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Abstract

Emphysema is one of the hallmarks of Chronic Obstructive Pulmonary Disorder (COPD), a 

devastating lung disease often caused by smoking. Emphysema appears on Computed 

Tomography (CT) scans as a variety of textures that correlate with disease subtypes. It has been 

shown that the disease subtypes and textures are linked to physiological indicators and prognosis, 

although neither is well characterized clinically. Most previous computational approaches to 

modeling emphysema imaging data have focused on supervised classification of lung textures in 

patches of CT scans. In this work, we describe a generative model that jointly captures 

heterogeneity of disease subtypes and of the patient population. We also describe a corresponding 

inference algorithm that simultaneously discovers disease subtypes and population structure in an 

unsupervised manner. This approach enables us to create image-based descriptors of emphysema 

beyond those that can be identified through manual labeling of currently defined phenotypes. By 

applying the resulting algorithm to a large data set, we identify groups of patients and disease 

subtypes that correlate with distinct physiological indicators.

1 Introduction

Chronic Obstructive Pulmonary Disorder (COPD) is a chronic lung disease characterized by 

poor airflow. One of the hallmarks of COPD is emphysema, i.e., destruction of lung alveoli 

and permanent enlargement of airspaces [1]. Several subtypes of emphysema have been 

identified and are commonly used for diagnosis and prediction of patient prognosis [2]. The 

disease subtypes have also been shown to correlate with genetic data and physiological 

indicators [1].

Emphysema appears on Computed Tomography (CT) scans as a variety of textures which 

are associated with clinically defined disease subtypes. However, there is substantial intra-

reader and inter-reader variability when identifying subtypes in CT images [2]. 

Computational approaches to the classification of textures in CT scans promise to identify 

subtle textural differences beyond those that are visible to human readers. This nuanced 

information can be harnessed to produce well-defined, reproducible disease subtypes. 
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Beyond fully 3D texture analysis, the additional benefits of computational approaches 

include the possibility of providing novel insights into the disease once the heterogeneity of 

the patient population is characterized.

We present a method that simultaneously detects distinct patient clusters and disease 

subtypes. The algorithm is based on a generative model that captures the underlying 

hypothesis about population structure and distributions of disease subtypes. We assume that 

each cluster of patients is associated with a distinct distribution of disease subtypes, which 

are based on features extracted from Computed Tomography scans [3]. We derive an 

inference algorithm that is based on variational Expectation-Maximization [4]. We apply the 

algorithm to a data set of 2457 thoracic CT scans and observe notable associations between 

physiological indicators and patient clusters and disease subtypes identified by the method. 

Further, we examine associations in simplified models that omit either patient clusters or 

disease subtypes to demonstrate the clinical advantage of the hierarchical model that 

includes both patient clusters and disease subtypes. We compare associations that are 

identified in the generative model to those found in a model where disease subtypes are 

discovered in a supervised manner.

Our approach departs from the majority of prior research that has focused on supervised 

classification of patches extracted from CT scans based on examples labeled by clinical 

experts [5,6]. An exception is a method for joint modeling of imaging and genetic data in the 

same clinical population [7]. By contrast, our work models only imaging data, but we 

explicitly detect and characterize homogeneous sub-populations defined by similar groups of 

disease subtypes, which opens directions for future analysis. An additional work similar to 

ours is found in [8], which discovers disease subtypes in an unsupervised manner. However, 

it was conducted on a smaller data set and does not model patient clusters.

2 Model

Our generative model relies on the assumption that there are K underlying patient clusters, 

each characterized by a different distribution of disease subtypes. We use N to denote the 

total number of CT scans in the study. When processed, each scan is represented by R non-

overlapping patches. Let Snr be the patch around voxel r in patient n. Patches are entirely 

contained within a lung. We apply a chosen feature extraction method to Snr to construct a 

feature vector Fnr. The feature vectors {Fnr} serve as the input into our algorithm. In our 

experiments we use a combination of Grey Level Co-Occurrence Matrix (GLCM) [6] 

features and intensity histograms as feature descriptors which are both extracted from three-

dimensional patches; the modeling approach readily accepts a broad range of descriptors.

The distribution of cluster assignments for any patient in the study is parametrized by π and 

is represented by a vector Cn for patient n. Cnk = 1 if patient n belongs to cluster k; Cnk = 0 

otherwise. For all patients in cluster k the distribution of disease subtypes is parametrized by 

αk and is represented by Lnr for patch r in patient n. Each patch belongs to one of S disease 

subtypes. Lnrs = 1 if the patch belongs to subtype s; Lnrs = 0 otherwise. We use a Gaussian 

distribution (·;μ, Σ) with mean μs and covariance Σs to model feature vectors in the disease 

subtype s. The generative model can be summarized as follows (Fig. 1):
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Each subject is viewed as an independent and identically distributed sample from this 

distribution, giving rise to the full likelihood model:

Inference Algorithm

We set the number of patient clusters K and the number of disease subtypes S. The observed 

data consists of feature vectors {Fnr} of N patients for whom we extracted features from R 
patches each. We aim to infer the most likely subtype Lnr for each patch r in patient n and 

the most likely cluster Cn for each patient n. Additionally we estimate the parameters: the 

mixing proportions of the patient clusters π, the mixing proportions of the disease subtypes 

{αk} for each patient cluster, and the means and variances {μs, Σs} of the image features for 

each disease subtype.

