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Abstract

Exosomes are nano-sized, membrane-bound vesicles released from cells that transport cargo 

including DNA, RNA, and proteins, between cells as a form of intercellular communication. In 

addition to their role in intercellular communication, exosomes are beginning to be appreciated as 

agents of immunoregulation that can modulate antigen presentation, immune activation, 

suppression and surveillance. This article summarizes how these multifaceted functions of 

exosomes may promote development and/or progression of chronic inflammatory lung diseases 

including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. The potential of 

exosomes as a novel therapeutic are also discussed.
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Introduction

Inflammation plays an important role in the pathogenesis of respiratory diseases such as 

asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF) (1-8). 

Common among these diseases are the dysregulated inflammatory processes that contribute 

to their maintenance and progression. Pulmonary cells that are known to modulate 

inflammation include, but are not limited to, airway epithelial cells (1, 2, 8-10), dendritic 

cells (DCs) (1, 2, 9), macrophages (1, 8, 11, 12), CD4+ and CD8+ T lymphocytes (1, 8, 13), 

NK cells (14-16), and myeloid derived regulatory cells (MDRCs) (17-22). Recent studies 

provide evidence that extracellular vesicles (EVs) promote the pathogenesis of these 

diseases by promoting inflammation and immune activation (23-30).

Exosomes are membrane-bound EVs that are 50-150nm in diameter and are generated from 

the endosome. Genetic material, proteins, and metabolites have been shown to be packaged 

in exosomes and transferred to cells both locally and distally (31-35). The precise 
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mechanisms of protein packaging into exosomes are starting to be elucidated, and relatively 

recent studies have shown that higher order oligomerization, as well as specific signaling 

sequences, have been linked to proteins destined to exosomes (36-40). Not surprisingly, in 
vitro studies have shown that human immunodeficiency virus (HIV) gag and env proteins 

can be packaged in exosomes, suggesting a shared pathway or “hijacking” of exosome 

biogenesis mechanisms in the host (36, 37, 41-43).

In asthmatics, exosomes have been isolated from human Bronchoalveolar Lavage Fluid 

(BALF) (44), and these have been shown to promote inflammation and immune activation 

(25, 27, 45). COPD is also a chronic inflammatory disease with similarities in pulmonary 

symptoms and physiology to asthma; however, with dissimilar mechanisms of inflammation 

(1, 2). An initial airway insult, such as cigarette smoke, activates both alveolar type II 

epithelial cells and macrophages to promote inflammation, as well as Th1 and T cytotoxic 

type 1 (Tc1) responses (12, 46). Together these cells, via the elaboration of proteases (47, 

48), pro-inflammatory cytokines (1, 2, 46, 49, 50), and microRNAs (miRNAs) (23, 51), 

promote the destruction of the alveolar wall resulting in emphysema, and fibrosis of the 

small airways that contribute to airway narrowing. Increasing evidence suggest that miRNAs 

packaged in exosomes contribute to inflammation in many disease contexts (24, 52, 53). 

Only a limited number of studies have investigated the potential for exosomes to package the 

cellular mediators that drive COPD-associated inflammation.

Inflammation also plays a role in pulmonary fibrosis (PF). Activated alveolar type II 

epithelial cells can secrete pro-fibrotic factors such as transforming growth factor-β (TGF-β) 

and platelet derived growth factor (54). These growth factors promote local fibroblast 

recruitment as well as their transition to myofibroblasts. Although direct evidence for 

exosomes is lacking in PF, exosomal TGF-β from cancer cells has been shown to promote 

myofibroblast differentiation (55). Thus with evidence that supports the potential for 

exosomes to alter gene programs (55), and induce differentiation or de-differentiation of 

target cells, it is likely that exosomes participate in the process of tissue repair and fibrosis 

(56).

History and Life Cycle of Exosomes

Membrane-bound EVs were first described in the calcification of extracellular collagen (57), 

and then in cancer cells (58). These EVs contained cytoplasmic content, such as proteins and 

lipids, from the cell it originated from (59). The classification and nomenclature for EVs 

have evolved as different types of vesicles were discovered with diverse biochemical 

properties, and newer techniques allowed for characterization of important molecular cargo 

in the exosome including the proteome and identification of the cellular origins of exosomes 

(60-63).

