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Abstract 

Heart Failure (HF) is one of the most common indications for readmission to the hospital among elderly patients. 

This is due to the progressive nature of the disease, as well as its association with complex comorbidities (e.g., anemia, 

chronic kidney disease, chronic obstructive pulmonary disease, hyper- and hypothyroidism), which contribute to 

increased morbidity and mortality, as well as a reduced quality of life. Healthcare organizations (HCOs) have 

established diverse treatment plans for HF patients, but such routines are not always formalized and may, in fact, 

arise organically as a patient’s management evolves over time. This investigation was motivated by the hypothesis 

that patients associated with a certain subgroup of HF should follow a similar workflow that, once made explicit, 

could be leveraged by an HCO to more effectively allocate resources and manage HF patients. Thus, in this paper, 

we introduce a method to identify subgroups of HF through a similarity analysis of event sequences documented in 

the clinical setting. Specifically, we 1) structure event sequences for HF patients based on the patterns of electronic 

medical record (EMR) system utilization, 2) identify subgroups of HF patients by applying a k-means clustering 

algorithm on utilization patterns, 3) learn clinical workflows for each subgroup, and 4) label each subgroup with 

diagnosis and procedure codes that are distinguishing in the set of all subgroups. To demonstrate its potential, we 

applied our method to EMR event logs for 785 HF inpatient stays over a 4 month period at a large academic medical 

center. Our method identified 8 subgroups of HF, each of which was found to associate with a canonical workflow 

inferred through an inductive mining algorithm. Each subgroup was further confirmed to be affiliated with specific 

comorbidities, such as hyperthyroidism and hypothyroidism. 

Introduction 

Heart failure (HF) is one of the most common indications for admission to the hospital among older adults1. HF 

manifests in a clinically detectable manner when the heart is unable to supply an adequate flow of blood to meet the 

body’s needs. HF is an important contributor to both the burden and cost of national healthcare expenditures. Over 

five million people in the United States are estimated to exhibit HF to some degree and management of the disease 

costs the nation an estimated $32 billion annually1,2. In 2001, the American Heart Association and American College 

of Cardiology refined the HF phenotype into four gross stages, which has led to the development and deployment of 

a wide array of management options for HF treatments. Yet, management of the disease is complicated by the fact 

that it often associates with a diverse collection of comorbidities (e.g., anemia, type 2 diabetes, various infections, and 

thyroid problems), which can manifest in different manners and combinations across the evolving stages of the disease. 

As a consequence, HF is also one of the conditions leading to high readmission rates in hospitals. Healthcare 

organizations (HCOs) have established treatment protocols and workflows for HF patients with different 

comorbidities and stages of progression3. Additionally, to improve the definition and management of HF, various 

investigations4-6 have been conducted to computationally specify the phenotype7 and workflows affiliated with its 

management8.  

Traditionally, research has aimed to refine HF into several clinical subphenotypes based on heart-related issues, such 

as systolic or diastolic heart failure9. These are natural subtypes that HCOs can rely upon to design specialized 

treatment plans or clinical workflows8,10. While such research, and subsequent clinical designations, can assist HCOs 

to more effectively manage HF patients, they often rely on an expert informed perspective and experience. As a 

consequence, they involve a substantial amount of human effort4 and focus on clinical phenomena that are expected 

to categorize the HF population. To reduce human effort and learn clinical concepts (or management pathways) that 

are not necessarily anticipated, several studies have shown that data-informed methodologies can be invoked to infer 

complex comorbidities11-13, clinical workflows14, and care teams15. Many of these studies rely on the co-accesses to 

patients’ electronic medical records (EMRs) to infer collaborative care teams or workflows for specific diseases11,15-

16, however, such studies have focused on all possible diseases and the workings of an HCO in general. In doing so, 

they have neglected how such views are influenced by conditioning the investigation on a specific complex disease, 

such as HF.  

The investigation communicated in this paper is motivated by the expectation that complex diseases, like HF, are 

associated with a range of workflows in an HCO. These workflows are unlikely to be explicitly documented because 
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they are associated with subtypes of the disease and/or comorbidities that lead to ad hoc coordination. If such 

workflows can be detected through a data-informed method, they may be refined and resourced by an HCO to more 

effectively manage patients of a certain HF subtype.  

