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Abstract

In the past five decades, alpha-1 antitrypsin deficiency has

been the only known genetic cause of emphysema, yet it explains
the genetics in only 1-2% of severe cases. Recently, mutations

in telomerase genes were found to induce susceptibility to
young-onset, severe, and familial emphysema at a frequency
comparable to that of alpha-1 antitrypsin deficiency. Telomerase
mutation carriers with emphysema report a family history of
idiopathic pulmonary fibrosis, and both lung phenotypes

show autosomal dominant inheritance within families. The

data so far point to a strong gene-environment interaction

that determines the lung disease type. In never-smokers,
pulmonary fibrosis predominates, while smokers,

especially females, are at risk for developing emphysema

alone or in combination with pulmonary fibrosis. The
telomere-mediated emphysema phenotype appears to have
clinically recognizable features that are distinct from alpha-1
antitrypsin deficiency, and patients are prone to developing
short telomere syndrome comorbidities that influence
clinical outcomes. In animal models, telomere dysfunction
causes alveolar epithelial stem cell senescence, which is
sufficient to drive lung remodeling and recruit inflammation.
Here, we review the implications of these discoveries

for understanding emphysema biology as well as for

patient care.
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Emphysema is estimated to affect three

to four million individuals in the United
States alone; it is a leading cause of
disability and mortality worldwide (1-3).
Therapies that reverse the airspace
destruction characteristic of emphysema
are lacking. In the vast majority of
patients, cigarette smoke is the culprit,
highlighting the importance of prevention
efforts (1, 4). In some cases, even after
minimal cigarette smoke exposure, severe
emphysema develops at a young age, as
early as the fifth decade (5, 6). Several
pieces of evidence support a genetic

etiology for these cases (7). For example,
in addition to severe, young-onset
disease, emphysema may cluster in
families (5, 6). In familial cases, airspace
destruction is frequently the predominant
phenotype and occurs in the absence of
significant airway obstruction, suggesting
that emphysema may be a definable
heritable trait that is separable from
chronic obstructive pulmonary disease
(COPD) (5-7). This article reviews the
emerging role of telomerase and telomere
abnormalities in driving emphysema
susceptibility.
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Alpha-1 Antitrypsin Deficiency
Explains Only a Small Subset
of Extreme Emphysema
Phenotypes

Since Laurel and Eriksson published their
landmark paper in 1963, and until recently,
alpha-1 antitrypsin deficiency has been
the only known genetic cause of familial
emphysema. It is estimated to explain

the susceptibility in approximately 1-2%
of severe cases (8). Mutations in the
SERPINAI gene cause abnormally low
alpha-1 antitrypsin protein levels and an
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autosomal recessive form of emphysema (9).
The pathogenesis of lung disease in these
patients is attributed to protease—antiprotease
imbalance, predominantly due to unchecked
activity of neutrophil elastase, which is
neutralized by alpha-1 antitrypsin (9).

This imbalance, in turn, is thought to
promote inflammation and airspace
destruction. The protease-antiprotease
imbalance paradigm has been at the
heart of understanding emphysema
biology over the past five decades (9, 10).
It has given impetus to the idea that
inflammation is a primary driver of
cigarette smoke-induced emphysema,
and as such it has focused therapeutic efforts
on testing the role of antiinflammatory
medications (10). However, the clinical
benefit from this approach has been
limited (4). In addition, because
alpha-1 antitrypsin deficiency explains
only a small subset of patients with
severe familial emphysema, other
yet-to-be discovered factors have been
hypothesized (7).

