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Abstract

Heart Failure (HF) is one of the most common indications for readmission to the hospital among elderly patients.
This is due to the progressive nature of the disease, as well as its association with complex comorbidities (e.g., anemia,
chronic kidney disease, chronic obstructive pulmonary disease, hyper- and hypothyroidism), which contribute to
increased morbidity and mortality, as well as a reduced quality of life. Healthcare organizations (HCOs) have
established diverse treatment plans for HF patients, but such routines are not always formalized and may, in fact,
arise organically as a patient’s management evolves over time. This investigation was motivated by the hypothesis
that patients associated with a certain subgroup of HF should follow a similar workflow that, once made explicit,
could be leveraged by an HCO to more effectively allocate resources and manage HF patients. Thus, in this paper,
we introduce a method to identify subgroups of HF through a similarity analysis of event sequences documented in
the clinical setting. Specifically, we 1) structure event sequences for HF patients based on the patterns of electronic
medical record (EMR) system utilization, 2) identify subgroups of HF patients by applying a k-means clustering
algorithm on utilization patterns, 3) learn clinical workflows for each subgroup, and 4) label each subgroup with
diagnosis and procedure codes that are distinguishing in the set of all subgroups. To demonstrate its potential, we
applied our method to EMR event logs for 785 HF inpatient stays over a 4 month period at a large academic medical
center. Our method identified 8 subgroups of HF, each of which was found to associate with a canonical workflow
inferred through an inductive mining algorithm. Each subgroup was further confirmed to be affiliated with specific
comorbidities, such as hyperthyroidism and hypothyroidism.

Introduction

Heart failure (HF) is one of the most common indications for admission to the hospital among older adultst. HF
manifests in a clinically detectable manner when the heart is unable to supply an adequate flow of blood to meet the
body’s needs. HF is an important contributor to both the burden and cost of national healthcare expenditures. Over
five million people in the United States are estimated to exhibit HF to some degree and management of the disease
costs the nation an estimated $32 billion annually*2. In 2001, the American Heart Association and American College
of Cardiology refined the HF phenotype into four gross stages, which has led to the development and deployment of
a wide array of management options for HF treatments. Yet, management of the disease is complicated by the fact
that it often associates with a diverse collection of comorbidities (e.g., anemia, type 2 diabetes, various infections, and
thyroid problems), which can manifest in different manners and combinations across the evolving stages of the disease.
As a consequence, HF is also one of the conditions leading to high readmission rates in hospitals. Healthcare
organizations (HCOs) have established treatment protocols and workflows for HF patients with different
comorbidities and stages of progression®. Additionally, to improve the definition and management of HF, various
investigations*® have been conducted to computationally specify the phenotype’ and workflows affiliated with its
management®,

Traditionally, research has aimed to refine HF into several clinical subphenotypes based on heart-related issues, such
as systolic or diastolic heart failure®. These are natural subtypes that HCOs can rely upon to design specialized
treatment plans or clinical workflows®1%. While such research, and subsequent clinical designations, can assist HCOs
to more effectively manage HF patients, they often rely on an expert informed perspective and experience. As a
consequence, they involve a substantial amount of human effort* and focus on clinical phenomena that are expected
to categorize the HF population. To reduce human effort and learn clinical concepts (or management pathways) that
are not necessarily anticipated, several studies have shown that data-informed methodologies can be invoked to infer
complex comorbidities'*3, clinical workflows!4, and care teams®®. Many of these studies rely on the co-accesses to
patients’ electronic medical records (EMRs) to infer collaborative care teams or workflows for specific diseases!>
16, however, such studies have focused on all possible diseases and the workings of an HCO in general. In doing so,
they have neglected how such views are influenced by conditioning the investigation on a specific complex disease,
such as HF.

The investigation communicated in this paper is motivated by the expectation that complex diseases, like HF, are
associated with a range of workflows in an HCO. These workflows are unlikely to be explicitly documented because
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they are associated with subtypes of the disease and/or comorbidities that lead to ad hoc coordination. If such
workflows can be detected through a data-informed method, they may be refined and resourced by an HCO to more
effectively manage patients of a certain HF subtype.

