1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Acad Radiol. Author manuscript; available in PMC 2017 November 01.

-, HHS Public Access
«

Published in final edited form as:
Acad Radiol. 2016 November ; 23(11): 1349-1358. d0i:10.1016/j.acra.2016.06.002.

Texture-based quantification of centrilobular emphysema and
centrilobular nodularity in longitudinal CT scans of current and
former smokers

Shoshana B. Ginsburg, Jason Zhao, Stephen Humphries, Sungshick Jou, Kunihiro
Yagihashi, David A. Lynch, Joyce D. Schroeder, and for the COPDGene Investigators

Abstract

Rationale and Objectives—The effect of smoking cessation on centrilobular emphysema
(CLE) and centrilobular nodularity (CN), two manifestations of smoking-related lung injury on
CT images, has not been clarified. The objective of this study is to leverage texture analysis to
investigate differences in extent of CLE and CN between current and former smokers.

Materials and Methods—Chest CT scans from 350 current smokers, 401 former smokers, and
25 control subjects were obtained from the multicenter COPDGene Study, a HIPAA-compliant
study approved by the institutional review board of each participating clinical study center.
Additionally, for 215 of these subjects, a follow-up CT scan was obtained approximately five years
later. For each CT scan, 5000 circular regions-of-interest (ROIs) of 35-pixel diameter were
randomly selected throughout the lungs. The patterns present in each ROI were summarized by
fifty computer-extracted texture features. A logistic regression classifier was leveraged to classify
each ROI as normal lung, CLE, or CN, and differences in the percentages of normal lung, CLE,
and CN by study group were assessed.

Results—Former smokers had significantly more CLE (p < 0.01) but less CN (0 < 0.001) than
current smokers, even after adjustment for important covariates such as patient age, GOLD stage,
smoking history, FEV, gas trapping, and scanner model. Among patients with longitudinal CT
scans, continued smoking led to a slight increase in CLE (p = 0.13), whereas sustained abstinence
from smoking led to further reduction in CN (p < 0.05).

Conclusion—The proposed texture-based approach quantifies the extent of CN and CLE with
high precision. Differences in smoking-related lung disease between longitudinal scans of current
and former smokers suggest that CN may be reversible upon smoking cessation.
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Introduction

Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality in the
United States (1) and is projected to be the fourth leading cause of mortality worldwide by
2030 (2). COPD, which is strongly associated with smoking, is characterized by persistent
airflow obstruction and a reduced ratio of forced expiratory volume in 1 second to forced
vital capacity (FEV1/FVC). Currently the most effective treatment for COPD is smoking
cessation, which slows down the progressive decline in lung function (3,4) and leads to a
transient improvement in FEVy (5).

Smoking-related lung injury manifests on CT images as centrilobular nodularity (CN) and
centrilobular emphysema (CLE). CN, or micronodules centered in the pulmonary lobule (6),
is generally thought to represent smoking-related respiratory bronchiolitis and is the earliest
and most common manifestation of smoking-related lung inflammation (7-13), which may
subsequently lead to emphysema. CLE is associated with low attenuation values similar to
the density of air due to the destruction of alveolar walls in lung tissue. The severity and
extent of CLE and CN in patients with COPD is commonly assessed by radiologists reading
CT images. Nevertheless, qualitative assessment of CT images for extent of CLE and, more
notably, CN is associated with high inter-observer variability (14,15). For example, when
9-11 pulmonogists and radiologists reviewed each of 395 CT scans at the COPDGene Study
CT Imaging Workshop in 2010, average x values for quantifying CLE and CN were 0.33
and 0.12, respectively (15).

Whereas radiologist assessment of CT images is subject to high inter-observer variability
(18,19), quantitative analysis of CT images facilitates precise and reproducible
measurements. Densitometry is commonly used to quantify emphysema on CT images
(16-19). However, densitometry may fail to detect mild degrees of CLE (15) and is not
useful for detecting CN because smokers with CN may have overall normal lung density
measurements. In contrast, texture-based methods have been introduced for quantifying both
emphysema (20-22) and, more recently, CN (23). Using a texture-based approach, Ginsburg
et al. (23) were able to classify CN and CLE regions-of-interest in the lung with 74% and
95% accuracy, respectively. With the advent of this approach it has for the first time become
possible to quantify CN and thereby investigate the effects of treatment or smoking cessation
on CN measurements in patients with COPD.

