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Abstract

The utility of multi-cohort two-class meta-analysis to identify robust differentially expressed gene
signatures has been well established. However, many biomedical applications, such as gene
signatures of disease progression, require one-class analysis. Here we describe an R package,
MetaCorrelator, that can identify a reproducible transcriptional signature that is correlated with a
continuous disease phenotype across multiple datasets. We successfully applied this framework to
extract a pattern of gene expression that can predict lung function in patients with chronic
obstructive pulmonary disease (COPD) in both peripheral blood mononuclear cells (PBMCs) and
tissue. Our results point to a disregulation in the oxidation state of the lungs of patients with
COPD, as well as underscore the classically recognized inflammatory state that underlies this
disease.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive, debilitating lung disease
that affects one in 20 people across the globe.! It is characterized by declining lung function,
as measured by Forced Expiratory Volume (FEV) or Global Initiative for Chronic

Obstructive Lung Disease (GOLD) stage.23 FEV is the amount of air that a COPD patient
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can expel in one second, and decreases as the disease progresses. GOLD scoring is the result
of a global effort to reach an agreement on spirometric thresholds for COPD diagnosis and is
considered the gold standard of COPD severity.23 An increasing GOLD stage reflects
declining lung function, where GOLD stage of 0 represents at-risk patients, while a stage of
4 identifies patients with predicted FEV &It;30%.3 The rate of COPD progression varies
widely from patient to patient, and there are no current treatment options that effectively halt
the disease.? There is an urgent, critical unmet need to identify pathways that are robustly
and reproducibly associated with COPD severity in order to identify novel targets for
therapy.
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We have previously described a multi-cohort analysis framework for integrated analysis of
heterogeneous datasets, and repeatedly demonstrated its successful application across
diverse set of diseases including organ transplant, cancer, and infectious diseases for
identifying diagnostic, prognostic, and therapeutic signatures.>-10 At its core, our multi-
cohort analysis framework uses random effects inverse variance meta-analysis to identify
differentially expressed genes between two groups of samples (e.g., cases vs controls).
However, despite its demonstrated utility, its application is limited to two-class comparisons.
One of the drawbacks of this framework is that it does not take into account the stage of
disease of the patients.11:12 Further, many biomedical applications, such as those looking to
identify signatures of disease progression, require one-class analysis. Such analyses are
indispensible for identifying higher risk patients for more personalized care, and to discover
pathways associated with disease progression,12 which in turn could improve our
understanding of the disease.

We have implemented an R package, MetaCorrelator, that addresses this challenge and
extends the utility of our multi-cohort analysis framework to analyze continuous phenotypes
across multiple datasets (Figure 1). MetaCorrelator follows principles of our framework to
identify robust signatures for continuous phenotypes. It provides flexibility to use with
different continuous phenotypes and widely heterogenous data.

2. Methods

2.1. Integration of correlation coefficients across independent datasets

MetaCorrelator starts by computing a correlation coefficient between a designated
continuous phenotype and every gene measured in a given discovery dataset. The correlation
coefficients can be computed as Pearson's r, Spearman's p, or Kendall's z. Because
Spearman's p is defined as the Pearson's rcalculated on the ranks,2 it can used directly as r
for the rest of the analysis. Kendall's = need to be converted into A4 according to

r=sin(m* 0.5 7 (1)

Then, each correlation coefficient ris converted into a Fisher's Zeffect size, defined as:

Z:lln L+
2 1—r (2

with variance, V4, and standard error, SE, defined as

and
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SE.=VV. (4)

where nis the total number of samples used for correlation. Next, we combine Fisher's zfor
every gene across all discovery datasets into a summary effect size using a random-effects
inverse variance model,1® which assumes that the true effect sizes across each study are not
identical but rather sampled from a distribution of true effects. The summary effect size is
calculated as

Wiz,
Wi (5)

Z,

and the corresponding summary standard error was computed as

1
Wi (e)

SEs=

where z;is the Fisher's Z for a given dataset 7and W;is a weight defined as

1

W—:—
CViHT? (1)

where V;is the variance of the Fisher's Z effect size for a given gene within dataset 7and 72
indicates the in-between-dataset variation. Finally, every gene is assigned a p-value
calculated using a two-tailed test defined as

Zs

p=21 =205 o

The p-value is then corrected for multiple hypothesis testing using Benjamini-Hochberg.