Thus, in this paper we study four-months of EMR data, collected in 2010, from Northwestern Memorial Hospital for
over 750 HF inpatient episodes. We introduce a data-informed framework to infer the underlying workflows that
transpire in the clinical enterprise. We then map the learned workflows into a similarity measure to characterize
patients into different subgroups. Finally, we show that these subgroups have a strong correlation with a range of
diagnoses (e.g., hyper- and hypothyroidism) and procedures. Specially, our investigation suggests there are a
minimum of 8 subgroups of HF patients, each of which is associated with a canonical workflow. It should be
recognized from the outset that a subgroup does not indicate that they are a distinct population in their phenotype per
se, but that they are a subgroup in the manner by which they are managed.

Background

This paper introduces a framework to identify subgroups of HF via inferred clinical workflows. Since this work
involves workflow subgroup identification via inference methods, we take a moment to review related work in 1)
workflow modeling and 2) subgroup discovery. When possible, we show how these methods have specifically been
applied to HF populations.

Workflow Modeling

Workflow modeling and analysis has shown promise in a wide array of settings, ranging from general business
management to specific clinical domain domains. For instance, van der Aalst and colleagues demonstrated how high-
level Petri nets can model the workflows in an office environment, with a particular focus on how information systems
support the control of office work!’. They developed a workflow management system (WMS) prototype based on such
formalizations. They subsequently extended the notion of a WMS to support dynamic changes®®. Workflow modeling
from a clinical perspective is more complex than many office settings because HCOs are composed of a large number
of interacting departments and individuals who coordinate as availability and need dictates.

Still, there has been some success in this domain. In particular, Chen and colleagues introduced a method to infer
clinical workflows and measure their efficiency via the utilization of EMR event logs. It was shown that these
workflows naturally partition into four general types according to their average and variance in their efficiency*. They
posited that certain inefficiencies were likely due to the complexity of the patients. While the methods introduced in
their investigation enabled the evaluation of workflow efficiency, it did not condition the workflows on specific patient
phenotypes or determine if subgroups for the management of a specific disorder led to the manifestation of disparate
workflows. EMR access logs were also used by Li and colleagues to infer workflows through a method based on
hidden Markov models (HMMs)*°. These HMMs were utilized to characterize the behavior of EMR users, as well as
detect anomalous activities. However, this investigation did not study the clinical meaning of the workflow or how
they could be specialized to certain patient subgroups.

Subgroup Identification

There is evidence to suggest that identifying subgroups of patients based on their clinical conditions can be applied to
design personalized treatment plans. For instance, Mugge and colleagues identified a subgroup of patients with
nonrheumatic atrial fibrillation (Afib) with an increased risk for cardiogenic embolism by assessing left atrial
appendage function®. They identified two distinct patient groups according to appendage flow patterns: 1) well-
defined peak filling with visible fibrillatory contractions of the appendage wall and 2) irregular, very low, peak filling
with almost no visible appendage contractions. While such subgroup identification is notable from a descriptive
perspective, it focuses on clinical diagnosis and, thus, neglects how to design management routines for Afib patients
in a healthcare environment that is subject to communication challenges and resource limitations. Soulakis and
colleagues?® utilized the EMR access logs of over 500 HF patients to identify seven networks of around 5000 care
providers. However, this work is limited in that it neglects the association between the network of care providers and
the clinical conditions of the patients.

Methods

We designed a data-informed framework to identify HF subgroups to consist of three steps: 1) infer patient subgroups
through event sequences, 2) learn a workflow for each subgroup and 3) assign diagnosis and procedure codes as
phenotype labels for each subgroup. To gain intuition into how this framework works, we begin with an introduction
of the dataset used in this investigation.
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Dataset

The dataset for this study is summarized in Table 1. The records are drawn from comprehensive access logs and billing
information derived from the EMR system at Northwestern Memorial Hospital (NMH) over a four month period
during 2010. This dataset, which we refer to as NMH-D, consists of 1,138,555 access events distributed over 16,567
unique inpatient stays. We extracted all patients diagnosed with heart failure by selecting any patient with an ICD-9
code in the range 428.0 through 428.9 and we refer to this specific HF extract as the NMH-HF dataset. Each access
event is affiliated with the following attributes: 1) pseudonym of the inpatient, 2) ID of the EMR user, 3) reason for
the access event (as designated by the user according to a pull-down list), 4) date and timestamp for the access, 5)
general physical location in NMH where the patient is located, and 6) the clinical service on which the patient is
managed (e.g., general medicine vs. obstetrics). Each inpatient episode is affiliated with its ICD-9 billing codes, which
were assigned after discharge.

