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Abstract

The utility of multi-cohort two-class meta-analysis to identify robust differentially expressed gene 

signatures has been well established. However, many biomedical applications, such as gene 

signatures of disease progression, require one-class analysis. Here we describe an R package, 

MetaCorrelator, that can identify a reproducible transcriptional signature that is correlated with a 

continuous disease phenotype across multiple datasets. We successfully applied this framework to 

extract a pattern of gene expression that can predict lung function in patients with chronic 

obstructive pulmonary disease (COPD) in both peripheral blood mononuclear cells (PBMCs) and 

tissue. Our results point to a disregulation in the oxidation state of the lungs of patients with 

COPD, as well as underscore the classically recognized inflammatory state that underlies this 

disease.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive, debilitating lung disease 

that affects one in 20 people across the globe.1 It is characterized by declining lung function, 

as measured by Forced Expiratory Volume (FEV) or Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) stage.2,3 FEV is the amount of air that a COPD patient 

can expel in one second, and decreases as the disease progresses. GOLD scoring is the result 

of a global effort to reach an agreement on spirometric thresholds for COPD diagnosis and is 

considered the gold standard of COPD severity.2,3 An increasing GOLD stage reflects 

declining lung function, where GOLD stage of 0 represents at-risk patients, while a stage of 

4 identifies patients with predicted FEV &lt;30%.3 The rate of COPD progression varies 

widely from patient to patient, and there are no current treatment options that effectively halt 

the disease.4 There is an urgent, critical unmet need to identify pathways that are robustly 

and reproducibly associated with COPD severity in order to identify novel targets for 

therapy.
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We have previously described a multi-cohort analysis framework for integrated analysis of 

heterogeneous datasets, and repeatedly demonstrated its successful application across 

diverse set of diseases including organ transplant, cancer, and infectious diseases for 

identifying diagnostic, prognostic, and therapeutic signatures.5–10 At its core, our multi-

cohort analysis framework uses random effects inverse variance meta-analysis to identify 

differentially expressed genes between two groups of samples (e.g., cases vs controls). 

However, despite its demonstrated utility, its application is limited to two-class comparisons. 

One of the drawbacks of this framework is that it does not take into account the stage of 

disease of the patients.11,12 Further, many biomedical applications, such as those looking to 

identify signatures of disease progression, require one-class analysis. Such analyses are 

indispensible for identifying higher risk patients for more personalized care, and to discover 

pathways associated with disease progression,12 which in turn could improve our 

understanding of the disease.

We have implemented an R package, MetaCorrelator, that addresses this challenge and 

extends the utility of our multi-cohort analysis framework to analyze continuous phenotypes 

across multiple datasets (Figure 1). MetaCorrelator follows principles of our framework to 

identify robust signatures for continuous phenotypes. It provides flexibility to use with 

different continuous phenotypes and widely heterogenous data.

2. Methods

2.1. Integration of correlation coefficients across independent datasets

MetaCorrelator starts by computing a correlation coefficient between a designated 

continuous phenotype and every gene measured in a given discovery dataset. The correlation 

coefficients can be computed as Pearson's r, Spearman's ρ, or Kendall's τ. Because 

Spearman's ρ is defined as the Pearson's r calculated on the ranks,13 it can used directly as r 
for the rest of the analysis. Kendall's τ need to be converted into r14 according to

(1)

Then, each correlation coefficient r is converted into a Fisher's Z effect size, defined as:

(2)

with variance, Vz, and standard error, SEz, defined as

(3)

and
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(4)

where n is the total number of samples used for correlation. Next, we combine Fisher's z for 

every gene across all discovery datasets into a summary effect size using a random-effects 

inverse variance model,15 which assumes that the true effect sizes across each study are not 

identical but rather sampled from a distribution of true effects. The summary effect size is 

calculated as

(5)

and the corresponding summary standard error was computed as

(6)

where zi is the Fisher's Z for a given dataset i and Wi is a weight defined as

(7)

where Vi is the variance of the Fisher's Z effect size for a given gene within dataset i and T2 

indicates the in-between-dataset variation. Finally, every gene is assigned a p-value 

calculated using a two-tailed test defined as

(8)

The p-value is then corrected for multiple hypothesis testing using Benjamini-Hochberg.