In 1981, the term exosome was used for the first time to describe membrane-bound EVs. 

Exosomes are now recognized as endosome-derived membrane particles that generally range 

in size from 50-150nm in diameter (Figure 1) (43, 64-67). The inward budding of 

endosomes generates multiple intraluminal vesicles (ILVs) inside, and the vesicle-filled 

endosome is eventually referred to as a multi-vesicular body (MVB). MVBs can either fuse 
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with lysosomes, or mature into a lysosome, resulting in the degradation of cargo, or fuse 

with the plasma membrane (PM), releasing newly synthesized exosomes into the 

extracellular space (64, 66, 68-74). Gould et al. referred to this method of exosome 

biogenesis as the delayed mode (41). They have also described the immediate mode of 

biogenesis in the context of the Trojan exosome hypothesis and HIV retroviral budding. This 

mode refers to the biogenesis of exosomes directly from the plasma membrane due to 

residual endosomal lipid content left from previous MVB fusion (41, 43). The same group 

has suggested that activated T lymphocytes adopt the immediate mode of biogenesis of 

exosomes, while delayed mode of biogenesis is observed in macrophages (43).

Exosomes can be isolated from bodily fluids such as blood (75), urine (62), semen (31), 

breast milk (76), and bronchoalveolar lavage fluid (BALF) (44). Many purification methods 

for exosomes exists, but differential centrifugation with or without a gradient has been 

described and well established (77). Additionally, commercial exosome purification kits that 

do not require multiple lengthy centrifugation steps are also available (78). Because 

exosomes are endosomally-derived, they are enriched in tetraspanins, such as CD63, CD9, 

CD81, and CD82, which are the markers currently used to characterize exosomes (79, 80).

Homeostatic Roles of Exosomes

Exosomes are necessary for normal cellular function and homeostatic regulation of the host 

tissues and organs (31, 34, 60, 81-85). Perhaps the best recognized function of exosomes is 

in intercellular communication and signaling (32). Exosomes can signal to immune cells and 

modulate their function (64, 86-92). Injured cells can signal resident progenitor cells or 

bone-marrow stem cells via exosomes (Figure 2A), inducing migration and differentiation to 

the sites of tissue injury (81). Radiation-injured whole lung cells have been shown to secrete 

microvesicles that have the ability to induce lung-specific gene and protein expression in ex 
vivo co-cultured bone marrow cells (93). This process is proposed to be bidirectional (Figure 

2A), where stem cells or progenitor cells can secrete EVs that also contain miRNA and 

mRNA which induce de-differentiation of damaged tissue cells, proliferation, re-

differentiation of proliferated cells, and ultimately tissue repair (81). Supporting this 

concept, in vitro studies have demonstrated that embryonic stem cells can secrete EVs that 

reprogram hematopoietic progenitor cells through the transfer of mRNA (94). Additionally, 

conditioned medium from mesenchymal stem cells promoted tissue regeneration, similar to 

the effects seen with stem cell therapy (95). The results from these studies provide an 

explanation as to why tissue repair occurs despite low stem cell engraftment at the site of 

injury, as EVs and other secreted factors may play a central role in tissue regeneration and 

remodeling instead of direct cell engraftment and differentiation.

Exosomes have been shown to directly modulate differentiation as well as metabolic 

homeostasis through the transfer of miRNAs. Myotube-derived exosomes containing 

miRNA suppressed expression of Sirtuin-1, which is involved in regulating metabolism and 

myogenesis (34). Differential miRNA content was found at varying stages of differentiation, 

and furthermore, not all cytoplasmic miRNAs were packaged in exosomes, suggesting a 

selective packaging mechanism of these miRNAs. Of note, in a diseased state, the exosome 

content is drastically different from those obtained from normal skeletal muscle cells. 
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Exosomes from the insulin-resistant skeletal muscle cells promoted disease progression by 

altering gene expression of nearby cells (60).