Thus, in this paper we study four-months of EMR data, collected in 2010, from Northwestern Memorial Hospital for 

over 750 HF inpatient episodes. We introduce a data-informed framework to infer the underlying workflows that 

transpire in the clinical enterprise. We then map the learned workflows into a similarity measure to characterize 

patients into different subgroups. Finally, we show that these subgroups have a strong correlation with a range of 

diagnoses (e.g., hyper- and hypothyroidism) and procedures. Specially, our investigation suggests there are a 

minimum of 8 subgroups of HF patients, each of which is associated with a canonical workflow. It should be 

recognized from the outset that a subgroup does not indicate that they are a distinct population in their phenotype per 

se, but that they are a subgroup in the manner by which they are managed. 

Background 

This paper introduces a framework to identify subgroups of HF via inferred clinical workflows. Since this work 

involves workflow subgroup identification via inference methods, we take a moment to review related work in 1) 

workflow modeling and 2) subgroup discovery.  When possible, we show how these methods have specifically been 

applied to HF populations. 

Workflow Modeling 

Workflow modeling and analysis has shown promise in a wide array of settings, ranging from general business 

management to specific clinical domain domains. For instance, van der Aalst and colleagues demonstrated how high-

level Petri nets can model the workflows in an office environment, with a particular focus on how information systems 

support the control of office work17. They developed a workflow management system (WMS) prototype based on such 

formalizations. They subsequently extended the notion of a WMS to support dynamic changes18. Workflow modeling 

from a clinical perspective is more complex than many office settings because HCOs are composed of a large number 

of interacting departments and individuals who coordinate as availability and need dictates.  

Still, there has been some success in this domain. In particular, Chen and colleagues introduced a method to infer 

clinical workflows and measure their efficiency via the utilization of EMR event logs. It was shown that these 

workflows naturally partition into four general types according to their average and variance in their efficiency11. They 

posited that certain inefficiencies were likely due to the complexity of the patients. While the methods introduced in 

their investigation enabled the evaluation of workflow efficiency, it did not condition the workflows on specific patient 

phenotypes or determine if subgroups for the management of a specific disorder led to the manifestation of disparate 

workflows. EMR access logs were also used by Li and colleagues to infer workflows through a method based on 

hidden Markov models (HMMs)19. These HMMs were utilized to characterize the behavior of EMR users, as well as 

detect anomalous activities. However, this investigation did not study the clinical meaning of the workflow or how 

they could be specialized to certain patient subgroups.  

Subgroup Identification 

There is evidence to suggest that identifying subgroups of patients based on their clinical conditions can be applied to 

design personalized treatment plans. For instance, Mugge and colleagues identified a subgroup of patients with 

nonrheumatic atrial fibrillation (Afib) with an increased risk for cardiogenic embolism by assessing left atrial 

appendage function20. They identified two distinct patient groups according to appendage flow patterns: 1) well-

defined peak filling with visible fibrillatory contractions of the appendage wall and 2) irregular, very low, peak filling 

with almost no visible appendage contractions. While such subgroup identification is notable from a descriptive 

perspective, it focuses on clinical diagnosis and, thus, neglects how to design management routines for Afib patients 

in a healthcare environment that is subject to communication challenges and resource limitations. Soulakis and 

colleagues16 utilized the EMR access logs of over 500 HF patients to identify seven networks of around 5000 care 

providers. However, this work is limited in that it neglects the association between the network of care providers and 

the clinical conditions of the patients. 

Methods 

We designed a data-informed framework to identify HF subgroups to consist of three steps: 1) infer patient subgroups 

through event sequences, 2) learn a workflow for each subgroup and 3) assign diagnosis and procedure codes as 

phenotype labels for each subgroup. To gain intuition into how this framework works, we begin with an introduction 

of the dataset used in this investigation. 
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Dataset  

The dataset for this study is summarized in Table 1. The records are drawn from comprehensive access logs and billing 

information derived from the EMR system at Northwestern Memorial Hospital (NMH) over a four month period 

during 2010. This dataset, which we refer to as NMH-D, consists of 1,138,555 access events distributed over 16,567 

unique inpatient stays. We extracted all patients diagnosed with heart failure by selecting any patient with an ICD-9 

code in the range 428.0 through 428.9 and we refer to this specific HF extract as the NMH-HF dataset. Each access 

event is affiliated with the following attributes: 1) pseudonym of the inpatient, 2) ID of the EMR user, 3) reason for 

the access event (as designated by the user according to a pull-down list), 4) date and timestamp for the access, 5) 

general physical location in NMH where the patient is located, and 6) the clinical service on which the patient is 

managed (e.g., general medicine vs. obstetrics). Each inpatient episode is affiliated with its ICD-9 billing codes, which 

were assigned after discharge.  

