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Abstract
Introduction: Smartphones are ubiquitous, but it is unknown

what physiological functions can be monitored at clinical

quality. Pulmonary function is a standard measure of health

status for cardiopulmonary patients. We have shown phone

sensors can accurately measure walking patterns. Here we

show that improved classification models can accurately

predict pulmonary function, with sole inputs being motion

sensors from carried phones.

Subjects and Methods: Twenty-five cardiopulmonary pa-

tients performed 6-minute walk tests in pulmonary rehabil-

itation at a regional hospital. They carried smartphones

running custom software recording phone motion. Each pa-

tient’s pulmonary function was measured by spirometry. A

universal model, based on support vector machine, then

computed the category of function with input from signal

processing features and patient demographic features.

Results: All but a few of every 10-second interval for every

patient was correctly predicted. The trained model perfectly

computed the GOLD (Global Initiative for Chronic Obstructive

Lung Disease) level 1/2/3, which is a standard classification

of pulmonary function. Each level was determined to have a

characteristic motion, which could be recognized from the

sensor features. In addition, longitudinal changes were de-

tected for 10 patients with multiple walk tests, except for

cases with clinical instability.

Conclusions: These results are encouraging toward clinical

validation of passive monitors running continuously in the

background, for patients in homes during daily activities. In-

itial testing indicates the same high accuracy as with active

monitors, for patients in hospitals during walk tests. We expect

patients can simply carry their phones during everyday living,

while models support automatic prediction of pulmonary

function for health monitoring.

Keywords: health monitoring, telemedicine, mobile phones,

chronic disease assessment, pulmonary function, predictive

modeling, machine learning

Introduction

T
here is a revolution in health monitoring, due to

mobile devices. Individual measurement can gener-

ate population cohorts of similar patients with sim-

ilar status, so treatments can be effectively and

efficiently targeted.1 Mobile phones are ubiquitous in the

United States, with the Pew Internet Project showing 90%

ownership in 2014, including 64% with smartphones. Even

seniors more than 65 years of age have 74% penetration of

mobile phones.2 As hundreds of millions of patients are al-

ready carrying phones, opportunity emerges for passive

monitoring without adherence difficulties. We seek clinically

valid physiological measures through carried smartphones.

Of the many possible measures, the most important for di-

agnostic purposes is functional status. Pulmonary function is

measured with a medical spirometer, which a patient breathes

into. The volume exhaled is calibrated to provide standard

measures of pulmonary function. We show classification

models can accurately compute pulmonary function. In

clinical testing with rehabilitation patients, we further show

that adequate inputs are the motion sensors already contained
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in ordinary smartphones. Simply carrying phones in daily

living can measure health status.

For chronic heart and lung conditions, walk tests are widely

used to assess the severity of the disease, including measures

with accelerometer sensors.3,4 The 6-minute walk test (6MWT)

is a standard assessment5 for chronic obstructive pulmonary

disease (COPD) and congestive heart failure (CHF), affecting

tens of millions of patients. A 6MWT measures the distance

walked in 6 min back and forth over a fixed length walkway.

Normal gait requires many systems, including strength, sen-

sation, and coordination, function in an integrated manner, so

abnormal gait is diagnostic of many conditions.6 Gait is the

total walking pattern, complete body motion, including

swaying as well as stepping.

Previously, we used 6MWT to show that motion features

could be measured with phones carried by patients, as sole

input to trained models that accurately compute gait speed7

and oxygen saturation,8 among physiological measures for

health status of chronic conditions. This study extends to

computing pulmonary function, based on characteristic mo-

tions of health status. We have implemented Android phone

software to record walking using phone sensors with accuracy

similar to medical devices.9 We designed three phases of ex-

periments to assess using smartphones to predict pulmonary

function, from technical evaluation to passive monitoring.

The results indicate that this technique is feasible for field

trials with large populations.