2.2. Datasets

We identified publicly available gene expression datasets from the NCBI GEO that provided 

lung function in COPD patients using GOLD stage or FEV. In total, we identified six 

datasets with 642 samples. All six had expression data that was pre-normalized. We used 

three datasets for discovery and three as validation (Tables 1 and 2). The datasets were 

highly heterogeneous; five were from lung biopsies and two from PBMCs, spanning 

collection over seven years and three countries. All probes were matched to Gene IDs based 
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on the platform information available on GEO. Three of the datasets did not have a control 

group as all of the samples originated from patients with COPD.

2.3. Selection and validation of COPD signature

We used FDR < 5% to identify genes significantly correlated with COPD severity as defined 

by GOLD stage or FEV. We performed Gene Ontology enrichment analysis using 

iPathwayGuide (http://www.advaitabio.com). All other statistical analyses were performed 

using the statistical programming language R.

2.4. Availability

Source code is available at http://khatrilab.stanford.edu/metacorrelator. The Khatri lab will 

provide full results upon request.

3. Results

3.1. Functional Analysis of Differentially Expressed Genes Identified by MetaCorrelator

We identified six independent datasets of 692 lung biopsies or PBMC samples from COPD 

patients that also provided either GOLD stage or FEV for each patient. The samples 

included in these datasets came from patients across all stages of COPD and covered all the 

lobes in the lung. We selected three datasets composed of 374 PBMC samples or lung 

biopsies as discovery datasets (Table 1), and the rest as validation datasets (Table 2). We 

choose three discovery datasets such that they increased heterogeneity in the discovery. Two 

datasets were from lung tissue, and had annotation describing the GOLD stage of the 

samples. Of the two lung tissue datasets, GSE698181 had COPD patients with and without 

emphysema. Although GSE47460 had both GOLD stage and FEV annotation, only GOLD 

stage was used for discovery of the gene signature.

MetaCorrelator identified 108 genes (FDR < 25%) that are consistently correlated with 

COPD severity as measured by GOLD stage or FEV in the three discovery datasets. We 

performed Gene Ontology enrichment analysis (Figure 2) to explore the functions of the 

identified genes. Our enrichment analysis highlighted the role of oxidative stress in COPD 

progression. We identified the disulfide oxidoreductase activity pathway as a highly 

significant in COPD progression. This is consistent with previous literature that has 

identified oxidative stress as a sign of COPD progression.16

3.2. Identification and Analysis of a 25-Gene Signature Correlates with COPD Progression

It is difficult to translate 108-gene signature into a clinical practice. Therefore, to reduce the 

number of genes, we increased the stringency of our selection criteria by reducing the FDR 

to 5e-5. We identified 25 genes (7 over-expressed, 18 under-expressed) that are significantly 

correlated with the COPD severity in the discovery datasets. Enrichment analysis using 

Gene Ontology of the 25 genes identified matrix remodeling and inflammation as pathways 

associated with the progression of COPD. Specifically, a subset of the 25 genes, including 

UDP-Glucuronate Decarboxylase 1 (UXS1) and Tetraspanin 13 (TSPAN13) are 

underexpressed genes known to be involved in ECM production and cell adhesion. 

