Predicting Pulmonary Function from Phone Sensors
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Abstract

Introduction: Smartphones are ubiquitous, but it is unknown
what physiological functions can be monitored at clinical
quality. Pulmonary function is a standard measure of health
status for cardiopulmonary patients. We have shown phone
sensors can accurately measure walking patterns. Here we
show that improved classification models can accurately
predict pulmonary function, with sole inputs being motion
sensors from carried phones.

Subjects and Methods: Twenty-five cardiopulmonary pa-
tients performed 6-minute walk tests in pulmonary rehabil-
itation at a regional hospital. They carried smartphones
running custom software recording phone motion. Each pa-
tient’s pulmonary function was measured by spirometry. A
universal model, based on support vector machine, then
computed the category of function with input from signal
processing features and patient demographic features.
Results: All but a few of every 10-second interval for every
patient was correctly predicted. The trained model perfectly
computed the GOLD (Global Initiative for Chronic Obstructive
Lung Disease) level 1/2/3, which is a standard classification
of pulmonary function. Each level was determined to have a

characteristic motion, which could be recognized from the
sensor features. In addition, longitudinal changes were de-
tected for 10 patients with multiple walk tests, except for
cases with clinical instability.

Conclusions: These results are encouraging toward clinical
validation of passive monitors running continuously in the
background, for patients in homes during daily activities. In-
itial testing indicates the same high accuracy as with active
monitors, for patients in hospitals during walk tests. We expect
patients can simply carry their phones during everyday living,
while models support automatic prediction of pulmonary
function for health monitoring.

Keywords: health monitoring, telemedicine, mobile phones,
chronic disease assessment, pulmonary function, predictive
modeling, machine learning

Introduction
here is a revolution in health monitoring, due to
mobile devices. Individual measurement can gener-
ate population cohorts of similar patients with sim-
ilar status, so treatments can be effectively and
efficiently targeted." Mobile phones are ubiquitous in the
United States, with the Pew Internet Project showing 90%
ownership in 2014, including 64% with smartphones. Even
seniors more than 65 years of age have 74% penetration of
mobile phones.” As hundreds of millions of patients are al-
ready carrying phones, opportunity emerges for passive
monitoring without adherence difficulties. We seek clinically
valid physiological measures through carried smartphones.
Of the many possible measures, the most important for di-
agnostic purposes is functional status. Pulmonary function is
measured with a medical spirometer, which a patient breathes
into. The volume exhaled is calibrated to provide standard
measures of pulmonary function. We show classification
models can accurately compute pulmonary function. In
clinical testing with rehabilitation patients, we further show
that adequate inputs are the motion sensors already contained
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Table 1. Demographic Information of Patient Groups by Global Initiative
for Chronic Obstructive Lung Disease (GOLD) Levels

Overall

end LG Optimus Zone2 carried in fanny
pack. The 6MWTs were performed on a 30-
m straight walkway in the hospital corri-
dor, with cones at each end. The patient

Number of patients (Female) 2 (1) 13 (5) 10 (4) 25 (10) walks back and forth under nurse super-
Age (year) 69 (65-73) 80 (67-95) 72 (55-85) 76 (55-95) vision with distance recorded. All 6MWTs
Height (m) 168 (1.55-1.80) | 1.66 (1.24-183) | 1.68 (1.55-1.83) | 167 (124-183)  follow the standard American Thoracic
: Society (ATS) guidelines.”
Weight (kg) 109.5 (93.0-126.1) | 80.3 (54.4-112.0) | 81.3 (45.4-118.4) | 83.1 (45.4-126.1) .
Pulmonary function tests (PFTs) were

Age, height, and weight are in average (minimum — maximum) format. These demographics with gender are

used to adjust the model.
GOLD, Global Initiative for Chronic Obstructive Lung Disease.

in ordinary smartphones. Simply carrying phones in daily
living can measure health status.

For chronic heart and lung conditions, walk tests are widely
used to assess the severity of the disease, including measures
with accelerometer sensors.>* The 6-minute walk test (6MWT)
is a standard assessment” for chronic obstructive pulmonary
disease (COPD) and congestive heart failure (CHF), affecting
tens of millions of patients. A 6MWT measures the distance
walked in 6 min back and forth over a fixed length walkway.
Normal gait requires many systems, including strength, sen-
sation, and coordination, function in an integrated manner, so
abnormal gait is diagnostic of many conditions.® Gait is the
total walking pattern, complete body motion, including
swaying as well as stepping.

Previously, we used 6MWT to show that motion features
could be measured with phones carried by patients, as sole
input to trained models that accurately compute gait speed’
and oxygen saturation,® among physiological measures for
health status of chronic conditions. This study extends to
computing pulmonary function, based on characteristic mo-
tions of health status. We have implemented Android phone
software to record walking using phone sensors with accuracy
similar to medical devices.” We designed three phases of ex-
periments to assess using smartphones to predict pulmonary
function, from technical evaluation to passive monitoring.
The results indicate that this technique is feasible for field
trials with large populations.

