Another important limitation with this, and the vast majority
of studies of air pollution on health outcomes, is that exposure
assessments based on outdoor air pollution measures remain largely
circumstantial. In general, people spend the majority of their
time indoors, and air pollution components and concentrations
can vary widely as the result of individual behaviors and
microenvironmental exposures, regardless of ambient levels (11). Study
designs such as those used here can shed light on whether ambient air
pollution is associated generally with incident asthma, but cannot
determine actual individual exposure levels and their influence on
health outcomes (12). However, for the research question at hand, the
study design remains strong in that it would be difficult to argue that
their results are from exposures other than the Great Smog.

The authors’ use of a single extraordinary exposure is rather
clever in that it removes many potentially confounding variables,
but also opens up a question of generalizability. Thankfully,
most infants will never be exposed to the levels of pollution
experienced in London in 1952. However, many in underresourced
locations and urban environments will experience continual high
levels of ambient pollution outdoors and indoors, and some will
experience seasonal inversions with high particulate levels over the
course of their childhood. With the increasing evidence from this
study and others that ambient pollution in early childhood is a
contributing factor in incident asthma, research into the complexities
of varying pollution exposure levels, chemical components, duration,
and their influence during key developmental windows in early
childhood should be priority areas of study.

Author disclosures are available with the text of this article at
www.atsjournals.org.
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Lost in Trans-IL-6 Signaling: Alveolar Type Il Cell Death in Emphysema

In this issue of the Journal, Ruwanpura and colleagues (pp. 1494-
1505) identify IL-6 trans-signaling (IL-6 TS; Figure 1) as a potential
therapeutic target to inhibit alveolar epithelial cell death and preserve
lung parenchymal structure and function (1). The substantial impact
of these findings relies on the use of complementary transgenic
and pharmacological approaches to inhibit IL-6 TS in animal
models, combined with fingerprinting similar patterns of signaling
molecules in human lungs with emphysema. The study does not
exclude a contribution of classical IL-6 signaling to emphysema
development; rather, it focuses on the proapoptotic effects of gp130 gain
of function either by transgenic overexpression or in the context of acute
and subchronic (3 mo) cigarette smoke exposure. Either soluble
gp130 (sgp130) overexpression or administration of sgp130-Fc
protein prevented airspace enlargement and improved static lung
compliance in the two murine models studied. The interest in targeting
IL-6 TS in emphysema is not surprising, given that this approach has
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been quite successful in reducing chronic inflammation in murine
models of rheumatologic, central nervous system, allergic, and
gastrointestinal disease (2).

The sgp130 augmentation approaches employed by Ruwanpura
and colleagues to attenuate IL-6 TS activation in the lung had an
impressive inhibitory effect on apoptosis; in particular, preventing
alveolar type II (ATII) cell loss. This finding, from the group that first
identified an association of IL-6 TS with airspace remodeling (3),
supports the now well-accepted notion that alveolar cell fitness and
survival are critically important to the maintenance of the integrity of
alveolar structures (4). The demonstration that IL-6 TS was necessary
and sufficient for inducing ATII cell apoptosis and an emphysema-like
phenotype solidifies the notion that unrepaired loss of lung epithelial
cells is associated with airspace destruction and increased lung
compliance. These results add IL-6 TS to the list of several mechanisms,
such as those mediated by innate antiviral immune responses (5) or
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Figure 1. Schematic of IL-6 trans-signaling pathway involvement in lung
cell apoptosis and emphysema-like disease. Ruwanpura and colleagues (1)
have demonstrated that inhibitors of IL-6 trans-signaling ameliorate
apoptosis and emphysema-like phenotype induced by either cigarette
smoke or by transgenic overexpression of gp130. These effects were
associated with increased mechanistic target of rapamycin complex 1
(MTORCH1) signaling and were inhibited by rapamycin. ATl = alveolar type Il
cells; MGK = megakaryocytes; slL-6R = soluble IL-6 receptor; sgp130 =
soluble gp130; TACE = ADAM 17.