Telomere Shortening Causes
Premature Aging Disease
Phenotypes

Telomerase is the specialized enzyme that
synthesizes telomeres onto chromosome
ends (11, 12). Telomere length shortens with
cell division, and abnormally short telomeres
signal senescence and apoptosis (reviewed
in Reference 13). The role of telomere
maintenance defects in mediating age-
related disease has become evident in recent
years through studies of human telomerase
mutation carriers (13). These individuals
have abnormally short telomere length for
their age (14), and develop a disease
spectrum known as the short telomere
syndromes (15). Among these phenotypes,
lung disease, both idiopathic pulmonary
fibrosis (IPF) and emphysema, is most
common, comprising an estimated 90%

of short telomere syndrome presentations
in adults (15, 16). Emphysema and
pulmonary fibrosis cluster with other
features of premature aging, including
early graying, osteoporosis, liver disease,
a predisposition to bone marrow failure,
and infertility (15, 17). There is also an
increased incidence of myelodysplastic
syndrome and acute myeloid leukemia in
patients with short telomere syndromes
(18-20).
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Telomerase and Telomere
Gene Mutations Explain the
Genetic Basis in One-Third
of Families with Pulmonary
Fibrosis

The role of telomerase genetics in familial
lung disease came first from a study of a
three-generation family that was found

to carry a deleterious mutation in the
telomerase reverse transcriptase gene,
TERT (21). In this family, the IPF phenotype
was most common (21). Mutations in TERT
are now recognized to be the most prevalent
cause of familial pulmonary fibrosis (16).
To date, mutations in seven telomerase and
telomere genes have been shown to cause
familial lung disease; together, they explain
one-third of the inheritance in familial
pulmonary fibrosis. They include genes that
encode the essential telomerase components:
TERT, the catalytic component, and TR,
the telomerase RNA (21-23). Three other
genes when mutated disrupt TR stability,
processing, and biogenesis: DKCI, PARN,
and NAFI, respectively (24-27). Mutations
in TINF2, a telomere-binding protein, cause
telomere shortening via a dominant negative
mechanism (28), while mutations in RTELI,
which encodes a DNA helicase, disturb
telomere length through mechanisms that
are still incompletely understood (29).
Abnormally short telomere length is also
constitutional in at least half of individuals
with sporadic IPF (30, 31), suggesting that it
is a pervasive contributor to disease risk,
even beyond familial cases (30).

Although IPF was the first lung disease
to be causally linked to telomerase mutations,
the connection to emphysema risk was
first documented in mouse models (32).
Telomerase-null mice with short telomeres
share features of the human disease such
as bone marrow failure (13), but do not
develop de novo lung disease (32). However,
after chronic exposure to cigarette smoke,
they develop airspace destruction that
recapitulates all the hallmarks of
emphysema (32). Concurrent with this
observation, severe young-onset
emphysema was reported in two sisters
who carried a deleterious mutation in the
TR gene (32). Both of them had been
suspected to have alpha-1 antitrypsin
deficiency based on their extreme phenotype,
but their protein levels were intact. These
early observations suggested that telomerase
mutations and short telomeres may cause

susceptibility to cigarette smoke-induced
emphysema in humans.

Telomerase Mutations
Predispose to Severe,
Young-Onset, and Familial
Forms of Emphysema

The prevalence of telomerase mutations
in patients with early-onset severe
emphysema was recently reported to

be comparable to alpha-1 antitrypsin
deficiency across two cohorts (33). In the
COPDGene and Lung Health Studies, the
frequency of deleterious TERT mutations
was 1% in severe, early-onset disease.
Severe, early-onset disease was defined as
Global Initiative for Chronic Obstructive
Lung Disease (GOLD) stage 3 and 4
that occurs in individuals younger

than 65 years; the COPDGene study
included additional radiographic criteria
for emphysema (33). Some of

the mutations had been previously
reported in families with pulmonary
fibrosis (33). To date, three telomerase
genes—TERT, TR, and NAF1—have
been linked to familial emphysema risk
(26, 32, 33). Notably, the pedigrees of
mutation carriers show that their
relatives, who also carry mutations,

have pulmonary fibrosis (Figure 1A)
(33). A unique pattern emerges when
examining the lung phenotypes closely.
Within a single family, never-smokers
develop pulmonary fibrosis, while
mutation carriers who are smokers are
at risk for emphysema (Figure 1) (33).
This pattern highlights a unique
gene—environment interaction in which
the lung disease phenotype is determined
by an environmental exposure in the
presence of the genetically determined
short telomere defect (Figure 1B).
Notably, the gene-environment
interaction seems to be particularly
evident in females (33). Among the
small series of patients with telomerase-
associated emphysema heretofore
reported, 90% are female even

though the populations studied

have been equally divided between males
and females (33). Interestingly, this
female predominance of severe disease
among telomerase mutation carriers
recapitulates a pattern previously
documented in a Boston-based study

of familial COPD in which 80% of
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Figure 1. Emphysema and pulmonary fibrosis show autosomal dominant inheritance in families with mutant telomerase-telomere genes.