2.2. Datasets

We identified publicly available gene expression datasets from the NCBI GEO that provided
lung function in COPD patients using GOLD stage or FEV. In total, we identified six
datasets with 642 samples. All six had expression data that was pre-normalized. We used
three datasets for discovery and three as validation (Tables 1 and 2). The datasets were
highly heterogeneous; five were from lung biopsies and two from PBMCs, spanning
collection over seven years and three countries. All probes were matched to Gene IDs based
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on the platform information available on GEO. Three of the datasets did not have a control
group as all of the samples originated from patients with COPD.

2.3. Selection and validation of COPD signature

We used FDR < 5% to identify genes significantly correlated with COPD severity as defined
by GOLD stage or FEV. We performed Gene Ontology enrichment analysis using
iPathwayGuide (http://www.advaitabio.com). All other statistical analyses were performed
using the statistical programming language R.

2.4, Availability

Source code is available at http://khatrilab.stanford.edu/metacorrelator. The Khatri lab will
provide full results upon request.

3. Results

3.1. Functional Analysis of Differentially Expressed Genes Identified by MetaCorrelator

We identified six independent datasets of 692 lung biopsies or PBMC samples from COPD
patients that also provided either GOLD stage or FEV for each patient. The samples
included in these datasets came from patients across all stages of COPD and covered all the
lobes in the lung. We selected three datasets composed of 374 PBMC samples or lung
biopsies as discovery datasets (Table 1), and the rest as validation datasets (Table 2). We
choose three discovery datasets such that they increased heterogeneity in the discovery. Two
datasets were from lung tissue, and had annotation describing the GOLD stage of the
samples. Of the two lung tissue datasets, GSE698181 had COPD patients with and without
emphysema. Although GSE47460 had both GOLD stage and FEV annotation, only GOLD
stage was used for discovery of the gene signature.

MetaCorrelator identified 108 genes (FDR < 25%) that are consistently correlated with
COPD severity as measured by GOLD stage or FEV in the three discovery datasets. We
performed Gene Ontology enrichment analysis (Figure 2) to explore the functions of the
identified genes. Our enrichment analysis highlighted the role of oxidative stress in COPD
progression. We identified the disulfide oxidoreductase activity pathway as a highly
significant in COPD progression. This is consistent with previous literature that has
identified oxidative stress as a sign of COPD progression.16

3.2. Identification and Analysis of a 25-Gene Signature Correlates with COPD Progression

It is difficult to translate 108-gene signature into a clinical practice. Therefore, to reduce the
number of genes, we increased the stringency of our selection criteria by reducing the FDR
to 5e-5. We identified 25 genes (7 over-expressed, 18 under-expressed) that are significantly
correlated with the COPD severity in the discovery datasets. Enrichment analysis using
Gene Ontology of the 25 genes identified matrix remodeling and inflammation as pathways
associated with the progression of COPD. Specifically, a subset of the 25 genes, including
UDP-Glucuronate Decarboxylase 1 (UXS2) and Tetraspanin 13 (7SPAN13) are
underexpressed genes known to be involved in ECM production and cell adhesion.
Importantly, a double tetraspanin knockout mouse (Tetraspanin 28 and 29) has been shown
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to develop a COPD-like phenotype, underscoring the importance of this protein family to
healthy lung function.18 Inflammatory mediators such as 7ZR2and FKBP5 are over-
expressed in the gene signature, reflecting the inflammatory state of COPD. Previous
literature has shown that 7LR2is over-expressed on Lung CD8+ and CD4+ T-cells as well
as CD8+NK T-cells, demonstrating that our results reflect validated biology.1® Two
differentially expressed genes, TANV/K and PTPRK are involved in both ECM and
inflammation. Taken together, our results align with previously published literature, which
describes COPD as a disregulation of the immune system and subsequent breakdown of the
ECM.ZO_ZZ