In the context of cellular maturation, exosomes and other EVs have both been shown to be 

involved in transferring epididymal proteins to spermatozoa, to promote the production of 

functional male gametes (31). EVs secreted from the prostate gland epithelial cells, or 

prostasomes, have been found in post-ejaculatory semen with potential roles such as 

antimicrobial and protease functions (31). Reticulocytes also utilize exosomes (Figure 2B) to 

dispose the transferrin receptor in the process of maturation into functional red blood cells 

(96). This process of exosome-mediated disposal of cellular proteins is also seen in cells that 

have active autophagy and lysosome pathways (97, 98).

Autophagy and lysosome pathways degrade damaged organelles and proteins as a stress 

response to re-establish homeostasis (84, 99-102). Exosomes have been suggested to play a 

role in the secretion of cellular “garbage” as a compensatory mechanism to faulty autophagy 

pathways due to aging or disease (84). A signaling function may be implicated as nearby 

cells may sense packaged autophagosomal content, and aid in clearance and homeostasis of 

cellular and organismal level function. Interestingly, cells that experienced radiation-induced 

stress secreted exosomes in a p53-dependent fashion (103). This study also showed that 

TSAP6, a downstream target gene of p53, is necessary for exosome production. Constitutive 

expression of TSAP6 was achieved by transfection in H1299 cells, a human non-small cell 

lung cancer epithelial cell line, which lacks p53 and does not produce exosomes. Under 

constitutive expression of TSAP6, production of exosomes was observed even in the absence 

of irradiation. This suggests that cells undergoing a stress-response may upregulate exosome 

production as a form of danger signal.

Exosome Mediated Immune Regulation

Exosomes can modulate the activity of immune cells by playing a role in development, 

recruitment, activation, and suppression of the immune system (64, 82, 86-92, 104). For 

example, follicular DCs (FDCs) were identified to acquire peptide-bound major 

histocompatibility complex class II (pMHC-II) molecules from EVs secreted by B 

lymphocytes (Figure 3A) (105). FDCs are accessory cells in germinal centers that present 

antigens to B lymphocytes and have been shown to lack the expression of MHC-II 

molecules (106). B cell derived exosomes with pMHC-II found on FDCs were shown to 

stimulate CD4+ T cells, aiding in their development (105). This observation suggests the 

ability for exosomes with pMHC-II to engage T lymphocytes and to modulate immune 

memory, expanding the repertoire of antigens.

Peripheral DCs have been shown to produce exosomes with pMHC-II after antigen uptake 

and processing (67). These DC-derived exosomes, or dexosomes, have been shown to 

activate T cell with assistance from DCs and B cells (107, 108). Dexosomes with pMHC-II 

can be transferred to other dendritic cells (cross-dressing), or endocytosed and re-presented 

on the cell surface or in a new dexosome (Figure 3C) (104, 109, 110). Although dexosomes 

have been primarily linked with T cell activity, preliminary human studies in our laboratory 

have shown the potential for other MHC-II expressing cells to generate exosomes capable of 
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directly activating T cells and modulating their polarization (unpublished data). Admyre et 
al. have reported evidence for exosome-mediated direct stimulation of CD8+ T cells (Figure 

3B) (45). In this study, human peripheral CD8+ T cells were co-cultured with exosomes 

purified from autologous monocyte-derived DCs pulsed with immunogenic peptides from 

Epstein-Barr virus, cytomegalovirus, and influenza virus. They inferred direct stimulation by 

measuring IFN-γ production and demonstrated that this production was dependent on MHC-

I mediated stimulation. As mentioned briefly, there are reports indicating that exosomes 

alone do not provide a potent activation signal and that they require the assistance of B cells 

or DCs (107, 108). Furthermore, recent evidence suggests that exosome-mediated 

immunotherapy in cancer is more efficient if whole antigen is present, independent of MHC/

peptide complex, thus requiring APCs to help elicit a potent immune response (111). 