              Table 1. A summary of the datasets in this study. 

We use the Reason for Access in the dataset, as 

opposed to the EMR user, as the smallest level 

of granularity associated with a workflow to 

mitigate noise in the analysis. Specifically, for 

each inpatient i, the corresponding event 

sequence Ri (defined in Table 2) is a series of 

ordered reasons for access. To orient the reader, the following is an example of a sequence of reasons one might 

encounter for a certain inpatient: 

…  Attending Physician/Provider  Primary Staff Nurse  Resident-Inpatient Primary Service  Pharmacist  … 

In this work, we define an n-block as a sequence of n consecutive access events (with n  2). Thus, a 2-block is defined 

as two consecutive access events. For instance, if an access event Attending Physician/Provider has a consecutive 

access event Primary Staff Nurse, then Attending Physician/Provider  Primary Staff Nurse is the corresponding 2-

block. In fact, 2-blocks reflect the order relations between two neighbor events. If 2-blocks appears infrequently in 

event sequences, then the order relation between its containing two events are weak, which could be utilized by our 

framework to filter weak order relations, most of which are noise in EMR system functionality9,22.   

  

(a) Reasons (b) Blocks with 2 Reasons 

Figure 1. Frequency distribution of a) Reasons and b) 2-blocks in NMH-HF dataset. 

Figure 1 illustrates the frequency distribution of all reasons and the distribution of the frequency of 2-blocks. As can 

be observed in Figure 1(a), around 46% of the reasons (58 of 126) have a frequency of 1,000 or larger, which suggests 

that a reason subset is frequently invoked by care providers for different purposes.  At the same time, in Figure 1(b), 

it can be seen that that around 90% of 2-blocks (5,246 of 5,823) appear no more than 100 times in the system. This 

suggests that the system is not dominated by several frequent 2-blocks, which indicates that our framework has an 

opportunity to identify subgroups through such event sequences. 

Subgroups Identification Framework 

The framework is composed of three main components: 1) generate patient subgroups via refined event sequences, 2) 

learn workflows for the subgroup population, and 3) extract diagnosis and procedure labels for subgroups. Here, 

Dataset Accesses Patients Reasons 
Number of 2-

blocks 

NMH-D 1,138,555 16,567 142 (not computed) 

NMH-HF 272,685 785 126 5823 
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refined event sequences are the transformation of original event sequences through applying filtering based on 

frequency. To help the reader understand our framework, we provide a legend of the common notation invoked 

throughout this paper in Table 2. The specific algorithmic process associated with the framework is communicated in 

Figure 2. 

Table 2. A legend of the notation used in this paper. 

Symbols Interpretation 

D A set of event sequences, where an event sequence is affiliated with one patient episode 

Df A set of event sequences filtering high frequency reasons in D 

𝐷′ A set of refined event sequences 

ф A tuple set of reasons and corresponding frequency 

B_(2_block) A tuple set of 2-block and corresponding frequency 

B_(n_block) A tuple set of blocks and corresponding frequency 

Ri An event sequence in D charactering inpatient i’s episode 

𝑅′𝑖  A refined event sequence in 𝐷′ characterizing inpatient i’s episode  

rt A reason appearing at time stamp t 

bt,t+1 A 2-block with time stamp t and t+1 

D_(2_block) A 2-block set extracted from Df 

D′_(2_block) A refined 2-block set from D_(2_block) by filtering lowest frequency 2-blocks 

D_(n_block) A set of blocks extracted from 𝐷′, where each block can have a different length 

D′_(n_block) A set of blocks obtained by filtering lowest frequency blocks in D_(n_block) 

mr The number of filtered highest frequency reasons in ф 

mb The number of filtered lowest frequency 2-blocks in D_(2_block) 

mg The number of filtered lowest frequency blocks in D_(n_block) 

MPB 
A binary matrix characterizing the relationship between patient episodes and blocks in 

D′_(n_block) 

𝑀𝑃𝐵′ A matrix transformed from MPB using a polynomial kernel 

 

