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Abstract

Emphysema is one of the hallmarks of Chronic Obstructive Pulmonary Disorder (COPD), a
devastating lung disease often caused by smoking. Emphysema appears on Computed
Tomography (CT) scans as a variety of textures that correlate with disease subtypes. It has been
shown that the disease subtypes and textures are linked to physiological indicators and prognosis,
although neither is well characterized clinically. Most previous computational approaches to
modeling emphysema imaging data have focused on supervised classification of lung textures in
patches of CT scans. In this work, we describe a generative model that jointly captures
heterogeneity of disease subtypes and of the patient population. We also describe a corresponding
inference algorithm that simultaneously discovers disease subtypes and population structure in an
unsupervised manner. This approach enables us to create image-based descriptors of emphysema
beyond those that can be identified through manual labeling of currently defined phenotypes. By
applying the resulting algorithm to a large data set, we identify groups of patients and disease
subtypes that correlate with distinct physiological indicators.

1 Introduction

Chronic Obstructive Pulmonary Disorder (COPD) is a chronic lung disease characterized by
poor airflow. One of the hallmarks of COPD is emphysema, i.e., destruction of lung alveoli
and permanent enlargement of airspaces [1]. Several subtypes of emphysema have been
identified and are commonly used for diagnosis and prediction of patient prognosis [2]. The
disease subtypes have also been shown to correlate with genetic data and physiological
indicators [1].

Emphysema appears on Computed Tomography (CT) scans as a variety of textures which
are associated with clinically defined disease subtypes. However, there is substantial intra-
reader and inter-reader variability when identifying subtypes in CT images [2].
Computational approaches to the classification of textures in CT scans promise to identify
subtle textural differences beyond those that are visible to human readers. This nuanced
information can be harnessed to produce well-defined, reproducible disease subtypes.
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Beyond fully 3D texture analysis, the additional benefits of computational approaches
include the possibility of providing novel insights into the disease once the heterogeneity of
the patient population is characterized.

We present a method that simultaneously detects distinct patient clusters and disease
subtypes. The algorithm is based on a generative model that captures the underlying
hypothesis about population structure and distributions of disease subtypes. We assume that
each cluster of patients is associated with a distinct distribution of disease subtypes, which
are based on features extracted from Computed Tomography scans [3]. We derive an
inference algorithm that is based on variational Expectation-Maximization [4]. We apply the
algorithm to a data set of 2457 thoracic CT scans and observe notable associations between
physiological indicators and patient clusters and disease subtypes identified by the method.
Further, we examine associations in simplified models that omit either patient clusters or
disease subtypes to demonstrate the clinical advantage of the hierarchical model that
includes both patient clusters and disease subtypes. We compare associations that are
identified in the generative model to those found in a model where disease subtypes are
discovered in a supervised manner.

Our approach departs from the majority of prior research that has focused on supervised
classification of patches extracted from CT scans based on examples labeled by clinical
experts [5,6]. An exception is a method for joint modeling of imaging and genetic data in the
same clinical population [7]. By contrast, our work models only imaging data, but we
explicitly detect and characterize homogeneous sub-populations defined by similar groups of
disease subtypes, which opens directions for future analysis. An additional work similar to
ours is found in [8], which discovers disease subtypes in an unsupervised manner. However,
it was conducted on a smaller data set and does not model patient clusters.

Our generative model relies on the assumption that there are K'underlying patient clusters,
each characterized by a different distribution of disease subtypes. We use N/to denote the
total number of CT scans in the study. When processed, each scan is represented by / non-
overlapping patches. Let Sy, be the patch around voxel rin patient 7. Patches are entirely
contained within a lung. We apply a chosen feature extraction method to S,,to construct a
feature vector £, The feature vectors {F,} serve as the input into our algorithm. In our
experiments we use a combination of Grey Level Co-Occurrence Matrix (GLCM) [6]
features and intensity histograms as feature descriptors which are both extracted from three-
dimensional patches; the modeling approach readily accepts a broad range of descriptors.

The distribution of cluster assignments for any patient in the study is parametrized by r and
is represented by a vector C, for patient n. Cy,, = 1 if patient 7belongs to cluster & Cx =0
otherwise. For all patients in cluster & the distribution of disease subtypes is parametrized by
akand is represented by L, for patch rin patient 7. Each patch belongs to one of Sdisease
subtypes. L, = 1 if the patch belongs to subtype s, L, = 0 otherwise. We use a Gaussian
distribution ~ (-4, 2) with mean g and covariance J;to model feature vectors in the disease
subtype s. The generative model can be summarized as follows (Fig. 1):
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Each subject is viewed as an independent and identically distributed sample from this
distribution, giving rise to the full likelihood model:
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Inference Algorithm

We set the number of patient clusters K and the number of disease subtypes S. The observed
data consists of feature vectors {F,} of N/ patients for whom we extracted features from R
patches each. We aim to infer the most likely subtype L, for each patch rin patient 7and
the most likely cluster C,, for each patient n. Additionally we estimate the parameters: the
mixing proportions of the patient clusters s, the mixing proportions of the disease subtypes
{a,} for each patient cluster, and the means and variances {ys 23} of the image features for
each disease subtype.