Table 1. A summary of the datasets in this study.

i Number of 2- | We use the Reason for Access in the dataset, as

Dataset Accesses Patients Reasons
blocks opposed to the EMR user, as the smallest level
NMH-D | 1,138,555 16,567 142 (not computed) of_ granular!ty _assomated V\_nth a vv_o_rkflow to
mitigate noise in the analysis. Specifically, for
NMH-HF | 272,685 785 126 5823 each inpatient i, the corresponding event

sequence R (defined in Table 2) is a series of
ordered reasons for access. To orient the reader, the following is an example of a sequence of reasons one might
encounter for a certain inpatient:

... = Attending Physician/Provider — Primary Staff Nurse — Resident-Inpatient Primary Service — Pharmacist — ...

In this work, we define an n-block as a sequence of n consecutive access events (with n > 2). Thus, a 2-block is defined
as two consecutive access events. For instance, if an access event Attending Physician/Provider has a consecutive
access event Primary Staff Nurse, then Attending Physician/Provider — Primary Staff Nurse is the corresponding 2-
block. In fact, 2-blocks reflect the order relations between two neighbor events. If 2-blocks appears infrequently in
event sequences, then the order relation between its containing two events are weak, which could be utilized by our
framework to filter weak order relations, most of which are noise in EMR system functionality®?2,
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Figure 1. Frequency distribution of a) Reasons and b) 2-blocks in NMH-HF dataset.

Figure 1 illustrates the frequency distribution of all reasons and the distribution of the frequency of 2-blocks. As can
be observed in Figure 1(a), around 46% of the reasons (58 of 126) have a frequency of 1,000 or larger, which suggests
that a reason subset is frequently invoked by care providers for different purposes. At the same time, in Figure 1(b),
it can be seen that that around 90% of 2-blocks (5,246 of 5,823) appear no more than 100 times in the system. This
suggests that the system is not dominated by several frequent 2-blocks, which indicates that our framework has an
opportunity to identify subgroups through such event sequences.

Subgroups Identification Framework

The framework is composed of three main components: 1) generate patient subgroups via refined event sequences, 2)
learn workflows for the subgroup population, and 3) extract diagnosis and procedure labels for subgroups. Here,
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refined event sequences are the transformation of original event sequences through applying filtering based on
frequency. To help the reader understand our framework, we provide a legend of the common notation invoked
throughout this paper in Table 2. The specific algorithmic process associated with the framework is communicated in
Figure 2.

Table 2. A legend of the notation used in this paper.

Symbols Interpretation
D A set of event sequences, where an event sequence is affiliated with one patient episode
D¢ A set of event sequences filtering high frequency reasons in D
D' A set of refined event sequences
0} A tuple set of reasons and corresponding frequency
B _(2_block) A tuple set of 2-block and corresponding frequency
B _(n_block) A tuple set of blocks and corresponding frequency
Ri An event sequence in D charactering inpatient i ’s episode
Rt A refined event sequence in D’ characterizing inpatient i’s episode
rt A reason appearing at time stamp t
Dres1 A 2-block with time stamp t and t+1
D_(2_block) A 2-block set extracted from Dy
D’ (2_block) A refined 2-block set from D_(2_block) by filtering lowest frequency 2-blocks
D_(n_block) A set of blocks extracted from D’, where each block can have a different length
D' _(n_block) A set of blocks obtained by filtering lowest frequency blocks in D_(n_block)
mr The number of filtered highest frequency reasons in ¢
Mp The number of filtered lowest frequency 2-blocks in D_(2_block)
mgy The number of filtered lowest frequency blocks in D_(n_block)
A binary matrix characterizing the relationship between patient episodes and blocks in
Mes D’ (n_block)
Mpp' A matrix transformed from Mpg using a polynomial kernel