Subjects and Methods
We recruited 35 pulmonary patients at NorthShore Uni-

versity Health System, under IRB approval starting November

2014. All chronic patients, going through pulmonary reha-

bilitation in respiratory therapy in Evanston Hospital, were

offered the option of participating in our study. Such patients

were provided smartphones for recording their motion during

a standard 6MWT, a high-end Samsung Galaxy S5 and a low-

end LG Optimus Zone2 carried in fanny

pack. The 6MWTs were performed on a 30-

m straight walkway in the hospital corri-

dor, with cones at each end. The patient

walks back and forth under nurse super-

vision with distance recorded. All 6MWTs

follow the standard American Thoracic

Society (ATS) guidelines.5

Pulmonary function tests (PFTs) were

performed with a spirometer under clini-

cal conditions.10 In obstructive diseases,

such as COPD, the ratio of forced expira-

tory volume in one second (FEV1) as

compared with an age, gender, race, and height-adjusted

expected value is a sufficient indicator to measure severity

level of the disease, called predicted FEV1%. The Global In-

itiative for Chronic Obstructive Lung Disease (GOLD) defines a

standard for pulmonary severity levels based on the predicted

FEV1% values.11 There are four GOLD stages: GOLD1 (mild),

GOLD2 (moderate), GOLD3 (severe), and GOLD4 (more severe).

In this study, 35 patients participated in total. Ten patients

were eliminated because of lack of either 6MWT or PFT, in-

cluding 5 patients who did not perform 6MWT, 3 patients who

did not have PFTs, and 2 patients who were GOLD4 stop-

ping multiple times. As shown demographically in Table 1,

25 patients had both 6MWT and PFT, with 2 GOLD1 (predicted

FEV1% ‡ 80), 13 GOLD2 patients (predicted FEV1%: 50–79),

and 10 GOLD3 patients (predicted FEV1%: 30–49).

FEATURE SELECTION
After preprocessing, we have obtained good walking data

for each patient. We compute input features for training

the model by the feature selection approach.7 A primary

parameter to measure gait is cadence, number of strides within

a unit of time.12 We calculated cadence by counting steps in

each 10-second interval.

Related studies in motion tracking by wearable devices

extract various features from raw acceleration data.13–15 We

selected eight sufficient spatiotemporal gait parameters in

both time and frequency domain. In time domain, we selected

mean and standard deviation of acceleration to describe

general distribution of acceleration sample. In addition, mean

crossing rate (MCR), root mean square (RMS), autocorrelation

coefficient (AC), and coefficient of variance (CV) were cal-

culated from time series acceleration data. MCR represents

ratio of above and below acceleration. RMS is statistical

measure on the variation of signal magnitude. AC measures

periodic similarity in time domain. CV is normalized measure

for dispersion of discrete samples. In frequency domain, we

Table 1. Demographic Information of Patient Groups by Global Initiative
for Chronic Obstructive Lung Disease (GOLD) Levels

GOLD1 GOLD2 GOLD3 Overall

Number of patients (Female) 2 (1) 13 (5) 10 (4) 25 (10)

Age (year) 69 (65–73) 80 (67–95) 72 (55–85) 76 (55–95)

Height (m) 1.68 (1.55–1.80) 1.66 (1.24–1.83) 1.68 (1.55–1.83) 1.67 (1.24–1.83)

Weight (kg) 109.5 (93.0–126.1) 80.3 (54.4–112.0) 81.3 (45.4–118.4) 83.1 (45.4–126.1)

Age, height, and weight are in average (minimum - maximum) format. These demographics with gender are

used to adjust the model.

GOLD, Global Initiative for Chronic Obstructive Lung Disease.
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computed peak frequency (PF) and Shannon entropy. PF

represents frequency of greatest magnitude in spectrum.

Shannon entropy is expected value of signal information.

Besides the cadence and spatiotemporal gait parameters,

demographic information must also be considered in model

training, just as spirometers are used to adjust the raw values

from patient respiration. Unlike selecting demographic cohort

and training models by cohort in our previous research,7 we

keep the four basic demographic parameters: age and sex,

height, and weight as factors in the input feature vector. With

such vector, we train universal models that can be applied on

the general population. Overall, for each 10-sec sample, the

input feature vector x! contains 13 independent features—

covering stepping, moving, and demographics.