We perform inference via variational Expectation-Maximization (EM) [4]. Since computing
expectation with respect to the full posterior distribution p(L, C/F, a, r, i, 2) is intractable
due to coupling between Cand L, we approximate the posterior distribution with a product
of two categorical distributions:

N K R S
q(C, L, 0)=qc(Civ)q, (L:0)= ] TTvSe* TTT] 0k,

n=1k=1 r=1s=1 (1)

where y and @are variational parameters. This simplifies the computation of the
expectations.

In the variational approach, we iteratively optimize a lower bound for In(o(F; a, =, i, 2))
with respect to the parameters {ry, aks ts 25 wnk, Bnrst, This lower bound can be
expressed as:

p(F,C, Lo, m, 1, 32)
a(C, Ly, 0) @

In(p(Fo,m, 1, » ) > Eg {m
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We randomly initialize  and a, and then iterate between two steps until convergence. In the
expectation step, we hold r, a,izand Z'fixed and estimate the variational parameters y-and
6to maximize the lower bound in Eq. (2) by iteratively applying the updates:
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In the maximization step, we hold the values of y and &fixed and estimate the model
parameters, r, a, fand Z, that maximize the lower bound in Eq. (2) via the following update
equations:

=
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Once the parameter estimation process is complete, we determine C,and L, by maximizing
the approximate posterior distributions g&x(Cp,, wy,) and gL(L ., 6,,) respectively.

3 Empirical Results

Data

We investigated the proposed method in the context of an imaging study that includes 2457
thoracic CT scans of smokers diagnosed with COPD [1]. COPDGene is a multi-center study
that acquired CT scans, genetic data, and physiological indicators in COPD patients. The
data was collected by 21 sites across the United States. The volumetric CT scans were
obtained at full inhalation and at relaxed exhalation. Image reconstruction produces sub-
millimeter slice thickness, and employs edge and smoothness enhancing filtering [1]. In
addition, we have 1525 patches from the CT scans of 267 patients from this cohort that were
manually assigned to clinically defined disease subtypes by an expert.

Parameter Selection

We randomly sampled 1000 non-overlapping patches from each patient. Emphysema has
been described at the level of the secondary pulmonary lobules [5], therefore we select
11x11x11 patches, which are approximately the size of this structure. There have been
between four and 12 disease subtypes and between three and 10 patient clusters described in
clinical literature [3,5]. We examine models with the number of patient clusters and disease
subtypes in this range. We chose to further analyze the model with eight patient clusters and
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six disease subtypes, as this was the largest number of disease subtypes and patient clusters
for which each patient cluster and disease subtype received at least five percent probability.

Feature Vectors

3.1 Results

We employed 11-dimensional feature vectors, which were chosen based on their
classification accuracy on the labeled patches in our data set when using the features as a
texture descriptor. The first nine dimensions correspond to Grey Level Co-Occurrence
Matrix (GLCM) features [6]. GLCMs represent the joint probability distribution of intensity
values of pixel pairs in a given patch [6]. To construct this descriptor, the image is
discretized into eight gray levels. The value of the entry at position (/) in the GLCM
captures the proportion of pixel pairs at a given offset with the corresponding intensity pair
values for 7/ e {1...8}. To obtain a degree of rotational invariance, we averaged the GLCMs
over uniformly distributed directions in three dimensions. We extracted nine features from
these matrices to construct the descriptor: contrast, dissimilarity, homogeneity, correlation,
entropy, energy, cluster shade, cluster prominence and maximum probability [6]. The next
two dimensions of the feature vector correspond histogram bins of the voxel intensities
within the patch.

Disease Subtypes—TFigure 2 illustrates example patches for each of the identified disease
subtypes. A confusion matrix between the disease subtypes and the clinical labels is shown
in Table 1. On the labeled portion of our data set, we found that 67% of patches that were
labeled as clinically normal were placed in the same disease subtype by our algorithm, and
clinically normal patches represent 64 % of all labeled patches within this disease subtype.
Panlobular and paraseptal emphysema correspond to disease subtype 2 and subtype 3
respectively. Our results suggest that centrilobular emphysema is a mixture of identified
disease subtypes 1, 2, 3 and 4.