The effect of smoking cessation on CLE and CN has been studied only minimally, with
conflicting results (5,12,24-26). While one study found that CLE decreased (24) and another
found no significant change in CLE (5), quantitative studies found that the apparent amount
of emphysema actually increased upon smoking cessation (probably due to a decrease in
smoking-related inflammation resulting in lower lung attenuation) (25,26). Whereas CLE
can be quantified via densitometry, the high inter-observer variability in radiologist
assessment of CN has been a severe impediment to evaluating the effect of smoking
cessation on CN. Only one study evaluated the effect of smoking cessation on CN (5); they
found a reduction in the number of micronodules evident on CT after smoking cessation.
However, in this study the percentage of lung affected by CN was estimated qualitatively by
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radiologists. Thus, there is a need for quantitative analysis of the impact of smoking
cessation on CN.

The purpose of this study was to investigate the differences in CN and CLE between current
and former smokers and to evaluate the effect of smoking cessation on the extent of CN and
CLE. On an independent training set, we trained a classifier to use 50 texture features to
discriminate between textural patterns associated with CN, CLE, and normal lung tissue.
After evaluating the precision of our texture-based classifier in quantifying the percentage of
the lung affected by CN and CLE, we implemented this method to quantify CN and CLE in
776 patients from the COPDGene Study, including 401 former smokers, 350 current
smokers, and 25 control subjects who never smoked. Additionally, for 139 former and 76
current smokers for which longitudinal CT scans were available we investigated changes in
CN and CLE due to sustained smoking exposure and smoking cessation.

Materials and Methods

Subjects

Chest CT scans were obtained from the multicenter COPDGene Study (19), a cross-
sectional study approved by the institutional review board of each of the 21 participating
clinical study centers. All image management is compliant with the Health Insurance
Portability and Accountability Act. The COPDGene Study recruited 10,300 subjects,
including 10,192 current or former smokers and 108 non-smokers. All subjects in this study
were non-Hispanic whites or African Americans aged 45-80 years with no history of
concomitant respiratory disorders other than asthma or COPD and no known or suspected
lung cancer. Additional details regarding inclusion and exclusion criteria can be found in the
COPDGene study design paper (19).

From the COPDGene Study cohort, we randomly selected 500 subjects with mild to
moderate COPD (GOLD stages -1/0/1/2), including 250 current smokers and 250 former
smokers, as well as 25 control subjects who never smoked (27). Additionally, we included
100 current smokers and 151 former smokers who had undergone detailed visual CT scoring
for severity of CLE and CN (28). An independent, randomly-selected training set including
22 current smokers, 18 former smokers, and 19 non-smokers was used for developing the
textural algorithm and training the classifier. In order to minimize issues caused by inter-
scanner differences, only subjects scanned on Siemens scanners (Definition, Definition-
Flash, Definition-AS+, Sensation-64) (Siemens Inc, Forchheim, Germany) were considered
for this study. Thus, in total, 776 subjects were included: 350 current smokers, 401 former
smokers, and 25 control subjects. Of these 776 subjects, 215 (139 former and 76 current
smokers) returned approximately five years later for follow-up CT scans in Phase 2 of the
COPDGene Study. Table 1 provides a more detailed description of the subjects included in
this study.

Image Acquisition

All subjects underwent volumetric chest CT imaging at full inspiration. CT scans were
reconstructed with a slice thickness of 0.75 mm and a slice interval of 0.5 mm to achieve

Acad Radiol. Author manuscript; available in PMC 2017 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ginsburg et al.

Page 4

near isotropic voxels. Scans were acquired at 200 mAs and 120 kVp. A B31f reconstruction
kernel was used to achieve medium smooth images. All scans underwent quality assurance
by a trained research analyst to ensure compliance with study protocol, adequacy of
inspiration, inclusion of all parts of the chest, and absence of motion artifact (19,29).