MODEL ANALYSIS
Support vector machines (SVMs) enable classification by

remapping multidimensional vectors into higher dimensional

space and determining hyperplanes that separate different

classes.16,17 We applied RBFSVM, radial basis function kernel,

to train the SVM model.18 Patient status is labeled from three

GOLD stages. One-against-all strategy is applied to train this

three-class classification model,19 then subject status is

computed by 85% threshold for majority voting from all

10-sec samples. We designed three phases to analyze perfor-

mance of the model. The phases included Phase I, a standard

10-fold cross-validation on training set, whereby all walking

sessions are involved in model training; Phase II, evaluating

model prediction on the testing set, whereby all walking

sessions are not involved in model training; and Phase III,

applying the trained model with passive walk on new patients,

whereby none of the patients contributed to model training.

Results
PHASE I: MODEL VALIDATION WITH LABELED
TRAINING SET

The data set contains 1,234 10-sec walking samples (38

6MWTs) from 25 different patients, including 799 labeled

samples from the first 6MWT session of each patient. We train

classification models only using all labeled samples. Ten-fold

cross-validation is applied to self-validate the model. The overall

classification accuracy is 99.00%. In detail, all GOLD1 samples

are correctly classified, accuracy for GOLD2 is 99.28% and ac-

curacy for GOLD3 is 98.51%. After obtaining classification re-

sults for 10-sec samples, majority voting with 85% threshold is

applied for categorizing each patient into target GOLD stage.

There were 25 patients who completed one 6MWT session.

The model does perfect computation for patients’ pulmonary
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Fig. 1. Evaluation of GOLD classification for labeled 6MWT sessions. GOLD, Global Initiative for Chronic Obstructive Lung Disease; 6MWT,
6-minute walk test.
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function, whereby all patients are categorized into the correct

GOLD stage. In this case, the PFTs are performed the same day

as the 6MWT, so all patients’ predicted FEV1% represents their

current severity of respiratory limitation when we collect

phone motion to match lung function. Figure 1 shows this

computation of health status.

For 22 patients, all their 10-sec walking samples are identi-

cally predicted, and correctly reflect the patient’s GOLD stage.

This indicates that spatiotemporal motion reflects more stable

information than walking speed. Patients may speed up or slow

down during the 6MWT, but spatiotemporal motion will always

yield the correct health status. Thus, full 6MWTs are not nec-

essary for detecting health status of cardiopulmonary patients.

Instead, if we can find any good walking sessions identical to

the walking during the 6MWT, spatiotemporal motion data

from such session can be used to compute GOLD status.

For three patients, a few 10-sec samples are classified in-

correctly. For Patient 17, there is only one 10-sec sample with

false classification, from 32 eligible samples. For Patient 9,

there are two 10-sec samples with false classification, from 37

eligible samples. For Patient 7, 5 samples out of 38 eligible

samples get false classification. So voting with 85% threshold

does predict correct status. Patient 7 is a GOLD3 patient re-

flected by the FEV1% predicted value of 31% from his PFT.

However, this patient walked for 335 m for this 6MWT, which

is even better than general GOLD2 patients. Our model pre-

dicted five GOLD2 walk samples, reflecting the patient is

healthier than GOLD status during the walk test, matching the

evidence of longer walk distance. This patient may be in

transition between GOLD2 and GOLD3.

PHASE II: MODEL EVALUATION WITH UNLABELED
TESTING SET

We train a classification model with all 799 labeled samples

and apply this model on the testing set, forming by the un-

labeled samples. That is, the training set is the samples from

the first walking session, whereas the testing set is the samples

from the subsequent walking session(s), possibly including

status change for the patients. There are 435 unlabeled sam-

ples from 13 unique 6MWT sessions from 10 patients, whereby

3 patients have three 6MWT sessions (5, 16, and 21). Two of 13

walking sessions are classified differently from the patients’

first labeled 6MWT session. For all other patients, classifica-

tions of unlabeled 6MWT sessions are 100% identical to their

first 6MWT session for all samples, as shown in Figure 2.