Spatial Contiguity—Emphysema clusters spatially in the lungs, as do the disease
subtypes our algorithm identifies, as can be seen in Fig. 2. Each voxel in every lung was
labeled independently based on the most likely subtype it would belong to under our model,
without any enforced smoothing. We evaluated spatial contiguity by permutation testing [9].
For each voxel labeled by our algorithm we compute the proportion of neighboring voxels
that belong to the same disease subtype. We average this value over the entire lung to obtain
a spatial contiguity score. To obtain a distribution of the score under the null hypothesis we
assigned voxels within the lungs to random disease subtypes 1000 times for each scan while
maintaining the proportion of disease subtypes for each lung. We found that across all CT
scans, the spatial contiguity scores produced by our algorithm are greater than the maximal
values in the corresponding null distribution, corresponding to rejecting the null hypothesis
with p <0.001.

Associations with Physiological Indicators—We emphasize that the physiological
indicators are not available to the algorithm when fitting the generative model to the image
data and therefore provide an indirect validation of the model's clinical relevance. We
quantify the associations between the structure detected by our method and physiological
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indicators relevant to COPD: six minute walking distance, body mass index (BMI), forced
vital capacity (FVC), forced expiratory volume (FEV), change in FVC value from treatment,
the ratio between the FEV and FVC values, and the number of years smoked. We ran our
algorithm on a randomly selected half of our scans and labeled the remaining scans based on
the estimated model parameters. In particular, we assigned each patient to the most likely
cluster and constructed an empirical distribution of disease subtypes for the patient based on
the image patches. We repeated this procedure 100 times to estimate variability in the
results.

We constructed three baseline models by eliminating patient clusters (K= 1) or disease
subtypes (S=1) or both (K'=1, S=1). In the last case, we extract feature vectors from
patches in each patient, and then average and normalize the feature vectors in each patient to
produce a single patient-specific feature vector. A fourth baseline method was constructed
by identifying the disease subtypes in a supervised manner. In this case, we utilized the same
feature vectors as previously described, and performed classification with Support Vector
Machines (SVMs) trained on the labeled patches to assign 1000 random patches in each
lung to one of six clinically identified subtypes. We learned the patient clusters in an
unsupervised manner as in the fully unsupervised model.

To quantify the associations between distributions of disease subtypes or the averaged
normalized feature vector for a patient and a physiological indicator we perform linear
regression. The strength of the correlation is quantified via the A2 value. The association
between patient clusters and physiological indicators is quantified via the normalized mutual
information score [10]. Different metrics are used to quantify the associations between
patient clusters and proportions of disease subtypes or feature vectors, as the former is a
discrete label while the last two are continuous quantities. These associations were identified
on the portion of the data set that was not used to construct the model.

Figure 3 reports the associations for all models. These results demonstrate the advantage of
modeling both patient clusters and disease subtypes. We observe that there is a stronger
association between physiological indicators and patient clusters in the full model than in the
model with only clusters. For all physiological indicators, there is a higher association with
the distributions of disease subtypes in the full model than in the model with only disease
subtypes. This demonstrates that modeling patient clusters produces more clinically relevant
distributions of disease subtypes in each patient. The model without patient clusters or
disease subtypes exhibits even weaker associations than a model with only disease subtypes.

Figure 3 demonstrates the advantage of discovering the disease subtypes in an unsupervised
manner. In the full model, we obtain stronger associations than in the model where disease
subtypes are found in a supervised manner. This is partially explained by the fact that feature
selection was performed to optimize classification performance on supervised patches and
additional structure is obtained in the unsupervised discovery of patient clusters and disease
subtypes.
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4 Conclusions

We presented an unsupervised framework for the discovery of disease subtypes within
emphysema and of patient clusters that are characterized by distinct distributions of such
subtypes. We built a generative model that parametrizes the assignment of voxels in CT
scans to disease subtypes and the assignment of patients to clusters. The associations
between the patient clusters and physiological indicators and distributions of disease
subtypes and physiological indicators illustrate the clinical relevance of the detected
heterogeneity in the patient cohort.

The patient clusters that our model produces merit further exploration. It would be
worthwhile to examine their correlations to genetic markers. An additional extension is to
directly examine whether different patient clusters exhibit distinct clinical prognoses or
respond differently to clinical interventions.
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Fig 1.
Graphical representation of the generative model.

Mach Learn Med Imaging. Author manuscript; available in PMC 2017 October 01.

Page 8



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Binder et al.

Page 9

22 X2 K2
€Y ¢ 63 &3
B = L

Top two rows: example CT scans from each of the eight patient clusters identified by our
algorithm. Colors correspond to disease subtypes identified by our algorithm. Bottom row:
patches from the six disease subtypes identified by our algorithm. (Color figure online)
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Fig 3.

Left: /2 value between the distributions of disease subtypes (1st, 3rd, and 4th model) or
feature vectors (2nd model) and physiological indicators. Right: Normalized Mutual
Information between patient clusters and physiological indicators.
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