1) Generate Patient Subgroups by Refined Access Sequences 

The subgroup identification process is partitioned into five steps: 1) filter high frequency reasons contained in each 

event sequence in D into Df, 2) generate 2-blocks in Df and create a set D_(2_block), 3) filter low frequency 2-blocks 

in D_(2_block) into D′_(2_block), 4) use 2-blocks in D′_(2_block) to refine sequences in Df to form a new sequence 

set 𝐷′ and 5) clustering subgroup patients by using similarity of block elements in refined sequences in 𝐷′. Each of 

these steps is detailed in the following descriptions: 

Filter high frequency reasons. Each raw event sequence in D can contain high frequency event reasons. We remove 

high frequency reasons because they correspond to the most general aspects of the workflow. These are unlikely to 

communicate clinical context that is critical to modeling a specific workflow. For example, both Primary Staff Nurse 

and Primary Assistive Staff appear the greatest number of times in event sequences. While it is anticipated that nurses 

provide support to patient care, they are critical to almost all aspects of the inpatient setting. In many respects, general 

nursing staff is akin to the stop words (e.g., prepositions or articles) in natural language text. And, as many 

investigations in natural language processing have illustrated, such information, can be triaged to improve pattern 

discovery. The new event sequence set Df  is generated by filtering the high frequent reasons. 

Generate 2-blocks and filter low frequency (or noise). These two steps are incorporated because the event sequences 

are extracted from the access logs of EMR system, which contain noise in the order of relations22. We assume that 

noisy relations exist in low frequency blocks and, thus, filter weak relations from the event sequences Df. 

To do so, each event sequence in Df is segmented into blocks by invoking the 2-blocks in D′_(2_block). Thus, each 

event sequence is represented by varying sized blocks. With this transformation and linkage, Df is transformed into 

𝐷′. Thus, 𝐷′ is the set of sequences where high frequent reasons and low frequent 2-blocks are both removed. The 
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processing details are described from lines 6 through 17 in the algorithm in Figure 2. For example, after the process 

above, a patient in our dataset has a new sequence formed by two blocks b1b2, where b1 is a reason sequence:  

Resident - Outpatient/ED/Proc Primary  Patient Care  Radiology Technologist  Registration 

and b2 is 

Rehab Assigned Therapist  Consultant  Rehab Assigned Therapist  Charging/Orders  Med Rec Coding 

𝐷′ is represented by linkage of new blocks and we extract all of the blocks in 𝐷′ into D_(n_block). At this point, we 

filter out low frequent blocks in D_(n_block) to generate a new set D′_(n_block). 

Next, we cluster patients into subgroups using their associated bocks in D′_(n_block). To do so, we generate a patient-

by-block matrix MPB to represent relations between patients and blocks. We then apply a polynomial kernel on MPB 

to transform it to a new matrix 𝑀𝑃𝐵′ and perform k-means clustering.1  

Input: D, a set of event sequences; mr, the number of filtered highest frequency reasons; mb, the number of filtered    

            lowest frequency 2-blocks; mg, the number of filtered lowest frequency blocks; 

Output: C = {C1, C2, …, Ck}, subgroups of patients 

1:  Let ф = {(φi, fi)}  (reason ID, frequency) tuple set from D 

2:  Df   D \ (top mr reasons with high frequency in ф) 

3:  D_(2_block) = {τj}  2-block set from Df  

4:  Let B_(2_block) = {(τj, ƒj)}  (2-block, frequency) tuple set from Df 

5:  D′_(2_block)  D_(2_block) \ (top mb 2-blocks with low frequency in B_(2_block)) 

                                                                                                                        // Where “\” indicates set exclusion 

6:  𝐷′ Ø; 

7:  for each Ri: 

8:     Ri   Ø, c  1, Bc  Ø 

9:     for each consecutive 2-block bt,t+1= rt  rt+1  in Ri: 

10:       if Bc  Ø  and  bt,t+1∈D′_(2_block):    Bc  rt  rt+1;      break; 

11:       end if 

12:       if bt,t+1 ∈ D′_(2_block):   Bc   Bc ⊕ rt+1;                               // Expand reason blocks at the tail 

13:           else:    Ri  Ri ⊕Bc;  c ++;  Bc  Ø;                                            // Form new representation of iR  

14:       end if 

15:   end for 

16:   𝐷′ 𝐷′ ∪ Ri; 

17: end for 

18: D_(n_block) ={μk}  block set with different sizes from 𝐷′ 

19: Let B_(n_block) = {(μk, fk)}  (reason block, frequency) tuple set from 𝐷′ 

20: D′_(n_block)  D_(n_block) \ (top mg blocks with the low frequency in B_(n_block)) 

21: MPB   binary matrix indicating the relationship between patients and blocks in D′_(n_block) 

22: MPB'  apply polynomial kernel on MPB 

23: C = {C1, C2, …, Ck}  k-means cluster of MPB' 

24: return C 

Figure 2. Pseudocode of the cluster generation algorithm. 