1) Generate Patient Subgroups by Refined Access Sequences

The subgroup identification process is partitioned into five steps: 1) filter high frequency reasons contained in each
event sequence in D into Dy, 2) generate 2-blocks in Dr and create a set D_(2_block), 3) filter low frequency 2-blocks
in D_(2_block) into D’_(2_block), 4) use 2-blocks in D’_(2_block) to refine sequences in D to form a new sequence
set D' and 5) clustering subgroup patients by using similarity of block elements in refined sequences in D’. Each of
these steps is detailed in the following descriptions:

Filter high frequency reasons. Each raw event sequence in D can contain high frequency event reasons. We remove
high frequency reasons because they correspond to the most general aspects of the workflow. These are unlikely to
communicate clinical context that is critical to modeling a specific workflow. For example, both Primary Staff Nurse
and Primary Assistive Staff appear the greatest number of times in event sequences. While it is anticipated that nurses
provide support to patient care, they are critical to almost all aspects of the inpatient setting. In many respects, general
nursing staff is akin to the stop words (e.g., prepositions or articles) in natural language text. And, as many
investigations in natural language processing have illustrated, such information, can be triaged to improve pattern
discovery. The new event sequence set Ds is generated by filtering the high frequent reasons.

Generate 2-blocks and filter low frequency (or noise). These two steps are incorporated because the event sequences
are extracted from the access logs of EMR system, which contain noise in the order of relations?. We assume that
noisy relations exist in low frequency blocks and, thus, filter weak relations from the event sequences Dy.

To do so, each event sequence in Ds is segmented into blocks by invoking the 2-blocks in D’_(2_block). Thus, each
event sequence is represented by varying sized blocks. With this transformation and linkage, Dy is transformed into
D'. Thus, D' is the set of sequences where high frequent reasons and low frequent 2-blocks are both removed. The
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processing details are described from lines 6 through 17 in the algorithm in Figure 2. For example, after the process
above, a patient in our dataset has a new sequence formed by two blocks b;>b,, where by is a reason sequence:

Resident - Outpatient/ED/Proc Primary — Patient Care — Radiology Technologist — Registration
and by is
Rehab Assigned Therapist — Consultant — Rehab Assigned Therapist — Charging/Orders — Med Rec Coding

D' is represented by linkage of new blocks and we extract all of the blocks in D" into D_(n_block). At this point, we
filter out low frequent blocks in D_(n_block) to generate a new set D’_(n_block).

Next, we cluster patients into subgroups using their associated bocks in D’_(n_block). To do so, we generate a patient-
by-block matrix Mpsg to represent relations between patients and blocks. We then apply a polynomial kernel on Mpg
to transform it to a new matrix My’ and perform k-means clustering.*

Input: D, a set of event sequences; my, the number of filtered highest frequency reasons; my, the number of filtered
lowest frequency 2-blocks; mg, the number of filtered lowest frequency blocks;

Output: C={Cq4, Cy, ..., Ci}, subgroups of patients

. Let ¢ = {(oi, i)} <« (reason ID, frequency) tuple set from D

Ds « D\ (top m, reasons with high frequency in )

D_(2_block) = {7} « 2-block set from Ds

Let B_(2_block) = {(1;, fj)} « (2-block, frequency) tuple set from D¢

D'_(2_block) <~ D_(2_block) \ (top m, 2-blocks with low frequency in B_(2_block))

// Where “\” indicates set exclusion

AN B

6. D'« @;

7. for each R":
8 PRI @ ce«1B<«0?