However, the observed results may be dependent on exosome concentration, the type of 

surface protein present, the presence of whole or processed antigen, and the level of protein 

expression. Lastly, since the physiological distribution of exosomes throughout tissues and 

parenchymal fluids is unclear, direct activation of T cells by exosomes, and exosome-APC 

mediated T cell activation are both plausible.

Exosomes secreted from macrophages and DCs have been shown to enhance migration of 

polymorphonuclear cells in vitro (Figure 3D) (112). These exosomes also contained 

enzymes that synthesize leukotrienes, which are lipid mediators of inflammation, suggesting 

a pro-inflammatory role for exosomes. Immune modulation by exosomes is not limited to 

APC-derived exosomes. Epithelial-derived exosomes in the airway can drive proliferation of 

monocytes, and enhance chemotaxis (28). Th2 cytokines were found to stimulate epithelial 

production of exosomes, and these exosomes induced monocyte proliferation. Furthermore, 

monocytes treated with epithelial-derived exosomes, in the presence of monocyte 

chemoattractant protein 1 (MCP-1), enhanced their migration.

Airway Disease and Exosomes

COPD is a chronic unresolved inflammatory disease that results in persistent airway 

remodeling, fibrosis of small airways, and the destruction of the alveolar cavity (1, 2, 48, 

50). Cigarette smoke and other irritants stimulate both airway epithelial cells and 

macrophages to release cytokines and growth factors that promote the chronic inflammation, 

in COPD (30, 50, 113). TGF-β (49, 114) and fibroblast growth factor (FGF) secreted by 

epithelial cells promote fibroblast proliferation and fibrosis of small airways (50). Activated 

macrophages promote inflammation by recruiting neutrophils, Th1 and Tc1 subsets (1, 12, 

46), and by secreting proteases (47, 48), which together with Tc1 cells aid in the destruction 

of the alveolus (12, 47, 48). Additionally, IL-1β levels are markedly increased in the airway 

of COPD patients, which further promotes inflammation and induces production of matrix 

metalloproteases by macrophages (47, 48). IL-1β has been reported in exosomes in both 

humans and mice (115, 116). The presence of CYR61/CTGF/NOV family 1 (CCN1) has 

been reported in exosomes from lung epithelial cells exposed to cigarette smoke extract (30). 

CCN1 is a matrix-associated CCN family protein with multiple signaling functions that 

affect cell survival and growth (117-119). Soluble forms of CCN1 have previously been 

shown to stimulate IL-8 production via the Wnt pathway, which can recruit inflammatory 

cells into the lung parenchyma (113). Thus exosome-bound CCN1 may have similar effects 
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in enhancing recruitment of inflammatory mediators. As is the case with most pulmonary 

diseases, a number of miRNAs have been found to be involved in COPD, including 

miR-15b, miR-223, miR-1274a, miR-424, mir-210 (23, 51). These miRNAs could be 

packaged in exosomes and alter the cellular function of recipient cells. Particularly, miR-210 

expression has been demonstrated to be elevated in EVs from human lung tissue post-

cigarette smoke exposure (23). These miR-210 containing EVs also inhibited autophagy by 

blocking ATG7 and promoted differentiation of fibroblasts into myofibroblasts.

Asthma is a heterogeneous disease that results in narrowing of the airway, clinically 

manifesting as wheezing and difficulty in breathing (1, 8, 11). Allergic asthma (Figure 4A) 

initiates with activation of DCs by an allergen, such as ragweed pollen (1, 2, 13). Primed 

DCs will then activate CD4+ T cells while promoting their polarization to a Th2 profile 

through the secretion of CCL17 and CCL22 cytokines (1, 13). Th2 cells produce IL-4 and 

IL-13, which can further drive Th2 differentiation of nearby T helper cells, and stimulate 

plasma B cells to secrete IgE. Admyre et al. in 2003, isolated exosomes for the first time 

from BALF of healthy human subjects, and demonstrated surface expression of proteins 

such as HLA-DR, CD63, CD86, and CD54 (44). These findings suggest the potential for 

airway exosomes to present antigen to the adaptive arm of the immune system and mediate 

co-stimulation. They further showed that T cells can be stimulated to produce Th2 cytokines 

by pMHC-II on the surface of exosomes derived from B cells of patients with birch pollen 

allergy (25). These studies intimate an important potential for exosomes to fuel allergic 

airway inflammation.