Six-minute walk distance (6MWD) is considered as a gold

standard for diagnosis of COPD severity, but it is more accurate

for severe COPD than moderate or mild COPD.20 In our exper-

iment, 10 patients performed at least two 6MWT sessions,

usually several weeks apart. There are 13 sessions, because three
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Fig. 2. Evaluation of GOLD classification for unlabeled 6MWT sessions.
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patients also did a Session 3. The initial 6MWDs average 310.8 –
95.16 m and the following 6MWDs average 367.1 – 106.5 m. In

general, the patients walked further in later sessions, as expected

for patients undergoing rehabilitation.

Our analysis indicates that 6MWD is not sufficient for

measuring COPD severity levels. In our data set, GOLD2 and

GOLD3 patients are not well distinguished by 6MWD. The

6MWD of GOLD3 patients can be as high as 350 m but 6MWD

of GOLD2 patients can be less than 250 m. Note that variation

between two different 6MWDs becomes larger when the dis-

tance is shorter, for example, second 6MWD of GOLD3 Patient

23 is 150 m longer than the initial 6MWD, even though per-

formed just 20 days after beginning the rehabilitation.

Our classification model again had high accuracy, because

such variation on total distance does not affect the stability of

patients’ motion pattern. Eight out of 10 patients are detected

strictly as having same GOLD status for their second or third

6MWT sessions. All 10-sec walking samples of their following

6MWT sessions are identical to their original GOLD status,

even for Patient 23, with the largest variation of 6MWDs. This

‘‘unfair’’ 8 of 10 model accuracy for later sessions compared

with initial GOLD status is shown in Figure 2.

Two patients not correctly classified at subsequent sessions

have underlying clinical explanations. For Patient 1, the

second 6MWT session is 100% predicted as GOLD2, whereas

the first 6MWT session shows the patient is GOLD3, as FEV1

indicates with spirometry. He had clinical diagnosis of both

COPD and CHF when enrolled in pulmonary rehabilitation. His

medication regimen for CHF was adjusted at start of rehabil-

itation and his motion improved, likely from better control of

his CHF, so this ‘‘unfair’’ comparison of initial GOLD status to

improved GOLD status with the model may be measuring

actual improvement rather than model inaccuracy.

For Patient 16, the second 6MWT session is 68.97% pre-

dicted as GOLD2 and 31.03% predicted as GOLD3, whereas the

first 6MWT session is labeled GOLD3. Patient 16 also has a

third 6MWT, which is 10.34% predicted as GOLD1, 3.45%

predicted as GOLD2, and 86.21% predicted as GOLD3. So the

third session of Patient 16 is decided as GOLD3, same as the

first session.

Patient 16 had diagnosis of sarcoidosis, which is a lung

disease with variable effects on pulmonary function. Sarcoi-

dosis cannot be well categorized by disease severity based on

GOLD criteria, as the physiological limitations are less clearly

correlated with predicted FEV1%, as with COPD. However, this

patient was measured through spirometry for FEV1, indicat-

ing GOLD3, which was correctly classified in Session 1. He

performed three 6MWT sessions at different visits, whereby the

second session was 1 month later than first session and third

session was 5 months later than first session, beyond the

3-month rehabilitation period. In Session 2, there was mixed

classification with 2/3 intervals indicating GOLD2 and 1/3 in-

tervals indicating GOLD3. The patient was likely within tran-

sition between status levels, because of rehabilitation progress.

During much later Session 3, there was a clinical note

stating that the patient had suffered a significant illness, the

reason for return to rehabilitation. This session was the only

true mixture, with some classifications of GOLD1/2/3, al-

though 86% of the intervals indicated GOLD3 once again. So

lung physiological function likely worsened and the patient

regressed back to original status level. Our model would have

predicted this correctly, with threshold of 85%. Thus, there is

clinical evidence that our model can predict changes in pul-

monary function.