Importantly, a double tetraspanin knockout mouse (Tetraspanin 28 and 29) has been shown 
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to develop a COPD-like phenotype, underscoring the importance of this protein family to 

healthy lung function.18 Inflammatory mediators such as TLR2 and FKBP5 are over-

expressed in the gene signature, reflecting the inflammatory state of COPD. Previous 

literature has shown that TLR2 is over-expressed on Lung CD8+ and CD4+ T-cells as well 

as CD8+NK T-cells, demonstrating that our results reflect validated biology.19 Two 

differentially expressed genes, TNIK and PTPRK are involved in both ECM and 

inflammation. Taken together, our results align with previously published literature, which 

describes COPD as a disregulation of the immune system and subsequent breakdown of the 

ECM.20–22

Next, we defined Lung Function Score (LFS) for a sample as the geometric mean of the 

expression value of the 25 genes as previously described.5–7 We observed strong significant 

correlation between our signature score and FEV in GSE76705 (r = -0.50; p-value = 

5.81e-14) (Figure 3). In datasets where GOLD staging was available, we observed a 

significant score increase in concordance with increasing GOLD stage (JT test; GSE47460: 

p-value = 9.4e-10; GSE69818: p-value = 5e-4). Interestingly, although only the GOLD 

stages in GSE47460 were used in the discovery, the LFS strongly correlated with FEV score 

in GSE47460 (r = -0.57; p-value = 6.23e-4).

3.3. Validation of the Gene Signature in Three Independent Cohorts

We validated the 25-gene LFS in three independent cohorts of 318 lung biopsy and PBMC 

samples from COPD patients (Table 2, Figure 4). Across all three validation cohorts, the 

LFS was significantly correlated with lung function in the COPD patients (summary effect 

size = 0.46, p = 3.98e-3). In individual datasets, we observed a significant negative 

correlation between FEV and LFS in GSE42057 (r = -0.41; p-value = 5.03e-7) and a positive 

significant correlation with GOLD stages in our remaining two independent cohorts 

(GSE38974; p-value = 5.539e-6; GSE11906; p-value = 0.02514).

3.4. Differential Expression in Current vs Never Smokers

To explore the broader implications of our results, we examined whether any of our 25 

identified genes were also significantly expressed in smokers compared to healthy controls. 

We downloaded seven publicly available datasets from NCBI GEO for a total of 200 

samples from smokers and 158 from never smokers (GSE11952, GSE17913, GSE19667, 

GSE3320, GSE5056, GSE5057, GSE5059). Using the 25-gene LFS derived from 

MetaCorrelator, two genes, TSPAN13 and NR3C2, were found to be differentially expressed 

in smokers compared to non-smokers with p value < 0.01. The tetraspanin family has been 

shown to be critical to normal lung function, and NR3C2 has been implicated in lung 

morphogenesis.23 These results demonstrate the flexibilty of MetaCorrelator to highlight 

patterns of biological relevance in conjunction with two-class analysis.

4. Discussion

Availability of large amounts of heterogeneous molecular data has necessitated the 

development of new frameworks to identify patterns and extract new information from these 

data. We have repeatedly shown the effectiveness of our multi-cohort analysis framework for 
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diagnostic and therapeutic applications across a broad spectrum of human diseases.5–10 

However, this framework is limited to analysis of case-control experiments, and is not 

suitable for analysis of one-class quantitative phenotypes. Here, we extend our previously 

established framework to include analysis of gene expression with quantitative quantitative.

Correlation analysis has been a powerful tool for decades, but at this time there does not 

exist a single framework that can take a collection of datasets and different quantitative 

phenotypes as input and produce a correlated gene expression signature. There are currently 

available packages in R, such as metacor, that can compute Fisher's Z values from 

correlation coefficients; however, MetaCorrelator is uniquely positioned to take multiple 

datasets as input and correlate gene expression with heterogeneous phenotypes. This is 

especially relevant in the realm of human disease; methods that are able to integrate different 

but related organ function phenotypes, such as FEV and GOLD stage, would allow for more 

powerful analysis that could identify new markers for disease progression.