Radiologist Assessment

For 100 former and 151 current smokers, visual scoring of Phase 1 CT scans was performed
independently by two radiologists with 7 and 12 years of experience reading chest CT
images. The extent of CLE and CN was assessed according to a five-point scale in each of
the five lobes and lingula: absent, <25%, 25% to 50%, 50% to 75%, and > 75% When the
two radiologists' scores did not agree, the mean of the two readings was used for this study.
The mean scores were then summed for all lobes and the lingula, so that the final radiologist
score was on a 30-point scale.

Classifier Training

A classifier was trained to distinguish between patterns of normal lung, CLE, and CN based
on a set of regions-of-interest (ROIs) selected by a chest radiologist with 6 years of
experience. From the 59 subjects in the training cohort (see Table 1), a total of 868, 724, and
640 non-overlapping circular ROIs of 35-pixel diameter were selected that illustrated normal
lung, CLE, and CN, respectively. These ROIs were reviewed by a second chest radiologist
(11 years of experience), who confirmed that each ROI was correctly labeled as normal lung,
CLE, or CN. In order to ensure that the ROIs illustrating normal lung patterns included a
diverse set of normal lung patterns, an additional 50 ROIs were randomly selected
throughout the lung parenchyma of each of the non-smoking training subjects and were used
to augment the training set. The patterns present in each ROl were summarized by fifty
computer-extracted features describing the underlying textures of the lung parenchyma.
These features, listed in Supplementary Table 1, included 10 first-order statistics and 22 run
length and gap length features previously shown to be useful for distinguishing between
normal lung, CLE, and CN (23). In addition, 18 features, designed to model the shapes and
intensity distributions of both regions of CLE (i.e., low attenuation areas) and micronodules
associated with CN (i.e., high attenuation areas), were computed for each ROI. Further
details regarding the computation of these 18 radiology-derived features can be found in
Appendix 1. These fifty texture features were used to train a logistic regression classifier
(30) to accurately classify the ROIs in the training set as normal lung, CLE, and CN. When
implemented in a six-fold cross-validation framework, the trained classifier accurately
classified 95.9%, 93.7%, and 86.3% of ROIs depicting normal lung, CLE, and CN,
respectively (see Figure 1). All image analysis and classifier training steps were performed
using Matlab R2013a (The Mathworks, Inc., Natick, MA).

Classifier Precision Analysis

Since the classifier would be applied to quantify the amount of normal lung, CLE, and CN
present in a subject's CT scan, we sought to identify the number A of randomly selected
ROIs that is necessary to ensure precision and reproducibility of the percentages of normal
lung, CLE, and CN provided by the logistic regression classifier. Specifically, our objective
was to determine the value of A/for which the percentages of normal lung, CLE, and CN
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would not vary between repetitions by more than one percentage point. Consequently, for
each subject in the training cohort random selection and subsequent classification of A/ROls
was repeated 10 times, and the variability in the percentage of ROIs classified as normal
lung, CLE, and CN was assessed. ROIs were selected by randomly sampling an x, y; and z
coordinate within the lung parenchyma; thus, the selected ROIs were uniformly distributed
across the entire lung. Values of A=1000, 2500, and 5000 were considered. When 5000
ROIs were randomly selected for texture analysis and classification, standard deviations in
percentages of normal lung, CLE, and CN remained below one percentage point for all 59
training subjects (see Figure 2). Consequently, for all subsequent analyses 5000 ROIs were
randomly selected for each CT scan in order to cap variability at one percentage point.

Texture-Based CT Analysis

Automated segmentation of the right and left lungs from the chest wall and mediastinum
was performed on all 776 CT scans in the evaluation cohort, as well as the 215 follow-up CT
scans, using Pulmonary Workstation Plus (VIDA Diagnostics, Inc., Coralville, 1A). All
subsequent image analysis was performed using Matlab R2013a (The Mathworks, Inc.,
Natick, MA). For each CT scan 5000 circular ROIs of 35-pixel diameter were randomly
selected throughout the lungs. Heuristics were implemented to ensure that the selected ROIs
(a) did not contain large airways by limiting the number of voxels with HU>-850 and (b)
were sufficiently far from the periphery by ensuring that at least 95% of each ROI was
contained in the lung parenchyma. Fifty texture features, listed in Supplementary Table 1,
were calculated for each ROI; in conjunction with the trained logistic regression classifier,
these fifty features were used to classify each ROI as normal lung, CLE, or CN. Finally,
percentages of normal lung, CLE, and CN were obtained for each subject.