9: for each consecutive 2-block byt1=rt = rws in R

10:  ifBc=d and biwi€D’ (2_block): Bc<« 1> rwa;  break;

11:  endif

12: if bm+1€ D’_(2_b|OCk): Be < Bc D risa; // Expand reason blocks at the tail
13: else: R« R’ PB;; c++; B« J; // Form new representation of R
14:  endif

15: end for

16: D'« D' UR';

17: end for

18: D_(n_block) ={ux} <« block set with different sizes from D’

19: Let B_(n_block) = {(u, f)} < (reason block, frequency) tuple set from D’

20: D'_(n_block) «- D_(n_block) \ (top mg blocks with the low frequency in B_(n_block))

21: Mpg < binary matrix indicating the relationship between patients and blocks in D'_(n_block)
22: Mpg' < apply polynomial kernel on Mes

23: C={Cy, Cy, ..., Ci} « k-means cluster of Mpg'

24: return C

Figure 2. Pseudocode of the cluster generation algorithm.
2) Learn workflows for each subgroup

Each subgroup is clustered using blocks in D’_(n_block). Each event sequence (a patient episode) is characterized by
these blocks. We group all blocks characterizing a subgroup into a workflow to represent the clinical process for this
type of HF patient. We then invoke an inductive mining algorithm (as implemented in ProM?) to infer and visualize
workflows.

3) Extract Diagnosis and Procedure Labels

1 Applying the kernel makes it easier to separate groups by projecting the data into a higher set of dimensions.
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Care must be taken when learning workflows through a data-informed strategy, as they may not have labels that readily
translate into administrative applications. This is important because the clinical workflows that are based on expert
knowledge are associated with known semantics. Thus, we aim to relate inferred workflows to clinical context. To do
s0, we assign labels to each subgroup’s workflow by discovering the billing codes that are the most discriminative for
the workflow.

The labels for each workflow are derived from a series of processes. First, we extract the most frequent diagnosis and
procedure codes from all inpatients in each subgroup. Next, we apply a Z-test (hypothesis testing method based on
proportionality) to compute the p-value for each diagnosis and procedure codes in each subgroup?. For each subgroup
Ca, the most distinguishable billing codes between pairs of subgroups (Ca, Cx), X4, are extracted. Finally, we union

these the distinguishable codes to characterize each subgroup and their affiliated workflows.

Table 3. A summary of the number of patients and representative conditions for the HF subgroups.

Subgroup

Size

Billing Terms with High Frequency

Phenotype

447

401.9: Unspecified essential hypertension

416.8: Other chronic pulmonary heart diseases

425.4: Other primary cardiomyopathies

414.0: Coronary atherosclerosis of native coronary artery
V45.81: Aortocoronary bypass status

V58.61: Long-term (current) use of anticoagulants

General HF

C2

14

276.2: Acidosis

280.0: Iron deficiency anemia secondary to blood loss
578.9: Hemorrhage of gastrointestinal tract

V65.3: Dietary surveillance and counseling

V10.04: Personal history of malignant neoplasm of
stomach

HF associated with hemorrhage

15

428.4: Combined systolic and diastolic heart failure
276.8: Hypopotassemia

V15.05: Allergy to other foods

V15.06: Allergy to insects and arachnids

HF associated with anaphylactic
reaction

Cs

22

263.9: Unspecified protein-calorie malnutrition
038.9: Unspecified septicemia

584.9: Acute kidney failure

V45.11: Renal dialysis status

HF associated with renal failure and
sepsis

13

729.5: Pain in limb

276.5: Dehydration

275.4: Hypocalcemia

V42.0: Kidney replaced by transplant

HF associated with renal
transplantation

58

276.7: Hyperpotassemia

584.9: Acute kidney failure

275.3: Disorders of phosphorus metabolism
428.2: Acute on chronic systolic heart failure
287.5: Thrombocytopenia

V45.11: Renal dialysis status

Hyperthyroidism HF

(too small to make a determination)

(too small to make a determination)

(too small to make a determination)

(too small to make a determination)

34

244.9: Unspecified acquired hypothyroidism
733.0: Osteoporosis

401.9: Unspecified essential hypertension
425.4: Other primary cardiomyopathies

Hypothyroidism HF

Cio

171

403.9: Hypertensive chronic kidney disease

585.9: Chronic kidney disease

584.9: Acute kidney failure

285.9: Anemia

V45.01: Cardiac pacemaker in situ

V45.82: Percutaneous transluminal coronary angioplasty
status

Acute or chronic renal failure HF
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Results

This section reports on results from 1) a general view of the 10 identified distinct subgroups and 2) a case study of
two representative subgroups - in terms of their affiliated workflows and the diagnosis and procedure codes that
distinguish the subgroup from others.