Our method enables the identification of a gene signature across tissues, thus highlighting 

the globally relevant differentially expressed genes. By integrating PBMC and lung tissue 

data, we were able to distill out a gene signature that represents the global differential gene 

expression of COPD progression. These results emphasize the advantage of integrating 

multiple tissues. The genes in our signature suggest the importance of inflammation (TLR2, 

FKBP5) as well as cell adhesion (TSPAN13, UXS1), which demonstrates that our 

framework is able to recapitulate known biology. By integrating the MetaCorrelator 

framework with established two-class analysis, we can select genes of particular interest. For 

instance, after identifying differentially expressed genes between smokers and non-smokers, 

we could further focus on two genes that MetaCorrelator had identified as correlating with 

COPD progression. MetaCorrelator can be used to correlate any continuous disease 

phenotype with disease progression. For example, one could identify a gene signature that 

correlates with prostate specific antigen, a marker of prostate cancer progression. 

Alternatively, one could correlate a gene signature with ejection fraction of the heart. In 

summary, MetaCorrelator provides a framework that can correlate whole genome 

transcriptome across multiple independent datasets with a quantitative phenotype, which in 

turn can be further explored in case-control studies using the multi-cohort analysis 

framework.

5. Conclusion

In this study we developed a meta-analysis framework that can integrate multiple gene 

expression datasets to identify gene signatures that correlate with quantitative phenotypes. 

Importantly, this method uses the inherent heterogeneity present in multiple cohorts to 

identify consistently correlated genes and is applicable to datasets that have a single class of 

sample. Our method can be used in conjunction with other methods that separate samples by 

class, for example, in order to further differentiate a single group of patients. We applied our 

method to COPD patients and extracted a 25-gene signature that correlated with lung 

function in three datasets (two in tissue, one in PBMCs). We then successfully validated our 

gene signature on three independent datasets. We demonstrated the ability to identify a 

robust signature with heterogeneous data and phenotypes by correlating the tissue datasets 
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with increasing GOLD stage, and the PBMC dataset with decreasing FEV. Our results 

suggest an increasing immune response in later stage COPD patients, which has been noted 

by others, as well as point to a under-appreciated role in sulfur-related oxidative stress. In 

summary, MetaCorrelator provides a powerful framework to extract a gene signature that is 

linked to disease progression.
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Fig. 1. 
Schematic Overview of MetaCorrelator. Each dataset is correlated with a continuous 

phenotype to compute correlation coefficients (example: Pearson's correlation coefficients). 

These coefficents are then combined into a summary Fisher's Z effect size. A significance 

threshold is determined to produce the final list of differentially expressed genes.
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Fig. 2. 
Functional categories enriched in genes identified by MetaCorrelator
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Fig. 3. 
Lung Function Scores in training cohorts: (A) Violin plots of Lung Function Scores (LFS) in 

patients distinguished by progressively increasing GOLD stage from GSE47460. (B) Same 

as (A) but for dataset GSE69818. (C) Correlation plot between LFS and FEV scores in 

individual patients from GSE47460. (D) Same as (C) but for dataset GSE76705.
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Fig. 4. 
Lung Function Scores in validation cohorts: (A) Violin plots of Lung Function Scores (LFS) 

in patients distinguished by progressively increasing GOLD stage from GSE38974. (B) 

Same as (A) but for dataset GSE11906. (C) Correlation plot between LFS and FEV scores in 

individual patients from GSE42057. (D) Forest plot representing Fisher's Z values for each 

of the validation datasets. Squares indicate individual dataset Fisher's Z, with square-size 

proportional to sample size and horizontal lines indicating individual standard errors 

(GSE42507 was reverted in sign because of the inverse relationship between GOLD score 

and FEV). Rhombus indicates summary Fisher's Z with width corresponding to summary 

standard error.
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Table 1
Datasets Used in Discovery of Lung Function Signature

GEO ID Tissue Phenotype Cases

GSE47460 Lung Biopsy GOLD Stage and FEV 75

GSE69818 Lung Biopsy GOLD Stage 70

GSE76705 PBMCs FEV 229

3 Datasets 2 Tissues 324
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Table 2
Datasets Used to Validate Lung Function Signature

GEO ID Tissue Phenotype Cases

GSE42057 PBMCs FEV 136

GSE38974 Lung Biopsy GOLD Stage 32

GSE11906 Lung Biopsy GOLD Stage 150

3 Datasets 2 Tissues 318
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