Next, we defined Lung Function Score (LFS) for a sample as the geometric mean of the
expression value of the 25 genes as previously described.>~7 We observed strong significant
correlation between our signature score and FEV in GSE76705 (r = -0.50; p-value =
5.81e-14) (Figure 3). In datasets where GOLD staging was available, we observed a
significant score increase in concordance with increasing GOLD stage (JT test; GSE47460:
p-value = 9.4e-10; GSE69818: p-value = 5e-4). Interestingly, although only the GOLD
stages in GSE47460 were used in the discovery, the LFS strongly correlated with FEV score
in GSE47460 (r = -0.57; p-value = 6.23e-4).

3.3. Validation of the Gene Signature in Three Independent Cohorts

We validated the 25-gene LFS in three independent cohorts of 318 lung biopsy and PBMC
samples from COPD patients (Table 2, Figure 4). Across all three validation cohorts, the
LFS was significantly correlated with lung function in the COPD patients (summary effect
size = 0.46, p = 3.98e-3). In individual datasets, we observed a significant negative
correlation between FEV and LFS in GSE42057 (r = -0.41; p-value = 5.03e-7) and a positive
significant correlation with GOLD stages in our remaining two independent cohorts
(GSE38974; p-value = 5.539%-6; GSE11906; p-value = 0.02514).

3.4. Differential Expression in Current vs Never Smokers

To explore the broader implications of our results, we examined whether any of our 25
identified genes were also significantly expressed in smokers compared to healthy controls.
We downloaded seven publicly available datasets from NCBI GEO for a total of 200
samples from smokers and 158 from never smokers (GSE11952, GSE17913, GSE19667,
GSE3320, GSE5056, GSE5057, GSE5059). Using the 25-gene LFS derived from
MetaCorrelator, two genes, 7SPAN13and NR3CZ, were found to be differentially expressed
in smokers compared to non-smokers with p value < 0.01. The tetraspanin family has been
shown to be critical to normal lung function, and NR3CZhas been implicated in lung
morphogenesis.23 These results demonstrate the flexibilty of MetaCorrelator to highlight
patterns of biological relevance in conjunction with two-class analysis.

4. Discussion

Availability of large amounts of heterogeneous molecular data has necessitated the
development of new frameworks to identify patterns and extract new information from these
data. We have repeatedly shown the effectiveness of our multi-cohort analysis framework for
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diagnostic and therapeutic applications across a broad spectrum of human diseases.>-10
However, this framework is limited to analysis of case-control experiments, and is not
suitable for analysis of one-class quantitative phenotypes. Here, we extend our previously
established framework to include analysis of gene expression with quantitative quantitative.

Correlation analysis has been a powerful tool for decades, but at this time there does not
exist a single framework that can take a collection of datasets and different quantitative
phenotypes as input and produce a correlated gene expression signature. There are currently
available packages in R, such as metacor, that can compute Fisher's Z values from
correlation coefficients; however, MetaCorrelator is uniquely positioned to take multiple
datasets as input and correlate gene expression with heterogeneous phenotypes. This is
especially relevant in the realm of human disease; methods that are able to integrate different
but related organ function phenotypes, such as FEV and GOLD stage, would allow for more
powerful analysis that could identify new markers for disease progression.