Statistical Analysis

Results

Differences in the percentages of normal lung, CLE, and CN by study group were assessed
using the two-sample Student's #test. The effect of confounding factors, such as disease
severity (FEV1), age, smoking duration, GOLD stage, gas trapping, and differences in
scanner model, on differences between study groups was evaluated via multivariate
regression analysis. Additionally, the two-sample Student's #test was used to assess
differences in the percentages of CN and CLE between longitudinal CT scans. Correlations
between percentages and clinical features were calculated using Pearson's correlation
coefficient. Because visual scores were ordinal, Spearman's rank correlation was used to
assess correlations between percentages of normal lung, CLE, and CN and visual scores. All
statistical analyses were performed using Matlab R2014b (The Mathworks, Inc., Natick,
MA).

One hundred randomly selected ROIs from a single subject in the test set, as well as the
results of classifying these ROIs by the logistic regression classifier, are shown in Figure 3.
The percentages of ROIs classified as normal lung, CLE and CN for nonsmokers, former
smokers, and current smokers are shown in Figure 4. Both former and current smokers had
significantly fewer normal ROIs than nonsmokers (see Table 2), although there is no
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difference in the amount of normal ROIs in former versus current smokers. An average of
96.6% of ROIs from the CT scans of nonsmokers were classified as normal, compared to
78.6% and 80.6% in former and current smokers, respectively. In contrast, an average of
2.3% of ROIs in nonsmokers were classified as CN, compared to 4.5% in former smokers
and 9.8% in current smokers. Also, an average of 1.2% of ROIs in nonsmokers were
classified as CLE, 16.9% and 9.6% were classified as CLE in former and current smokers,
respectively. Both former and current smokers had significantly more CLE ROIs than
nonsmokers, and current smokers had significantly more CN ROIls than nonsmokers.
Compared to current smokers, former smokers had significantly more CLE ROIs but fewer
CN ROIs. These differences between current and former smokers remained statistically
significant (p < 0.01) when confounding factors such as disease severity (FEV1), age,
smoking duration, GOLD stage, gas trapping, and differences in scanner model were
accounted for. Percentages of CLE and CN were somewhat affected by scanner model;
specifically, the Siemens Sensation-64 scanner provided significantly different percentages
of CN and CLE than the other Siemens scanners (p < 0.01). However, differences in scanner
model had an insignificant effect on measurements of CLE (p= 0.52) and CN (p=0.15)
when other factors—age, GOLD stage, pulmonary function, gas trapping, and smoking
history—were considered.

The percentage of ROIs with CLE correlated strongly with both visual CLE scores (o =
0.84, see Figure 5) and the amount of emphysema according to densitometry (o = 0.75). In
contrast, percentage of ROIs with CN correlated only moderately with visual CN scores (o =
0.31). The percentage of CLE ROIs increased with GOLD stage and was inversely related to
both lung function and time since smoking cessation (see Table 4). The percentage of ROIs
with CN was inversely related to GOLD stage, as well as the percentages of emphysema and
gas trapping according to densitometry (see Table 4). Percentage of CN ROIs was unrelated
to lung function and time since smoking cessation.

Of 139 former smokers who returned for a follow-up CT scan, 134 remained abstinent while
5 started smoking again prior to their follow-up CT scan. Former smokers who remained
abstinent had significantly fewer CN ROIs in Phase 2 than Phase 1 (see Table 3 and Supp.
Figure 1), although the number of CLE ROIs did not change significantly between CT scans.
The high proportion of CN ROIs in current smokers persisted on longitudinal follow-up in
those who continued to smoke. No significant difference in percentage of CN or CLE ROIs
was found in those who quit smoking or in those who restarted smoking, perhaps due to
small numbers in these groups (see Table 3 and Figure 6). Current smokers in Phase 1 who
continued to smoke in Phase 2 saw further increase in percentage of CLE, although this
difference was not statistically significant (o= 0.13).