PHASE III: MODEL APPLICATION WITH PASSIVE
MONITOR DURING DAILY ACTIVITIES

Measuring motion is a potential solution for passive mon-

itoring, which has compliance advantages over active phone

applications. That is, patients simply use their personal phones

as usual during daily activities, with no special actions nec-

essary. The home trials are more complex than the hospital

trials because patients do many different activities throughout

the day, while periods when they are carrying their phones are

recorded by continuous monitor.

The passive monitor phone app in the home is a re-

implementation of the active monitor in the clinic, with a

series of cascading filters as input to the predictive model.

Such filters require software for activity recognition, beyond

simply detecting when the phone is moving. This is a well-

studied problem in computer science, using motion sensors to

detect which activity a person is performing.15,21 Moreover,

the sensor positions on human body can be distinguished with

proper training.22 Retrieving good walking passively requires

two binary filters. The activity filter needs only detect good

walking, when the body motion is similar to the walk test.

The position filter needs only detect good position, which is

when the phone sensor works on a position equivalent to L3.

Equivalent positions include empirically pant pockets, coat

pockets, belts, and packs, as normal positions for carrying

phones.9 Our model needs walking sessions of 2 min to predict

effectively.23 As the amount is small, the filter can be tuned up

for high precision only during periods with definite mea-

surement of good walking on good position.

We have results from several patients who carried a Galaxy

S5 mini loaded with our passive monitor for 1 week. The good

walking filters on the phone and the server extracted the pe-

riods when qualified sessions were taking place. These home
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sessions with new patients were utilized as input to the uni-

versal model trained by the clinic experiments for status

prediction. The female Patient 30 with COPD/CHF and male

Patient 35 with COPD were correctly assessed as GOLD3 and

GOLD2 during multiple sessions (7 and 75) recognized as good

walking, during their daily activities. In addition, we have a

prospective patient, who is a GOLD1 smoker with COPD.

Conclusions
In this study, we expand our previous results7 utilizing

phone sensors into accurate prediction of pulmonary func-

tion. This requires utilizing demographic features with better

training sets and better statistical models, which analyze

characteristic motions in addition to step counting. Every

patient now has correct modeling of GOLD level, not only

session by session (6 min) but also almost every sample

by sample (10-sec).

The trained model is providing perfect computation of pul-

monary function category (classifying GOLD stage). This is

especially true for the first session with pulmonary patients,

whereby spirometry has just measured the function so the

pulmonary function value can be directly compared with the

phone motion value. For senior patients undergoing pulmonary

rehabilitation, respiration and motion are closely correlated.

This is why the classification is so accurate, in the hospital

setting with monitored walk test. The result is encouraging,

even when relaxing constraints on our measurements, moving

closer to daily activities in the real world, for example, patients

bringing smartphones home from rehabilitation, predicting

pulmonary functions during daily activities.

In this prototype, we did not expect all population variation

could be caught up by a model trained with only 25 patients.

However, the model perfectly captured status on 10 of the

same patients, with subsequent walk test data in Phase II ex-

periments, including clinical changes. Moreover, the three

subjects in Phase III experiments did not participate in model

training, yet their status is correctly predicted, even in the

more complex passive monitoring.

We are optimistic that full-scale clinical trials are possible

to predict health status for cardiopulmonary patients. They

need only carry their own phones and do some limited good

walking during the day while the passive monitor records

unobtrusively. We are actively planning Phase IV for field

trials with large populations, extending from 10 patients to

10,000 patients. Care routing can be supported, whereby daily

prediction of pulmonary function is utilized to adjust treatment

in response to dynamic status, along lines of Phase II and Phase

III. More training with more variation will be necessary for the

universal model to still be accurate for all patients across all

statuses. As the cheapest smartphones are adequate for re-

cording, large-scale population measurement can become an

everyday reality for health systems.
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