In asthmatics, the expression levels of CD81, CD36 and HLA-DR on airway exosomes were 

significantly higher as compared to healthy subjects (25). These findings are particularly 

interesting as CD36 is a pattern-recognition scavenger protein capable of promoting sterile 

inflammation by assembling toll-like receptor 4 (TLR4) and TLR6 into a complex (120). 

CD36 is a membrane glycoprotein known to bind phospholipids, lipoproteins, oxidized 

lipids, fatty acids, and apoptotic cells (121). CD36 has been reported to associate with CD9, 

a tetraspanin molecule enriched on exosomes, on the cell surface to regulate oxidized 

lipoprotein uptake (122, 123). Tocopherols are transported by lipoproteins (124), and 

particularly α-tocopherol has been shown to modulate CD36 expression (125). The roles of 

α- and γ-tocopherol in modulating inflammation have been reported in pulmonary 

inflammation (126-128). Together, the transfer of CD36+ exosomes to target cells may 

putatively facilitate asthma progression by promoting inflammation through TLR complex 

formation (120), or by increased uptake of tocopherols known to aid in inflammation 

(125-128). More detailed experimental analyses are needed to draw conclusions on the role 

of CD36+ exosomes, and its associated mechanisms. Lastly, exosomes from BALF of 

asthmatics were found to also contain functional leukotriene producing enzymes. Co-culture 

of these exosomes with bronchial epithelial cells resulted in leukotriene and IL-8 production, 

suggesting yet another mechanism for exosome driven inflammation (Figure 4B) (27).

Although evidence for the involvement of exosomes in PF has not been established, in vitro 
and in vivo murine models of organ fibrosis point to the potential for its role in the disease 

(56). Injured kidney epithelial cells have been shown to produce TGF-β containing 

exosomes which activate fibroblasts to engage in fibrotic repair in vitro (55). MicroRNAs 
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have been known to play a role in PF (129, 130), and fibrosis of various other organs, 

including liver, heart, and kidney (131). Since exosomes can convey microRNA to other 

cells, it would not be surprising if they are involved in PF. With regards to PF, notably, 

miR-21 has been shown to be upregulated in a TGF-β dependent manner in both patients 

and bleomycin-induced IPF mouse models (129). Expression of miR-21 results in the 

inhibition of apoptosis and tumor suppressor genes, thus allowing proliferation and 

differentiation of fibroblasts into myofibroblasts. MicroRNAs are not the only regulators of 

fibrotic process. Th2 cells have been shown to promote fibrosis through its characteristic 

cytokines (IL-4, IL-5 and IL-13) (132), each further stimulating Th2 differentiation, 

inflammation, and fibrotic repair. Particularly, the secretion of IL-13 by both Th2 cells and 

eosinophils, which have been recruited by IL-5, have detrimental effects on the severity of 

disease. In conjunction with findings that show the capacity for exosomes to mediate 

inflammation, promote fibrotic repair in vitro, and drive T cell proliferation, it is feasible for 

exosomes to function as mediators of PF.

Lastly, mechanical stress or loss of complacency in the lung epithelium has been 

demonstrated to alter gene expression of fibroblasts (133, 134). Varying degrees of matrix 

stiffness, on which lung fibroblasts were grown, influenced their protein expression and 

proliferative capabilities (133, 134). Furthermore, mechanical stimulation of bronchial 

epithelial cells resulted in the secretion of tissue factor-bearing exosomes (29). These 

findings demonstrate the significance of mechano-complacency of tissue matrices in 

significantly affecting gene expression, secretome profiles, and exosome production in the 

lung.