by augmentation of Fas-Fas ligand interaction (6), that trigger lung
epithelial cell death associated with airspace enlargement. The role of
IL-6 TS in initiating cell death of other structural lung parenchymal
cells essential to alveolar maintenance, such as microvascular
endothelial cells, remains to be explored. Although it would be alluring
to infer that lung endothelial cells, which also express gp130, respond to
IL-6 TS similar to ATII, reports point to potential cell-type specific
responses. As an example, sgp130-Fc, rather than protecting from
apoptosis, actually sensitized T cells to undergo cell death and improved
outcomes in a murine model of experimental colitis (7). Although
inhibition of inflammation was not noted as a main effect of IL-6 TS in
the lung parenchyma in Ruwanpura and colleagues’ work, the effect of
IL-6 TS on inflammatory cell function in emphysema warrants further
investigation. Furthermore, given the pleiotropic signaling induced by
IL-6 TS (8-10), the activation of this pathway may extend beyond
apoptosis and inflammatory cell modulation to other pathobiological
mechanisms of importance to emphysema development such as
senescence, mucus hypersecretion, and autoimmunity. Evidence of
involvement of IL-6 TS in these processes in the lung will only magnify
the interest to targeting this pathway to improve chronic obstructive
pulmonary disease and emphysema outcomes.

In addition to the high potential for translation to bedside, the
work by Ruwanpura and colleagues pointed to several interesting
signaling responses to IL-6 TS activation. The finding that IL-6 TS
activated ADAM-17 (TACE), a protease that cleaves gp130 to generate
the ectodomain inhibitory molecule sgp130, indicated a potential
autocrine negative feedback loop triggered by IL-6 TS. However,
TACE, by cleaving IL-6 receptor (11), whose expression is restricted
to only several cell types, including leukocytes, can also shed soluble
IL-6 receptor, which serves to activate IL-6 TS, thus engaging a
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paracrine/endocrine positive feedback loop. Further, TACE has multiple
other membrane receptor targets (12) (tumor necrosis factor «,
epidermal growth factor receptor, selectins, or Fas ligand, among
others) that may contribute to the effects reported here. The relative
contribution, magnitude, and kinetics of these responses should be
considered to better distinguish pathogenic from compensatory
responses of lung cells facing chronic exposure to cigarette smoking,

Also intriguing was the fact that IL-6 TS activation triggered
mechanistic target of rapamycin and its downstream ribosomal
protein S6 kinase (S6) signaling, which was linked to apoptosis of
ATTI cells. The effect of this typically prosurvival signaling pathway on
lung apoptosis and remodeling was mechanistically interrogated
using rapamycin, a classical inhibitor of mechanistic target of
rapamycin complex 1 (MTORC1). In mice exposed to cigarette
smoking or to IL-6 TS hyperactivation, Rapamycin was protective,
inhibiting apoptosis and airspace enlargement, simultaneously with the
predictable inhibition on S6 phosphorylation. Although at first glance
straightforward, the interpretation of these results in the context of other
published reports reflects the intricate nature of the effects of rapamycin
on normal and diseased lungs. Apart from indirect effects on MTORC2,
the effects of rapamycin are highly dependent on the biological
context of MTORC1 activation, the magnitude and duration of activation,
and the downstream effectors engaged. In addition to protein synthesis
and proliferation typically associated with survival, this pathway
inhibits autophagy and regulates metabolic and mitochondrial functions,
as well as aging (13). This complex involvement reconciles the findings
that at certain doses, rapamycin had beneficial antiapoptotic effects
during IL-6 TS hyperactivation in relatively older (6 mo of age) mice
reported here, while being previously reported proapoptotic in otherwise
healthy mice or antiinflammatory during acute cigarette smoke exposure
of younger (3 mo of age) mice (14). In addition, in the absence of
direct interrogation, the involvement of S6 activation in lung cell
apoptosis remains speculative. Typically engaged by MTORC, along
with 4E-binding protein 1, to stimulate protein synthesis, the activity of
S6 in the lung may be contributed by surviving cells that withstand
apoptotic stress or by those involved in repair. For example, compared
with cells from nonsmokers, cultured primary microvascular endothelial
cells from smokers exhibited significant up-regulation of signaling
molecules associated with survival and had adapted to better withstand
apoptotic stimuli (15). Further, given a recent report of involvement
in lung carcinogenesis (16), it is conceivable that prolonged IL-6
TS-induced signaling may lead to both apoptosis and inappropriate cell
proliferation, with potential relevance to the increased lung cancer risk in
those suffering from emphysema.