We perform inference via variational Expectation-Maximization (EM) [4]. Since computing 

expectation with respect to the full posterior distribution p(L, C|F, α, π, μ, Σ) is intractable 

due to coupling between C and L, we approximate the posterior distribution with a product 

of two categorical distributions:

(1)

where ψ and θ are variational parameters. This simplifies the computation of the 

expectations.

In the variational approach, we iteratively optimize a lower bound for ln(p(F; α, π, μ, Σ)) 

with respect to the parameters {πk, αks, μs, Σs, ψnk, θnrs}, This lower bound can be 

expressed as:

(2)
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We randomly initialize π and α, and then iterate between two steps until convergence. In the 

expectation step, we hold π, α,μ and Σ fixed and estimate the variational parameters ψ and 

θ to maximize the lower bound in Eq. (2) by iteratively applying the updates:

In the maximization step, we hold the values of ψ and θ fixed and estimate the model 

parameters, π, α, μ and Σ, that maximize the lower bound in Eq. (2) via the following update 

equations:

Once the parameter estimation process is complete, we determine Cn and Lnr by maximizing 

the approximate posterior distributions qC(Cn;ψn) and qL(Lnr;θnr) respectively.

3 Empirical Results

Data

We investigated the proposed method in the context of an imaging study that includes 2457 

thoracic CT scans of smokers diagnosed with COPD [1]. COPDGene is a multi-center study 

that acquired CT scans, genetic data, and physiological indicators in COPD patients. The 

data was collected by 21 sites across the United States. The volumetric CT scans were 

obtained at full inhalation and at relaxed exhalation. Image reconstruction produces sub-

millimeter slice thickness, and employs edge and smoothness enhancing filtering [1]. In 

addition, we have 1525 patches from the CT scans of 267 patients from this cohort that were 

manually assigned to clinically defined disease subtypes by an expert.

Parameter Selection

We randomly sampled 1000 non-overlapping patches from each patient. Emphysema has 

been described at the level of the secondary pulmonary lobules [5], therefore we select 

11×11×11 patches, which are approximately the size of this structure. There have been 

between four and 12 disease subtypes and between three and 10 patient clusters described in 

clinical literature [3,5]. We examine models with the number of patient clusters and disease 

subtypes in this range. We chose to further analyze the model with eight patient clusters and 
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six disease subtypes, as this was the largest number of disease subtypes and patient clusters 

for which each patient cluster and disease subtype received at least five percent probability.

Feature Vectors

We employed 11-dimensional feature vectors, which were chosen based on their 

classification accuracy on the labeled patches in our data set when using the features as a 

texture descriptor. The first nine dimensions correspond to Grey Level Co-Occurrence 

Matrix (GLCM) features [6]. GLCMs represent the joint probability distribution of intensity 

values of pixel pairs in a given patch [6]. To construct this descriptor, the image is 

discretized into eight gray levels. The value of the entry at position (i,j) in the GLCM 

captures the proportion of pixel pairs at a given offset with the corresponding intensity pair 

values for i,j ∊ {1…8}. To obtain a degree of rotational invariance, we averaged the GLCMs 

over uniformly distributed directions in three dimensions. We extracted nine features from 

these matrices to construct the descriptor: contrast, dissimilarity, homogeneity, correlation, 

entropy, energy, cluster shade, cluster prominence and maximum probability [6]. The next 

two dimensions of the feature vector correspond histogram bins of the voxel intensities 

within the patch.

3.1 Results

Disease Subtypes—Figure 2 illustrates example patches for each of the identified disease 

subtypes. A confusion matrix between the disease subtypes and the clinical labels is shown 

in Table 1. On the labeled portion of our data set, we found that 67% of patches that were 

labeled as clinically normal were placed in the same disease subtype by our algorithm, and 

clinically normal patches represent 64 % of all labeled patches within this disease subtype. 

Panlobular and paraseptal emphysema correspond to disease subtype 2 and subtype 3 

respectively. Our results suggest that centrilobular emphysema is a mixture of identified 

disease subtypes 1, 2, 3 and 4.

Spatial Contiguity—Emphysema clusters spatially in the lungs, as do the disease 

subtypes our algorithm identifies, as can be seen in Fig. 2. Each voxel in every lung was 

labeled independently based on the most likely subtype it would belong to under our model, 

without any enforced smoothing. We evaluated spatial contiguity by permutation testing [9]. 