Exosomes as a Therapeutic Tool

While recent advances in nanoparticle technology have made the development of slow-

release drugs possible with promising results (135), a major hurdle with silicon-based 

nanoparticle technology is hepatotoxicity caused by accumulation of nanoparticles in the 

liver (135, 136). This toxicity makes dosing regimens hard to determine despite requiring 

only minuscule amounts. As of today, exosomes have not been associated with similar 

toxicity, although detailed toxicological studies may be necessary. And because of their 

versatile nature, various groups have demonstrated the ability to engineer exosomes for 

therapeutic purposes (137-142).

Several pre-clinical studies on the use of exosomes as a novel therapeutic have demonstrated 

encouraging translational potential (137-140). A recombinant chimeric neurotropic protein 

expressed on the surface of DC-derived exosomes has been shown to traverse the blood-

brain-barrier (BBB), enabling these exosomes to target neurons (138). Although inorganic 

nanoparticles have been reported to cross the BBB, their engineering and synthesis have 

been problematic (135). The progress in engineering exosomes to target the CNS provides 

hope for developing systemic drugs that can target the CNS against diseases such as 

Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and glioblastoma multiforme.

Exosomes also have therapeutic potential as a mucosal vaccine. Prado et al. have shown that 

exosomes purified from the BALF of mice that were intranasally immunized with the olive 
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pollen antigen (Ole e) can protect naïve mice from Ole e induced allergic response (137). 

The authors observed lower IgE titer and Th2 cytokine production with the administration of 

tolerogenic exosomes. Furthermore, the authors state that because exosomes are relatively 

stable, lower doses are needed to observe its effects. These findings pave an exciting future 

for exosome-based immunotherapy.

Two phase I clinical trials have reported the safety of patient-derived dexosome therapy 

against cancer (141, 142). The trials used patient DCs pulsed with melanoma-associated 

antigen 3 (MAGE-A3) to generate therapeutic dexosomes for the treatment of metastatic 

melanoma and advanced NSCLC. Interestingly, both studies showed partial response, higher 

activation of NK cells, and stabilization of disease progression in a subset of patients treated 

with the dexosomes. These studies demonstrated safety and feasibility of using exosomes as 

a novel therapeutic, and further optimization of the therapy may enable activation of greater 

immune populations and efficacy in larger subsets of patients.

Conclusions and Perspectives

Exosomes are produced by virtually all cell types, and can be isolated from a variety of 

bodily fluids (31, 44, 62, 64, 67, 68, 75, 76). Proteomics data analyses of exosomes purified 

from bodily fluids have been deposited in databases such as ExoCarta (143), and the NIH 

Urinary Exosome Protein Database (61, 62). From the early characterization efforts to 

functional studies being conducted now, exosomes have been discovered to not only contain 

diverse proteins, but are also multifaceted in their functional roles ranging from the 

development of healthy cells, tissues and organs, to promoting immunosuppression, and 

inflammation (23-31, 33-35, 45, 56, 76, 81-85, 93, 94, 104, 105, 107, 110, 112, 137). 

Exosomes are also important in immune modulation, for example, the ability for exosomes 

with class-II molecules to cross-present or cross-dress antigens to T lymphocytes and other 

DCs. Furthermore, the exosome biogenesis pathway has been proposed to be “hijacked” by 

enveloped viruses, like HIV, to evade the host immune system (41, 42). These findings and 

putative propositions put together demonstrate exosomes as versatile couriers of bioactive 

cargo that can cross biological barriers (138) and deliver their payload to distant targets.

In the context of airway diseases, exosomes are beginning to be appreciated in the 

pathogenesis of lung cancer, PF, COPD and asthma. Exosomes can transfer miRNAs that 

alter gene expression of target cells resulting in a diseased phenotype, such as miR-210 in 

COPD (23). They can also carry pro-inflammatory cytokines such as IL-1β (115, 116), 

which contributes to inflammation associated with both COPD and fibrosis. In asthma, 

exosomes have been shown to contain MHC-II molecules (27), and clinical ex vivo 
experiments in allergy have demonstrated the potential for patient exosomes to promote T 

cell proliferation (25). These findings, along with data that shows presence of co-stimulatory 

molecules on human BALF exosomes (44), suggest capacity for exosomes to directly 

modulate T cell activity and influence differentiation. Previous work from our laboratory 

demonstrated the effects of cigarette smoke on how MDRCs can be skewed to enhance Th2 

polarization and proliferation (17). In light of several lines of evidence that show cigarette 

smoke induces altered exosomal content (30), the potential for pro-inflammatory MDRCs to 
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produce pathogenic exosomes and promote asthma exists and thus necessitates detailed 

examination of the role of exosomes from various cellular players of asthma.