Notwithstanding validation in other preclinical models, this
is the first report to mechanistically link emphysema to IL-6
TS and offer a promising strategy to ameliorate apoptosis in
emphysematous lungs by using IL-6 TS inhibitors.
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Intensive Care Unit Physician Discretion in Pediatric Critical Care

Polarized, Evaluated, and Reframed

Critical care physicians lead intensive care unit (ICU) care.
Experience and previous literature suggest a dose-response effect
of ICU physician involvement on patient-relevant outcomes.
Greater doses of this highly trained, but finite, healthcare resource
can improve outcomes (1, 2). This observation underpins
recommendations of “high-intensity” ICU physician staffing (3),
has been challenged in previous large adult studies (4-6), and
has led to concerns about the ICU physician workforce, reduced
trainee autonomy, and compromised training (7, 8).

In this issue of the Journal, Gupta and colleagues (pp. 1506-
1513) report their comprehensive comparison of continuous
(mandated) ICU physician presence with self-regulated
(discretionary) ICU physician presence using prospective data from
455,607 patients younger than 18 years of age from 125 hospitals in
the Virtual Pediatric ICU dataset (9). The 58.5% of patients cared
for in the 60 ICUs with mandated continuous ICU physician
presence had lower ICU mortality (odds ratio [OR], 0.52) and
in-ICU cardiac arrest (OR, 0.73) and shorter durations of ICU
stay (0.51 d) and mechanical ventilation (0.68 d) (9). These are
important, credible, and provocative findings, with personal and
professional implications for ICU physicians.

The study used an extremely large, multi-ICU dataset. The
main results are from comprehensive logistic and linear regression
models that accounted for reasonable patient- and ICU-level factors.
The full models are accompanied by five sets of predominantly
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concordant sensitivity analyses and stratified subgroup analyses
that demonstrate internal validity. Gupta and colleagues” work
demonstrates the art and science of statistical comparison,
includes an unfamiliar abundance of statistical power for many
in pediatric critical care, and provides important insights beyond
the main analyses (9).

First, raw ICU mortality over the 2009 to 2014 period was
2.4%. This is nearly 10-fold lower than reported in some adult ICUs, is
lower than earlier decades in pediatric ICUs (PICUs) (10), and
highlights the challenges of continued improvement. Large-scale
work such as this is required to guide policy and practice. As ICU
mortality approaches the zero asymptote, the link between survival
and quality of care will require more nuanced understanding (11).
Meanwhile, zero-seeking statistical models will continue to identify
factors associated with lower ICU mortality. Gupta and colleagues’
inclusion of not-for-resuscitation status at ICU discharge is an
important initial acknowledgment of this emerging methodologic
challenge (9). At some point, however, less may not be more.

Second, unadjusted mortality was 0.2% lower in favor of
mandated ICU physician presence. This statistically significant
absolute effect is smaller than an individual clinician may be
able to discern; however, it is aligned with the direction of effects
Gupta and colleagues observed in the incidence of cardiac arrest
and durations of ICU therapies and constitutes an 8% relative
risk reduction (9). Together, these findings lead us to seek
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