define 

a low attenuation area (LAA) as a region with at least sixteen connected voxels with HU 

<-950. Since the milder forms of emphysema are associated with intensities below -856 HU 

(35), a high attenuation area (HAA) is defined as a region with at least five connected voxels 

with HU >-850 in order to capture small centrilobular nodules.. Once LAAs and HAAs have 

been automatically identified within an ROI, seven LAA-based features and seven HAA-

based features are extracted from each ROI:

• Number of LAAs/HAAs

• Mean size of LAAs/HAAs

• Mean intensity within LAAs/HAAs

• Mean background intensity outside of LAAs/HAAs

• Contrast between background intensity and intensity within LAAs/HAAs

• Mean of minimum intensity within LAAs/HAAs

• Intensity range within LAAs/HAAs

Additionally, the area immediately surrounding HAAs was found to aid in CN detection. In 

order to emphasize centrilobular nodules, high attenuation gradient areas (HAGAs) were 

identified as HAAs combined with surrounding voxels with gradient values >350 HU. Four 

HAGA-based features were then calculated:

• Mean intensity with HAGAs

• Mean background intensity outside of HAGAs

• Contrast between background intensity and intensity within HAGAs

• Intensity range within HAGAs
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Figure 1. Percentage of ROIs from the training set classified as normal lung, CLE, and CN by 
the logistic regression classifier
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Figure 2. 
Standard deviation in (a) % normal lung, (b) % CLE, (c) % CN from 10 repetitions when 

different numbers of ROIs were randomly selected and classified by the logistic regression 

classifier. When 5000 ROIs are randomly selected, the standard deviations remain 

consistently below 1 percentage point.
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Figure 3. Montage of 100 arbitrarily selected ROIs from a single subject classified as normal 
lung, CLE (red), or CN (purple) by the logistic regression classifier
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Figure 4. 
Percentage and standard deviation of ROIs classified as normal lung, CLE, and CN for 

nonsmokers, former smokers, and current smokers.
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Figure 5. 
Scatterplot of (a) CLE extent obtained by a consensus of two radiologists and by texture 

analysis (ρ = 0.81, p < 0.01) and (b) CN extent by a consensus of two radiologists and by 

texture analysis (ρ = 0.35, p < 0.01).
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Table 3

For 215 subjects with CT scans from both Phases 1 and 2 %CLE and %CN are listed as mean± standard 

deviation. Two-sample t-tests were used to evaluate the statistical significance of differences between Phase 1 

and Phase 2 measurements.

Phase 1 Phase 2 p-value

Former smokers in P1 and P2 (n=134)

 % Normal ROIs 79.5±22.8 76.1±27.5 0.27

 % CLE ROIs 15.7±22.8 20.9±28.3 0.10

 % CN ROIs 4.9±8.5 3.1±5.6 0.04

Current smokers in P1 and P2 (n=52)

 % Normal ROIs 81.5±18.7 77.9±23.3 0.39

 % CLE ROIs 8.9±15.9 14.7±22.5 0.13

 % CN ROIs 9.7±10.5 7.4±11.5 0.30

Former smokers in P1, current smokers in P2 (n=5)

 % Normal ROIs 78.5±22.4 59.0±42.4 0.39

 % CLE ROIs 10.6±16.4 23.0±36.5 0.51

 % CN ROIs 10.9±22.1 18.0±37.7 0.72

Current smokers in P1, former smokers in P2 (n=24)

 % Normal ROIs 71.9±25.6 62.5±32.5 0.27

 % CLE ROIs 19.4±26.0 29.5±34.4 0.26

 % CN ROIs 8.7±16.3 8.0±18.3 0.90

P1, Phase 1; P2, Phase 2
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Table 4

Correlations between %CLE and %CN and pertinent variables in 401 former smokers and 350 current 

smokers. Correlation coefficients and p-values were computed using Pearson's correlation.

Correlation with

Variable %CLE %CN

Mean of 2 radiologists (n=250)

 CLE extent 0.84 (p < 0.01) NA

 CN extent NA 0.31 (p < 0.01)

Densitometry (n=776)

 % Emphysema 0.75 (p < 0.01) -0.29 (p < 0.01)

 % Gas trapping 0.58 (p < 0.01) -0.34 (p < 0.01)

Clinical variables (n=776)

 GOLD stage 0.44 (p < 0.01) -0.30 (p < 0.01)

 FEV1 -0.32 (p < 0.01) 0.01 (p = 0.73)

 Time since smoking cessation -0.16 (p < 0.01) 0.07 (p= 0.16)

 Smoking pack-years 0.26 (p < 0.01) -0.10 (p = 0.12)
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