(A) Typical pedigree of a proband carrying a telomerase mutation who presents with early-onset emphysema (arrow). Her family history

shows relatives with pulmonary fibrosis and combined pulmonary fibrosis—emphysema who also carry mutations (TERT, TR, or NAF1 mutations),
as denoted by the asterisks. Squares refer to men and circles to women. The key above refers to the lung disease phenotype. (B) Telogram shows
the telomere lengths of individuals in pedigree in A plotted relative to a normal distribution of telomere length with the percentiles as shown.

probands younger than 53 years were
female (6, 34). Importantly, the
female-predominant susceptibility

in telomerase mutation carriers
contrasts with the predilection

to disease manifesting earlier and more
severely in men with alpha-1 antitrypsin
deficiency (35). Together, these
observations suggest that pulmonary
fibrosis and emphysema, in some cases,
share a single genetic etiology, with

the primary phenotype being highly
influenced by environmental factors as
well as sex differences (Figure 1) (33).

The Short Telomere-mediated
Emphysema Phenotype May
Be Clinically Recognizable

The heretofore published observations
suggest that the telomere-mediated
emphysema phenotype may also have
clinically distinguishing features. Table 1
summarizes the distinguishing clinical
and biological differences between the
two known genetic forms of emphysema.
For example, the airspace destruction in
telomerase mutation carriers with
emphysema has a predilection to the lung’s

apex and is associated with an increased
risk of pneumothorax (33). One-third of
the reported telomerase mutation carriers
with emphysema had a history of
pneumothorax, a rate that is significantly
higher rate than the overall rate for COPD
(33) and that could reflect the apical
predilection of their disease. Patients with
emphysema with telomerase mutations,
perhaps not surprisingly, also show short
telomere syndrome features such as liver
disease and bone marrow failure (26, 33).
The emphysema arising in telomerase

mutation carriers may thus represent a
subphenotype that is clinically recognizable.
Larger studies will be needed to define the
natural history of this genetic form.

Telomere Dysfunction
Causes Alveolar Stem
Cell Senescence

What are the mechanisms underlying the
telomere-mediated lung disease phenotype?
Studies in telomerase knockout mice suggest

Table 1. Comparison of emphysema caused by alpha-1 antitrypsin deficiency and

short telomeres

Alpha-1 Antitrypsin

Deficiency
Inheritance Autosomal recessive
Disease gene(s) SERPINA1
% of severe emphysema  1-2%

Demographic Male > female

Lung disease pattern

Co-occurrence with IPF No
Pneumothorax risk Baseline
Link to aging biology No
Mechanism

Lower > upper lobe

Protease—antiprotease
imbalance, inflammation

Telomerase Deficiency and
Telomere Shortening

Autosomal dominant

TERT, TR, NAF1

1%

Female > male

Upper > lower lobe

Yes

Increased

Yes

Stem cell senescence,
regenerative defect

Definition of abbreviation: |IPF = idiopathic pulmonary fibrosis.
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that abnormally short telomeres lower the
threshold to genotoxic stress from cigarette
smoke (32). Supporting this model, only
telomerase-null mice with short telomeres
develop emphysema, while telomerase-null
mice with long telomeres are protected
(32). The short telomere-dependent
defect is intrinsic to the lung, as normal
bone marrow cells transplanted before
cigarette smoke exposure are not
protective (32). The experimental data
support a model of “two-hits,” in which
the first is the genetically determined
short telomere length and the second is
an acquired cigarette smoke-induced
damage (32, 36). The additive effect
provokes the telomere-mediated emphysema
phenotype.