HF Subgroups Identified

By applying the framework to the 785 CHF inpatient episodes, we discovered 10 distinct subgroups as summarized
in Table 3. For reference purposes, we use C; to represent subgroup i. In this table, each subgroup is labeled using
descriptions of the representative diagnosis and procedure billing codes. For instance, C; is a subgroup affiliated with
general heart failure, Cs is affiliated with allergies associated with HF, and Cg is affiliated with hypothyroidism. We
note that we neglect subgroups C; and Cg because of their small size (only 5 and 6 patients, respectively). The
representative billing codes come from two sources: 1) distinct codes between this subgroup and any other subgroup,
and 2) high frequency codes associated with this subgroup.

Table 3 also reports the size and clinical label of each subgroup. It can be seen that each subgroup has a distinct
specialized phenotype. For instance, Ci, the largest subgroup, is affiliated with the diagnosis of HF, which indicates
that most of the patients went through a process associated with management of general comorbidities (e.g.,
hypertension, primary cardiomyopathies, and coronary atherosclerosis). Co, the second largest subgroup, is affiliated
with chronic kidney disease (CKD).

Case Study of Hyperthyroidism and Hypothyroidism in HF

To understand the intuitive nature of the identified subgroups, we report on a case study that compares two subgroups.
Specifically, we focus on subgroups C¢ and Coe, which are similar in the number of patients they cover (58 and 34,
respectively) and correspond to two typical HF subtypes. We illustrate the differences in these subgroups in terms of
their clinical concepts and inferred workflows.

Clinical Differences. Figure 3 shows the concordance of the frequency distribution for the most significant codes
(based on their p-values) affiliated with the Cs and Cy subgroups. Specifically, each (x,y) point corresponds to a
specific code, where x and y is the proportion of patients in Cs and Cy who received the code, respectively. As such,
codes that are close to the dashed diagonal line indicates they have a similar frequency in the two investigated
subgroups. Clearly, these codes do not distinguish between the subgroups. By contrast, codes that are distant from
the line can distinguish one subgroup from the other. In this figure, we marked diagnosis codes with a star and
procedure codes as a circle.

We found that the patients in cluster Cs, were primarily diagnosed with i) hyperpotassemia, ii) disorders of phosphorus
metabolism, iii) acute kidney failure, unspecified, and iv) thrombocytopenia. This combination of diagnoses makes
sense intuitively. This is because excess potassium and phosphorus caused by hyperthyroidism are both associated
with kidney failure?. Based on knowledge of these symptoms, it can be inferred that this subgroup suffers from
Hyperthyroidism HF.

By contrast, the 34 patients in cluster Cq have the following diagnosis labels: i) unspecified acquired hypothyroidism,
ii) osteoporosis, and iii) unspecified essential hypertension. Osteoporosis is obviously associated with hypothyroidism
because of a decreasing amount of calcium. And thus, we label Co with Hypothyroidism HF.

These HF subgroups demonstrate that differences in the inferred learned workflows may be associated with the clinical
status, as well as procedures performed on the patients.

Workflows Differences. Though subgroup Ces covers a larger number of patients than Cg, we find that it exhibits a
simpler workflow structure (as shown in Figure 4). To illustrate, we first compare the main reasons of these two
workflows. Subgroup Cs contains: i) Other Physician, ii) Covering Therapist, iii) Coordinator, and iv) Advanced
Practice Nurse as the main reasons (and corresponding roles), which appear to be affiliated with a generic healthcare
process. By contrast, the workflow for Cy has a more complicated structure, in which there is a greater diversity in the
reasons. Specifically, this structure includes i) Student Nurse, ii) Consultant, iii) Patient Care, iv) Assigned Staff, v)
Advanced Practice Nurse, vi) Coordinator, vii) Anesthesiologist, viii) Dietary Clerk, ix) Radiologist, and x) Rehab
Assigned Therapist.