Discussion

In this study we leveraged computer-extracted texture features and trained a logistic
regression classifier to quantify the extent of CLE and CN present in CT scans. This
classifier was applied to calculate the percentage of lung affected by CLE and CN in 776
former and current smokers in the COPDGene Study and, thereby, to investigate differences
in CLE and CN between current and former smokers. Additionally, longitudinal changes in
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percentages of lung affected by CLE and CN were evaluated on 215 smokers, many of
whom remained abstinent from smoking and some of whom ceased smoking between
longitudinal CT scans.

Although both former and current smokers had the same overall amount of ROIs showing
CLE or CN (p=0.21), the CT manifestations of COPD appeared to be different for these
two groups (see Table 2). While former smokers had fewer CN ROIs than current smokers,
they also had more than twice as many CLE ROIs as current smokers. These differences in
the amount of CLE and CN ROIs were statistically significant (v < 0.01) even when
controlling for the effects of age, GOLD stage, lung function, amount of gas trapping,
smoking duration, and scanner model. These findings echo previous studies, which reported
a reduction in the presence of CN on CT following smoking cessation (5) and an increase in
the apparent amount of quantitative emphysema in former versus current smokers (24). The
latter trend may be attributed in part to the “healthy smoker effect” (31), where current
smokers are, in general, healthier than former smokers because subjects who experience
respiratory symptoms quit smoking. In fact, in our study cohort former smokers had reduced
lung function (measured by FEV1) compared to current smokers (p < 0.01), corroborating
the “healthy smoker effect”. Additionally, due to the partial volume effect, smoking-induced
inflammation can mask emphysema in current smokers.

Even apparently healthy smokers who do not experience abnormal lung function can
manifest CLE (5) or CN (5,25) on CT images. In fact, we found that control subjects who
never smoked had an average of 1.1% and 2.3% CLE and CN, respectively. It is interesting
to note that the percentage of CN in former smokers was not significantly different from the
percentage of CN in nonsmokers, which suggests that CN may be reversible upon smoking
cessation. However, a prospective study would be necessary to prove this.

Former smokers in Phase 1 who remained abstinent from smoking in Phase 2 of the
COPDGene Study saw significant further reduction in the number of CN ROIs on their
Phase 2 scans. This further corroborates the idea that CN may actually be reversible.
Nevertheless, no reduction in the percentage of lung affected by CN was seen in smokers
who quit smoking between Phases 1 and 2, possibly due to the small number of such
subjects.

The gold standard for measuring CLE and CN is radiologist assessment. Although
percentage of CLE correlated strongly with both visual CLE scores and densitometric
measures of emphysema, correlation with visual scores was stronger (o = 0.84 compared to
p=0.75). This supports the idea that texture features more closely model radiologists' visual
processes than densitometry. The percentage of CN found by our approach was only
moderately correlated with visual CN score. This may be due to the fact that CN is a subtle
pattern that is not detected and quantified consistently by radiologists (15) or due to blood
vessels being misclassified as CN.

In order to assess changes in percentages of CLE and CN due to disease progression,
therapy, or smoking cessation, precise percentages are requisite. Our approach, which
involved randomly selecting and classifying 5000 ROIs in each CT scan, resulted in highly
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precise measurements of CN and CLE; standard deviations in repeated measurements of
percentages of normal lung, CN, and CLE were consistently below one percentage point.
This small amount of variation was due to the fact that a subset of ROIs was randomly
selected to represent the entire lung parenchyma. Thus, repeated tests result in different sets
of randomly selected ROIs and hence slightly different measurements of CN and CLE. In
comparison, densitometry, which involves the analysis of every voxel in the lung, is more
precise. However, simple density measurements are ineffective for detecting CN because
smokers with CN may have overall normal lung intensities. Consequently, our approach is
the first that is capable of precisely quantifying both CN and CLE, two distinct
manifestations of COPD on CT images.