One candidate cell type in which the
additive damage accumulates in the alveolar
space is the alveolar epithelial stem cell.

In that milieu, at least a subset of type

2 alveolar epithelial cells (AEC2s) function
as a facultative progenitor for new AEC2s as
well as type 1 cells (37). The role of stem
cell failure in lung disease susceptibility has
been addressed experimentally (38).
Co-culture experiments showed an
AEC2-intrinsic regenerative defect in
which only AEC2s with short telomeres,
not mesenchymal cells, fail to support
alveolar organoid formation. When
telomere dysfunction is induced in vivo by
deletion of the telomere-protective protein
Trf2 specifically in AEC2s, the resultant
DNA damage response induces senescence
and consequent lung remodeling (38).
Remarkably, the epithelial-derived DNA
damage signal is sufficient to recruit
macrophages and T cells, an inflammatory
response that resembles what is seen in
smokers and in patients with COPD (38).
The current working model that synthesizes
the findings of these studies is that

short telomere-mediated stem cell
senescence upregulates the expression of
proinflammatory cytokines, which in turn
drives inflammation (38). In effect, the
inflammation in this form of emphysema
is a secondary bystander caused by an

upstream defect in stem cell senescence
rather than a primary driver per se (38).
Such a paradigm predicts a modest
benefit for antiinflammatory approaches
in subsets of patients in whom telomere
shortening is the primary driver of
disease.

Implications for Diagnostic
and Patient Care Decisions

In addition to implications for emphysema
biology, the link between telomerase and
emphysema genetics has relevance for
patient care, since mutation carriers have
recurrent, well-described comorbidities.
For example, patients with short telomere
syndromes have an increased incidence
of hepatopulmonary syndrome, which
causes hypoxia because of intrapulmonary
shunting (39). Distinguishing the etiology
of dyspnea and hypoxia in patients with
emphysema is obviously critical for
interpreting pulmonary function studies
and for assessing the severity of
parenchymal lung disease (39). Patients
with telomere-mediated lung disease are
also sensitive to ionizing radiation and
myelosuppressive medications (40, 41).
In the lung transplant setting, telomerase
mutation carriers have a higher rate of
infectious complications, and almost
invariably they require attenuation of
immunosuppressive regimens because
of their limited bone marrow reserves (41).
Beyond the immediate clinical
implications, the genetic link between
short telomeres and emphysema risk
presents fundamental new considerations
for the classification of lung disease.
Although considered separate physiologic
and radiographic clinical processes, the
recent findings from our group highlight a
single shared etiology for some cases of
emphysema and pulmonary fibrosis.
Rather than two entities, they may, in
patients with short telomeres, represent
manifestations of a single molecular
process that diverges phenotypically

because of environmental exposures and
sex differences.

Finally, the link between telomere
dysfunction and stem cell senescence
provides a novel context within which to
understand emphysema biology beyond
alpha-1 antitryspin deficiency. Uniquely,
this mechanism provides a causal link
between disturbances in a biological
mechanism well-established to promote
cellular aging and emphysema risk. The
significance of telomere shortening beyond
the subset heretofore genetically identified
remains to be determined. Since multiple
genetic mechanisms influence telomere
length, the full proportion of disease directly
linked to telomere shortening may be
greater than what early studies have so
far estimated. The role beyond Mendelian
genetic forms also needs to be assessed.
A few studies have examined telomere
length in populations of patients with
COPD. They have consistently documented
a reproducible shortening of telomere
length in COPD, but the effect size was
variable, and these studies did not examine
extreme COPD phenotypes (42-45). The
recent discoveries indicate that telomere
shortening, within certain abnormal
thresholds relative to healthy populations,
plays a causal role in mediating
susceptibility. Important for patient care
paradigms and for future research in this
area, the short telomere subphenotype is
recognizable. Its pathogenesis is linked to
a new paradigm of stem cell failure.
However large the contribution of the
short telomere mechanism will end up
being in emphysema genetics, its
discovery will undoubtedly facilitate the
discovery of other yet-to-be identified
subphenotypes within the heterogeneous
entity of COPD. W
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