For each voxel labeled by our algorithm we compute the proportion of neighboring voxels 

that belong to the same disease subtype. We average this value over the entire lung to obtain 

a spatial contiguity score. To obtain a distribution of the score under the null hypothesis we 

assigned voxels within the lungs to random disease subtypes 1000 times for each scan while 

maintaining the proportion of disease subtypes for each lung. We found that across all CT 

scans, the spatial contiguity scores produced by our algorithm are greater than the maximal 

values in the corresponding null distribution, corresponding to rejecting the null hypothesis 

with p < 0.001.

Associations with Physiological Indicators—We emphasize that the physiological 

indicators are not available to the algorithm when fitting the generative model to the image 

data and therefore provide an indirect validation of the model's clinical relevance. We 

quantify the associations between the structure detected by our method and physiological 
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indicators relevant to COPD: six minute walking distance, body mass index (BMI), forced 

vital capacity (FVC), forced expiratory volume (FEV), change in FVC value from treatment, 

the ratio between the FEV and FVC values, and the number of years smoked. We ran our 

algorithm on a randomly selected half of our scans and labeled the remaining scans based on 

the estimated model parameters. In particular, we assigned each patient to the most likely 

cluster and constructed an empirical distribution of disease subtypes for the patient based on 

the image patches. We repeated this procedure 100 times to estimate variability in the 

results.

We constructed three baseline models by eliminating patient clusters (K = 1) or disease 

subtypes (S = 1) or both (K = 1, S = 1). In the last case, we extract feature vectors from 

patches in each patient, and then average and normalize the feature vectors in each patient to 

produce a single patient-specific feature vector. A fourth baseline method was constructed 

by identifying the disease subtypes in a supervised manner. In this case, we utilized the same 

feature vectors as previously described, and performed classification with Support Vector 

Machines (SVMs) trained on the labeled patches to assign 1000 random patches in each 

lung to one of six clinically identified subtypes. We learned the patient clusters in an 

unsupervised manner as in the fully unsupervised model.

To quantify the associations between distributions of disease subtypes or the averaged 

normalized feature vector for a patient and a physiological indicator we perform linear 

regression. The strength of the correlation is quantified via the R2 value. The association 

between patient clusters and physiological indicators is quantified via the normalized mutual 

information score [10]. Different metrics are used to quantify the associations between 

patient clusters and proportions of disease subtypes or feature vectors, as the former is a 

discrete label while the last two are continuous quantities. These associations were identified 

on the portion of the data set that was not used to construct the model.

Figure 3 reports the associations for all models. These results demonstrate the advantage of 

modeling both patient clusters and disease subtypes. We observe that there is a stronger 

association between physiological indicators and patient clusters in the full model than in the 

model with only clusters. For all physiological indicators, there is a higher association with 

the distributions of disease subtypes in the full model than in the model with only disease 

subtypes. This demonstrates that modeling patient clusters produces more clinically relevant 

distributions of disease subtypes in each patient. The model without patient clusters or 

disease subtypes exhibits even weaker associations than a model with only disease subtypes.

Figure 3 demonstrates the advantage of discovering the disease subtypes in an unsupervised 

manner. In the full model, we obtain stronger associations than in the model where disease 

subtypes are found in a supervised manner. This is partially explained by the fact that feature 

selection was performed to optimize classification performance on supervised patches and 

additional structure is obtained in the unsupervised discovery of patient clusters and disease 

subtypes.
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4 Conclusions

We presented an unsupervised framework for the discovery of disease subtypes within 

emphysema and of patient clusters that are characterized by distinct distributions of such 

subtypes. We built a generative model that parametrizes the assignment of voxels in CT 

scans to disease subtypes and the assignment of patients to clusters. The associations 

between the patient clusters and physiological indicators and distributions of disease 

subtypes and physiological indicators illustrate the clinical relevance of the detected 

heterogeneity in the patient cohort.

The patient clusters that our model produces merit further exploration. It would be 

worthwhile to examine their correlations to genetic markers. An additional extension is to 

directly examine whether different patient clusters exhibit distinct clinical prognoses or 

respond differently to clinical interventions.
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Fig 1. 
Graphical representation of the generative model.
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Fig 2. 
Top two rows: example CT scans from each of the eight patient clusters identified by our 

algorithm. Colors correspond to disease subtypes identified by our algorithm. Bottom row: 

patches from the six disease subtypes identified by our algorithm. (Color figure online)
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Fig 3. 
Left: R2 value between the distributions of disease subtypes (1st, 3rd, and 4th model) or 

feature vectors (2nd model) and physiological indicators. Right: Normalized Mutual 

Information between patient clusters and physiological indicators.
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