Not only are these discoveries and postulations exciting, but provide a platform for 

development of novel therapies. Already, several pre-clinical and phase I clinical trials have 

been conducted with exosome-based treatments (137-142). Dexosome-based vaccines have a 

promising future, as not only can they effectively activate the adaptive immune system, but 

their signal can be amplified by uptake and re-distribution of antigen presenting exosomes. 

The studies mentioned in this review have illustrated the ability of researchers to usurp the 

natural ability of APCs to load antigenic peptides on class-I and -II molecules and package 

them into exosomes for therapeutic use (108, 139, 141, 142). Early studies have already 

confirmed the ability to express recombinant proteins, or over-express miRNA in host cells 

to “design” exosomes (138, 140). Furthermore, targeting of exosomes to select cell-types has 

been demonstrated by engineering chimeric cell-tropic surface proteins on exosomes (138). 

As more mechanistic research is conducted on exosome biogenesis and cargo sorting, we 

will be able to develop nifty tools to engineer exosomes for therapeutic purposes.
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Figure 1. 
Graphical representation of various extracellular vesicles, their sizes, and related surface 

proteins. Color gradients indicate reported variability in size.
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Figure 2. 
Homeostatic roles for exosomes and extracellular vesicles. (A) Injured tissue cells secrete 

exosomes and membrane particles that promote migration and differentiation of resident 

stem cells (progenitor cells). Tissue damage can also be “sensed” by resident or bone 

marrow stem cells, which can then secrete exosomes or membrane particles that may 

promote de-differentiation, cell-cycle progression, and tissue repair. (B) Exosomes are also 

important in the maturation process of various cell types, for example in the maturation of 

reticulocytes into erythrocytes through shedding of proteins and surface receptors by 

exosomes.
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Figure 3. 
Exosomes in immune regulation. (A) Follicular dendritic cells (FDCs) gain MHC class II 

molecules from exosomes shed by B cells in the germinal centers. (B) Dendritic cells (DCs) 

can secrete exosomes bearing MHC molecules that potentially directly activate T cells. (C) 
Primed dendritic cells can secrete peptide-loaded MHC molecules that can be taken-up by 

naïve DCs which can then activate nearby T cells by displaying the loaded MHC molecule 

from exosome on its cell surface. Naïve DCs can also re-package the loaded MHC into new 

exosomes, thus amplifying the effect. (D) Both epithelial cells and DCs can secrete 

chemokine-containing exosomes which can recruit granulocytes and other inflammatory 

mediators.
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Figure 4. 
(A) Classical mechanism of allergic asthma. An initial stimulus, such as pollen, is processed 

by dendritic cells and Th2 promoting cytokines released. Th2 polarized CD4+ T cells secrete 

a milieu of cytokines including IL-4 and IL-13, further promoting Th2 skewing of nearby 

CD4+ T cells. This stimulates plasma B cells to secrete IgE, a key mediator of allergic 

asthma. IgE induces histamine production by mast cells resulting in bronchoconstriction, 

which manifests clinically as wheezing or dyspnea. (B) Exosomes may have the potential to 

directly activate T cells and influence their activity, as well as mediate inflammation through 

leukotriene synthesis. Additionally, exosomes secreted by MDRCs may preferentially 

promote the development of T cell subsets, such as Th17 cells, which can drive 

inflammation. The inflammatory environment can promote bronchial epithelial cell 

production of exosomes, creating a vicious cycle of disease maintenance.
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