Our method enables the identification of a gene signature across tissues, thus highlighting
the globally relevant differentially expressed genes. By integrating PBMC and lung tissue
data, we were able to distill out a gene signature that represents the global differential gene
expression of COPD progression. These results emphasize the advantage of integrating
multiple tissues. The genes in our signature suggest the importance of inflammation (7LR2,
FKBP5) as well as cell adhesion (7SPAN13, UXSI), which demonstrates that our
framework is able to recapitulate known biology. By integrating the MetaCorrelator
framework with established two-class analysis, we can select genes of particular interest. For
instance, after identifying differentially expressed genes between smokers and non-smokers,
we could further focus on two genes that MetaCorrelator had identified as correlating with
COPD progression. MetaCorrelator can be used to correlate any continuous disease
phenotype with disease progression. For example, one could identify a gene signature that
correlates with prostate specific antigen, a marker of prostate cancer progression.
Alternatively, one could correlate a gene signature with ejection fraction of the heart. In
summary, MetaCorrelator provides a framework that can correlate whole genome
transcriptome across multiple independent datasets with a quantitative phenotype, which in
turn can be further explored in case-control studies using the multi-cohort analysis
framework.

5. Conclusion

In this study we developed a meta-analysis framework that can integrate multiple gene
expression datasets to identify gene signatures that correlate with quantitative phenotypes.
Importantly, this method uses the inherent heterogeneity present in multiple cohorts to
identify consistently correlated genes and is applicable to datasets that have a single class of
sample. Our method can be used in conjunction with other methods that separate samples by
class, for example, in order to further differentiate a single group of patients. We applied our
method to COPD patients and extracted a 25-gene signature that correlated with lung
function in three datasets (two in tissue, one in PBMCs). We then successfully validated our
gene signature on three independent datasets. We demonstrated the ability to identify a
robust signature with heterogeneous data and phenotypes by correlating the tissue datasets
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with increasing GOLD stage, and the PBMC dataset with decreasing FEV. Our results
suggest an increasing immune response in later stage COPD patients, which has been noted
by others, as well as point to a under-appreciated role in sulfur-related oxidative stress. In
summary, MetaCorrelator provides a powerful framework to extract a gene signature that is
linked to disease progression.
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Fig. 1.

Schematic Overview of MetaCorrelator. Each dataset is correlated with a continuous
phenotype to compute correlation coefficients (example: Pearson's correlation coefficients).
These coefficents are then combined into a summary Fisher's Z effect size. A significance
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threshold is determined to produce the final list of differentially expressed genes.
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Functional categories enriched in genes identified by MetaCorrelator
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Lung Function Scores in training cohorts: (A) Violin plots of Lung Function Scores (LFS) in
patients distinguished by progressively increasing GOLD stage from GSE47460. (B) Same
as (A) but for dataset GSE69818. (C) Correlation plot between LFS and FEV scores in
individual patients from GSE47460. (D) Same as (C) but for dataset GSE76705.
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Fig. 4.

Lung Function Scores in validation cohorts: (A) Violin plots of Lung Function Scores (LFS)
in patients distinguished by progressively increasing GOLD stage from GSE38974. (B)
Same as (A) but for dataset GSE11906. (C) Correlation plot between LFS and FEV scores in
individual patients from GSE42057. (D) Forest plot representing Fisher's Z values for each
of the validation datasets. Squares indicate individual dataset Fisher's Z, with square-size
proportional to sample size and horizontal lines indicating individual standard errors
(GSE42507 was reverted in sign because of the inverse relationship between GOLD score
and FEV). Rhombus indicates summary Fisher's Z with width corresponding to summary
standard error.

Pac Symp Biocomput. Author manuscript; available in PMC 2017 June 09.




1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Scott et al.
Table 1
Datasets Used in Discovery of Lung Function Signature
GEOID Tissue Phenotype Cases
GSE47460 Lung Biopsy GOLD Stage and FEV 75
GSE69818  Lung Biopsy GOLD Stage 70
GSE76705 PBMCs FEV 229
3 Datasets 2 Tissues 324
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Datasets Used to Validate L ung Function Signature

Scott et al.
GEOID Tissue Phenotype  Cases
GSE42057 PBMCs FEV 136
GSE38974 Lung Biopsy GOLD Stage 32
GSE11906 Lung Biopsy GOLD Stage 150
3 Datasets 2 Tissues 318
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