2) Learn workflows for each subgroup 

Each subgroup is clustered using blocks in D′_(n_block). Each event sequence (a patient episode) is characterized by 

these blocks. We group all blocks characterizing a subgroup into a workflow to represent the clinical process for this 

type of HF patient. We then invoke an inductive mining algorithm (as implemented in ProM23) to infer and visualize 

workflows. 

3) Extract Diagnosis and Procedure Labels  

                                                           
1 Applying the kernel makes it easier to separate groups by projecting the data into a higher set of dimensions. 
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Care must be taken when learning workflows through a data-informed strategy, as they may not have labels that readily 

translate into administrative applications. This is important because the clinical workflows that are based on expert 

knowledge are associated with known semantics. Thus, we aim to relate inferred workflows to clinical context. To do 

so, we assign labels to each subgroup’s workflow by discovering the billing codes that are the most discriminative for 

the workflow. 

The labels for each workflow are derived from a series of processes. First, we extract the most frequent diagnosis and 

procedure codes from all inpatients in each subgroup. Next, we apply a Z-test (hypothesis testing method based on 

proportionality) to compute the p-value for each diagnosis and procedure codes in each subgroup23.  For each subgroup 

Ca, the most distinguishable billing codes between pairs of subgroups (Ca, Cx), x≠a, are extracted. Finally, we union 

these the distinguishable codes to characterize each subgroup and their affiliated workflows. 

Table 3. A summary of the number of patients and representative conditions for the HF subgroups. 

Subgroup Size Billing Terms with High Frequency Phenotype 

C1 447 

401.9: Unspecified essential hypertension 

416.8: Other chronic pulmonary heart diseases 

425.4: Other primary cardiomyopathies 

414.0: Coronary atherosclerosis of native coronary artery 

V45.81: Aortocoronary bypass status 

V58.61: Long-term (current) use of anticoagulants 

General HF  

C2 14 

276.2: Acidosis  

280.0: Iron deficiency anemia secondary to blood loss 

578.9: Hemorrhage of gastrointestinal tract 

V65.3: Dietary surveillance and counseling 

V10.04: Personal history of malignant neoplasm of 

stomach 

HF associated with hemorrhage 

C3 15 

428.4: Combined systolic and diastolic heart failure 

276.8: Hypopotassemia 

V15.05: Allergy to other foods 

V15.06: Allergy to insects and arachnids 

HF associated with anaphylactic 

reaction 

C4 22 

263.9: Unspecified protein-calorie malnutrition 

038.9: Unspecified septicemia 

584.9: Acute kidney failure 

V45.11: Renal dialysis status 

HF associated with renal failure and 

sepsis  

C5 13 

729.5: Pain in limb 

276.5: Dehydration 

275.4: Hypocalcemia 

V42.0: Kidney replaced by transplant 

HF associated with renal 

transplantation 

C6 58 

276.7: Hyperpotassemia 

584.9: Acute kidney failure 

275.3: Disorders of phosphorus metabolism 

428.2: Acute on chronic systolic heart failure 

287.5: Thrombocytopenia 

V45.11: Renal dialysis status 

Hyperthyroidism HF 

C7 5 (too small to make a determination) (too small to make a determination) 

C8 6 (too small to make a determination) (too small to make a determination) 

C9 34 

244.9: Unspecified acquired hypothyroidism 

733.0: Osteoporosis 

401.9: Unspecified essential hypertension 

425.4: Other primary cardiomyopathies 

Hypothyroidism HF 

C10 171 

403.9: Hypertensive chronic kidney disease 

585.9: Chronic kidney disease 

584.9: Acute kidney failure 

285.9: Anemia 

V45.01: Cardiac pacemaker in situ 

V45.82: Percutaneous transluminal coronary angioplasty 

status 

Acute or chronic renal failure HF 
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Results 

This section reports on results from 1) a general view of the 10 identified distinct subgroups and 2) a case study of 

two representative subgroups - in terms of their affiliated workflows and the diagnosis and procedure codes that 

distinguish the subgroup from others. 