Nevertheless, there were several limitations to our study. Firstly, the performance of the
classifier is limited by the quality of training patterns selected and labeled by radiologists.
Although the radiologists who trained our classifier had 6 and 11 years of experience in
thoracic radiology, radiologist detection of CN and CLE is known to be subjective and
inconsistent (15). This may have negatively affected classifier performance. Secondly,
subjects included in our study were not age-matched, and former smokers were, on average,
seven years older than current smokers. Nevertheless, the effect of age-related differences
between former and current smokers was accounted for in our statistical analysis. Thirdly,
four different scanner models were used for image acquisition in this study, although it is
well-known that densitometric measures of CLE are dependent on scanner model and
reconstruction kernel (23,32,33). In fact, we found that differences in scanner model may
have impacted texture-based measurements of CN and CLE, although this effect was
masked by confounding factors. In particular, CLE and CN measures obtained from images
acquired on a Siemens Sensation 64 scanner were significantly different from CLE and CN
measures obtained on the other three Siemens scanners. Nevertheless, this effect of
differences in scanner model on texture measures could probably be mitigated by applying
intensity standardization to the HU intensities prior to texture analysis. Also, since the
current study included only subjects scanned with Siemens scanners with 64 or more
detector rows, further training and development will be necessary to apply this technique to
other scanner makes and to scans obtained at lower radiation doses. Fourthly, since this
study assessed texture patterns on 2-dimensional images, it is fundamentally limited in its
ability to differentiate CN from small vascular structures. This limitation could be overcome
by analyzing texture patterns in 3 dimensions. In conclusion, the proposed texture-based
approach was shown to quantify the extent of CN and CLE with high precision, providing
the potential to enable tracking of disease progression and response to therapy. This study
found that CT manifestations of COPD are significantly different between current and
former smokers. Our findings that former smokers have less CN than current smokers and
that sustained abstinence leads to further reduction in the amount of CN suggests that CN
may be reversible upon smoking cessation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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The central tenet underlying the computation of radiology-derived features is that although
CN is associated with high attenuation values and CLE is associated with low attenuation
values, not all high attenuation values indicate CN and not all low attenuation values
indicate CLE. Rather, the sizes and characteristics of regions of high and low intensities are
crucial for accurate detection of CN and CLE, respectively. A threshold of -950 HU has been
shown to be the most valid threshold for defining emphysema (34). Consequently, we define
a low attenuation area (LAA) as a region with at least sixteen connected voxels with HU
<-950. Since the milder forms of emphysema are associated with intensities below -856 HU
(35), a high attenuation area (HAA) is defined as a region with at least five connected voxels
with HU >-850 in order to capture small centrilobular nodules.. Once LAAs and HAAS have
been automatically identified within an ROI, seven LAA-based features and seven HAA-
based features are extracted from each ROI:

. Number of LAAS/HAAS

. Mean size of LAAS/HAAS

. Mean intensity within LAAS/HAAs

. Mean background intensity outside of LAAS/HAAS

. Contrast between background intensity and intensity within LAAS/HAAS
. Mean of minimum intensity within LAAS/HAAS

. Intensity range within LAAS/HAAS

Additionally, the area immediately surrounding HAAs was found to aid in CN detection. In
order to emphasize centrilobular nodules, high attenuation gradient areas (HAGAS) were
identified as HAAs combined with surrounding voxels with gradient values >350 HU. Four
HAGA-based features were then calculated:

. Mean intensity with HAGAS

. Mean background intensity outside of HAGAS

. Contrast between background intensity and intensity within HAGASs
. Intensity range within HAGAs
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Figure 1. Percentage of ROIs from the training set classified as normal lung, CLE, and CN by
the logistic regression classifier
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Standard deviation in (a) % normal lung, (b) % CLE, (c) % CN from 10 repetitions when
different numbers of ROIs were randomly selected and classified by the logistic regression

classifier. When 5000 ROls are randomly selected, the standard deviations remain

consistently below 1 percentage point.
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Figure 3. Montage of 100 arbitrarily selected ROIs from a single subject classified as normal
lung, CLE (red), or CN (purple) by the logistic regression classifier
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Figure 4.

Percentage and standard deviation of ROIs classified as normal lung, CLE, and CN for
nonsmokers, former smokers, and current smokers.
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Figure 5.
Scatterplot of (a) CLE extent obtained by a consensus of two radiologists and by texture

analysis (o = 0.81, p<0.01) and (b) CN extent by a consensus of two radiologists and by
texture analysis (o = 0.35, p< 0.01).
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Table 3

For 215 subjects with CT scans from both Phases 1 and 2 %CLE and %CN are listed as meanz standard
deviation. Two-sample £tests were used to evaluate the statistical significance of differences between Phase 1
and Phase 2 measurements.