Moreover, this workflow contains some special reasons, such as xi) Radiology Nurse/Resident/Technologist and xii)
Radiology management, which are likely linked with the diagnosis of osteoporosis induced by hypothyroidism. This
case study suggests that our initial hypothesis — that HF subtypes associate with different workflows and management
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processes — has standing. Moreover, we believe this case study is a clear illustration of how data-informed workflow
mining can be leveraged to learn different subgroups of patients that can be subsequently labeled in a clinically
meaningful manner.
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Figure 3. Concordance in the frequency of the diagnosis and procedural billing codes between HF subgroups Cs and Co.
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Discussion

We introduced a method to identify subgroups of HF through refined event sequences and subsequently infer
workflow and phenotype for every subgroup. This approach is substantially different from the traditional definition
of phenotypes rooted solely on metabolic and clinical observations. The subgroups identified in our framework share
similar workflow patterns, suggesting they are managed in a similar way in clinical practice. To the best of our
knowledge, this is the first investigation to show that subgroups of a complex disorder, such as HF, can be learned
through workflows (in the form of event sequences) in the clinical enterprise. Our findings are further notable because
they suggest that workflows stretching across departments and wards of an HCO can be learned from EMR utilization.
We believe this methodology provides opportunities to make management strategies explicit and tune resource
allocations accordingly. At the same time, we believe the learned workflows have standing because they were shown
to correlate with diagnoses and procedures codes exhibited in the corresponding patient groups (information that was
not used in the clustering process). As such, it may be possible to develop predictive models that assign a patient to a
predefined and semi-personalized management regimen.

Despite our discoveries, we acknowledge that this is a pilot study on an HF population. There are several limitations
of this project, which we wish to highlight for further refinement and future investigation. First, we relied on ICD-9
codes in the 428.* range, rather than rigorously validated computational phenotypes of HF41%20to define our cohort.
Though the HF phenotype is considered a relatively well-defined diagnosis, it is a disease with multiple stages and
confounding factors (as our hyperthyroidism and hypothyroidism subgroups illustrated). It is further conceivable that
some of the patients who presented to Northwestern Memorial Hospital for a certain primary diagnosis (e.g., stroke)
might have been treated for HF without its documentation in an 1CD-9 billing code. As such, we believe that our
selection criteria enable a highly precise investigation, but does not cover the gamut of HF patients.

Second, the workflows associated with the HF subgroups were only reviewed by one clinician. Rather, we mainly
relied on identifying subgroups of HF in an information theoretic sense (e.g., similarity analysis of sequences of access
reasons). Our method identified 10 subgroups and it appeared as though 8 had a clear clinical context differentiating
from other subgroups (while 2 were too underpowered due to a small number of patients to make any judgement
about). Still, before inferred workflows can be relied upon, they will require review by additional administrative and
clinical experts to determine if they can be translated into decision support tools for an HCO.

Finally, we recognize that the size of the HF cohort is relatively small. During the four months of documented inpatient
stays, we encountered less than a thousand patients treated for HF. Although our work yielded meaningful findings,
we may not have captured all of the notable workflows or diagnostic labels for such workflows. For such an
investigation to be useful for the HCO, we will need to investigate a large sample size over a longer period of time. It
would also be ideal to compare the workflows, and the associated labels, with EMR data from other healthcare systems.

Conclusions

HF is a complex condition accompanied by diverse complications that progress across, a minimum of, four stages.
HCOs have adopted various strategies (e.g., optional treatment plans for different developmental stages and
complications) to improve quality of life for HF patients and reduce burden, as well as cost, for healthcare systems.
Identifying subgroups of HF can assist in the management of patients with this disease. We introduced a data-informed
framework to identify subgroups of HF patients through utilization of the EMR. For each subgroup, we provided
external validation via the diagnosis and procedure codes of the corresponding patients. Our framework was evaluated
on the event sequences of 785 HF inpatients from a large academic medical center. In doing so, we identified 8 HF
subgroups, each of which was confirmed to be associated with a specific condition of HF (e.g., hyperthyroidism and
hypothyroidism). Furthermore, each subgroup was characterized by different patterns of workflow. For instance,
hypothyroidism associated HF involved more complex workflows than hyperthyroidism HF. We acknowledge that
this investigation is a pilot study and further investigation is required with administrative review and validation across
disparate healthcare enterprises.
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