HF Subgroups Identified 

By applying the framework to the 785 CHF inpatient episodes, we discovered 10 distinct subgroups as summarized 

in Table 3. For reference purposes, we use Ci to represent subgroup i. In this table, each subgroup is labeled using 

descriptions of the representative diagnosis and procedure billing codes. For instance, C1 is a subgroup affiliated with 

general heart failure, C3 is affiliated with allergies associated with HF, and C6 is affiliated with hypothyroidism.  We 

note that we neglect subgroups C7 and C8 because of their small size (only 5 and 6 patients, respectively). The 

representative billing codes come from two sources: 1) distinct codes between this subgroup and any other subgroup, 

and 2) high frequency codes associated with this subgroup. 

Table 3 also reports the size and clinical label of each subgroup. It can be seen that each subgroup has a distinct 

specialized phenotype. For instance, C1, the largest subgroup, is affiliated with the diagnosis of HF, which indicates 

that most of the patients went through a process associated with management of general comorbidities (e.g., 

hypertension, primary cardiomyopathies, and coronary atherosclerosis). C10, the second largest subgroup, is affiliated 

with chronic kidney disease (CKD). 

Case Study of Hyperthyroidism and Hypothyroidism in HF 

To understand the intuitive nature of the identified subgroups, we report on a case study that compares two subgroups.  

Specifically, we focus on subgroups C6 and C9, which are similar in the number of patients they cover (58 and 34, 

respectively) and correspond to two typical HF subtypes. We illustrate the differences in these subgroups in terms of 

their clinical concepts and inferred workflows.  

Clinical Differences.  Figure 3 shows the concordance of the frequency distribution for the most significant codes 

(based on their p-values) affiliated with the C6 and C9 subgroups. Specifically, each (x,y) point corresponds to a 

specific code, where x and y is the proportion of patients in C6 and C9 who received the code, respectively.  As such, 

codes that are close to the dashed diagonal line indicates they have a similar frequency in the two investigated 

subgroups.  Clearly, these codes do not distinguish between the subgroups. By contrast, codes that are distant from 

the line can distinguish one subgroup from the other. In this figure, we marked diagnosis codes with a star and 

procedure codes as a circle.  

We found that the patients in cluster C6, were primarily diagnosed with i) hyperpotassemia, ii) disorders of phosphorus 

metabolism, iii) acute kidney failure, unspecified, and iv) thrombocytopenia. This combination of diagnoses makes 

sense intuitively. This is because excess potassium and phosphorus caused by hyperthyroidism are both associated 

with kidney failure21. Based on knowledge of these symptoms, it can be inferred that this subgroup suffers from 

Hyperthyroidism HF.  

By contrast, the 34 patients in cluster C9 have the following diagnosis labels: i) unspecified acquired hypothyroidism, 

ii) osteoporosis, and iii) unspecified essential hypertension. Osteoporosis is obviously associated with hypothyroidism 

because of a decreasing amount of calcium. And thus, we label C9 with Hypothyroidism HF.  

These HF subgroups demonstrate that differences in the inferred learned workflows may be associated with the clinical 

status, as well as procedures performed on the patients.  

Workflows Differences. Though subgroup C6 covers a larger number of patients than C9, we find that it exhibits a 

simpler workflow structure (as shown in Figure 4).  To illustrate, we first compare the main reasons of these two 

workflows. Subgroup C6 contains: i) Other Physician, ii) Covering Therapist, iii) Coordinator, and iv) Advanced 

Practice Nurse as the main reasons (and corresponding roles), which appear to be affiliated with a generic healthcare 

process. By contrast, the workflow for C9 has a more complicated structure, in which there is a greater diversity in the 

reasons.  Specifically, this structure includes i) Student Nurse, ii) Consultant, iii) Patient Care, iv) Assigned Staff, v) 

Advanced Practice Nurse, vi) Coordinator, vii) Anesthesiologist, viii) Dietary Clerk, ix) Radiologist, and x) Rehab 

Assigned Therapist.   