Phase 1 Phase 2 p-value

Former smokers in P1 and P2 (n=134)

% Normal ROIs 79.5+22.8 | 76.1+27.5 0.27
% CLE ROIs 15.7+22.8 | 20.9+28.3 0.10
% CN ROls 4.9+8.5 3.1+5.6 0.04

Current smokers in P1 and P2 (n=52)

% Normal ROIs 81.5+18.7 | 77.9+23.3 0.39
% CLE ROIs 8.9+15.9 | 14.7+22.5 0.13
% CN ROls 9.7+10.5 7.4+11.5 0.30

Former smokers in P1, current smokers in P2 (n=5)

% Normal ROIs 78.5+22.4 | 59.0+42.4 0.39
% CLE ROIs 10.6+16.4 | 23.0+36.5 0.51
% CN ROls 10.9+22.1 | 18.0%£37.7 0.72

Current smokers in P1, former smokers in P2 (n=24)

% Normal ROIs 71.9%25.6 | 62.5%£32.5 0.27
% CLE ROIs 19.4+26.0 | 29.5+34.4 0.26
% CN ROls 8.7+16.3 8.0+18.3 0.90

P1, Phase 1; P2, Phase 2
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Correlations between %CLE and %CN and pertinent variables in 401 former smokers and 350 current
smokers. Correlation coefficients and p-values were computed using Pearson's correlation.

Table 4

Correlation with

Variable | %CLE 9%CN
Mean of 2 radiologists (n=250)
CLE extent 0.84 (p<0.01) NA
CN extent NA 0.31(p<0.01)
Densitometry (n=776)
% Emphysema 0.75(p<0.01) | -0.29 (p<0.01)
% Gas trapping 0.58 (p<0.01) | -0.34 (p<0.01)
Clinical variables (n=776)
GOLD stage 0.44 (p<0.01) | -0.30 (p<0.01)
FEV, -0.32 (p<0.01) | 0.01(p=0.73)
Time since smoking cessation | -0.16 (p<0.01) | 0.07 (o= 0.16)
Smoking pack-years 0.26 (p<0.01) | -0.10 (p=10.12)

Acad Radiol. Author manuscript; available in PMC 2017 November 01.

Page 21



	Abstract
	Introduction
	Materials and Methods
	Subjects
	Image Acquisition
	Radiologist Assessment
	Classifier Training
	Classifier Precision Analysis
	Texture-Based CT Analysis
	Statistical Analysis

	Results
	Discussion
	AppendixThe central tenet underlying the computation of radiology-derived features is that although CN is associated with high attenuation values and CLE is associated with low attenuation values, not all high attenuation values indicate CN and not all low attenuation values indicate CLE. Rather, the sizes and characteristics of regions of high and low intensities are crucial for accurate detection of CN and CLE, respectively. A threshold of -950 HU has been shown to be the most valid threshold for defining emphysema (34). Consequently, we define a low attenuation area (LAA) as a region with at least sixteen connected voxels with HU <-950. Since the milder forms of emphysema are associated with intensities below -856 HU (35), a high attenuation area (HAA) is defined as a region with at least five connected voxels with HU >-850 in order to capture small centrilobular nodules.. Once LAAs and HAAs have been automatically identified within an ROI, seven LAA-based features and seven HAA-based features are extracted from each ROI:•Number of LAAs/HAAs•Mean size of LAAs/HAAs•Mean intensity within LAAs/HAAs•Mean background intensity outside of LAAs/HAAs•Contrast between background intensity and intensity within LAAs/HAAs•Mean of minimum intensity within LAAs/HAAs•Intensity range within LAAs/HAAsAdditionally, the area immediately surrounding HAAs was found to aid in CN detection. In order to emphasize centrilobular nodules, high attenuation gradient areas (HAGAs) were identified as HAAs combined with surrounding voxels with gradient values >350 HU. Four HAGA-based features were then calculated:•Mean intensity with HAGAs•Mean background intensity outside of HAGAs•Contrast between background intensity and intensity within HAGAs•Intensity range within HAGAs
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4