Moreover, this workflow contains some special reasons, such as xi) Radiology Nurse/Resident/Technologist and xii) 

Radiology management, which are likely linked with the diagnosis of osteoporosis induced by hypothyroidism. This 

case study suggests that our initial hypothesis – that HF subtypes associate with different workflows and management 
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processes – has standing. Moreover, we believe this case study is a clear illustration of how data-informed workflow 

mining can be leveraged to learn different subgroups of patients that can be subsequently labeled in a clinically 

meaningful manner. 

 

 
Figure 3. Concordance in the frequency of the diagnosis and procedural billing codes between HF subgroups C6 and C9. 

 

 

 
Figure 4 A simplified view on the workflow structure of subgroups (a) C6 and (b) C9. 
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Discussion 

We introduced a method to identify subgroups of HF through refined event sequences and subsequently infer 

workflow and phenotype for every subgroup. This approach is substantially different from the traditional definition 

of phenotypes rooted solely on metabolic and clinical observations. The subgroups identified in our framework share 

similar workflow patterns, suggesting they are managed in a similar way in clinical practice.  To the best of our 

knowledge, this is the first investigation to show that subgroups of a complex disorder, such as HF, can be learned 

through workflows (in the form of event sequences) in the clinical enterprise. Our findings are further notable because 

they suggest that workflows stretching across departments and wards of an HCO can be learned from EMR utilization. 

We believe this methodology provides opportunities to make management strategies explicit and tune resource 

allocations accordingly. At the same time, we believe the learned workflows have standing because they were shown 

to correlate with diagnoses and procedures codes exhibited in the corresponding patient groups (information that was 

not used in the clustering process). As such, it may be possible to develop predictive models that assign a patient to a 

predefined and semi-personalized management regimen. 

Despite our discoveries, we acknowledge that this is a pilot study on an HF population. There are several limitations 

of this project, which we wish to highlight for further refinement and future investigation. First, we relied on ICD-9 

codes in the 428.* range, rather than rigorously validated computational phenotypes of HF14,19,20 to define our cohort.  

Though the HF phenotype is considered a relatively well-defined diagnosis, it is a disease with multiple stages and 

confounding factors (as our hyperthyroidism and hypothyroidism subgroups illustrated). It is further conceivable that 

some of the patients who presented to Northwestern Memorial Hospital for a certain primary diagnosis (e.g., stroke) 

might have been treated for HF without its documentation in an ICD-9 billing code. As such, we believe that our 

selection criteria enable a highly precise investigation, but does not cover the gamut of HF patients.   

Second, the workflows associated with the HF subgroups were only reviewed by one clinician. Rather, we mainly 

relied on identifying subgroups of HF in an information theoretic sense (e.g., similarity analysis of sequences of access 

reasons). Our method identified 10 subgroups and it appeared as though 8 had a clear clinical context differentiating 

from other subgroups (while 2 were too underpowered due to a small number of patients to make any judgement 

about). Still, before inferred workflows can be relied upon, they will require review by additional administrative and 

clinical experts to determine if they can be translated into decision support tools for an HCO.     

Finally, we recognize that the size of the HF cohort is relatively small. During the four months of documented inpatient 

stays, we encountered less than a thousand patients treated for HF. Although our work yielded meaningful findings, 

we may not have captured all of the notable workflows or diagnostic labels for such workflows. For such an 

investigation to be useful for the HCO, we will need to investigate a large sample size over a longer period of time. It 

would also be ideal to compare the workflows, and the associated labels, with EMR data from other healthcare systems. 

Conclusions 

HF is a complex condition accompanied by diverse complications that progress across, a minimum of, four stages. 

HCOs have adopted various strategies (e.g., optional treatment plans for different developmental stages and 

complications) to improve quality of life for HF patients and reduce burden, as well as cost, for healthcare systems. 

Identifying subgroups of HF can assist in the management of patients with this disease. We introduced a data-informed 

framework to identify subgroups of HF patients through utilization of the EMR. For each subgroup, we provided 

external validation via the diagnosis and procedure codes of the corresponding patients. Our framework was evaluated 

on the event sequences of 785 HF inpatients from a large academic medical center. In doing so, we identified 8 HF 

subgroups, each of which was confirmed to be associated with a specific condition of HF (e.g., hyperthyroidism and 

hypothyroidism). Furthermore, each subgroup was characterized by different patterns of workflow. For instance, 

hypothyroidism associated HF involved more complex workflows than hyperthyroidism HF. We acknowledge that 

this investigation is a pilot study and further investigation is required with administrative review and validation across 

disparate healthcare enterprises. 
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