Subjects and Methods

We recruited 35 pulmonary patients at NorthShore Uni-
versity Health System, under IRB approval starting November
2014. All chronic patients, going through pulmonary reha-
bilitation in respiratory therapy in Evanston Hospital, were
offered the option of participating in our study. Such patients
were provided smartphones for recording their motion during
a standard 6MWT, a high-end Samsung Galaxy S5 and a low-
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performed with a spirometer under clini-
cal conditions.'® In obstructive diseases,
such as COPD, the ratio of forced expira-
tory volume in one second (FEV1) as
compared with an age, gender, race, and height-adjusted
expected value is a sufficient indicator to measure severity
level of the disease, called predicted FEV1%. The Global In-
itiative for Chronic Obstructive Lung Disease (GOLD) defines a
standard for pulmonary severity levels based on the predicted
FEV1% values.'" There are four GOLD stages: GOLD1 (mild),
GOLD2 (moderate), GOLD3 (severe), and GOLD4 (more severe).

In this study, 35 patients participated in total. Ten patients
were eliminated because of lack of either 6MWT or PFT, in-
cluding 5 patients who did not perform 6MWT, 3 patients who
did not have PFTs, and 2 patients who were GOLD4 stop-
ping multiple times. As shown demographically in Table I,
25 patients had both 6MWT and PFT, with 2 GOLD1 (predicted
FEV1%>80), 13 GOLD2 patients (predicted FEV1%: 50-79),
and 10 GOLD3 patients (predicted FEV1%: 30-49).

FEATURE SELECTION

After preprocessing, we have obtained good walking data
for each patient. We compute input features for training
the model by the feature selection approach.” A primary
parameter to measure gait is cadence, number of strides within
a unit of time.'” We calculated cadence by counting steps in
each 10-second interval.

Related studies in motion tracking by wearable devices
extract various features from raw acceleration data.’>™'* We
selected eight sufficient spatiotemporal gait parameters in
both time and frequency domain. In time domain, we selected
mean and standard deviation of acceleration to describe
general distribution of acceleration sample. In addition, mean
crossing rate (MCR), root mean square (RMS), autocorrelation
coefficient (AC), and coefficient of variance (CV) were cal-
culated from time series acceleration data. MCR represents
ratio of above and below acceleration. RMS is statistical
measure on the variation of signal magnitude. AC measures
periodic similarity in time domain. CV is normalized measure
for dispersion of discrete samples. In frequency domain, we

MARY ANN LIEBERT, INC.



computed peak frequency (PF) and Shannon entropy. PF
represents frequency of greatest magnitude in spectrum.
Shannon entropy is expected value of signal information.

Besides the cadence and spatiotemporal gait parameters,
demographic information must also be considered in model
training, just as spirometers are used to adjust the raw values
from patient respiration. Unlike selecting demographic cohort
and training models by cohort in our previous research,” we
keep the four basic demographic parameters: age and sex,
height, and weight as factors in the input feature vector. With
such vector, we train universal models that can be applied on
the general population. Overall, for each 10-sec sample, the
input feature vector ¥ contains 13 independent features—
covering stepping, moving, and demographics.

MODEL ANALYSIS

Support vector machines (SVMs) enable classification by
remapping multidimensional vectors into higher dimensional
space and determining hyperplanes that separate different
classes.'®'” We applied RBFSVM, radial basis function kernel,
to train the SVM model.'® Patient status is labeled from three
GOLD stages. One-against-all strategy is applied to train this
three-class classification model,'® then subject status is
computed by 85% threshold for majority voting from all
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10-sec samples. We designed three phases to analyze perfor-
mance of the model. The phases included Phase I, a standard
10-fold cross-validation on training set, whereby all walking
sessions are involved in model training; Phase II, evaluating
model prediction on the testing set, whereby all walking
sessions are not involved in model training; and Phase III,
applying the trained model with passive walk on new patients,
whereby none of the patients contributed to model training.

Results
PHASE I: MODEL VALIDATION WITH LABELED
TRAINING SET

The data set contains 1,234 10-sec walking samples (38
6MWTs) from 25 different patients, including 799 labeled
samples from the first 6MWT session of each patient. We train
classification models only using all labeled samples. Ten-fold
cross-validation is applied to self-validate the model. The overall
classification accuracy is 99.00%. In detail, all GOLD1 samples
are correctly classified, accuracy for GOLD2 is 99.28% and ac-
curacy for GOLD3 is 98.51%. After obtaining classification re-
sults for 10-sec samples, majority voting with 85% threshold is
applied for categorizing each patient into target GOLD stage.

There were 25 patients who completed one 6MWT session.
The model does perfect computation for patients’ pulmonary
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Fig. 1. Evaluation of GOLD classification for labeled 6MWT sessions.

6-minute walk test.
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function, whereby all patients are categorized into the correct
GOLD stage. In this case, the PFTs are performed the same day
as the 6MWT, so all patients’ predicted FEV 1% represents their
current severity of respiratory limitation when we collect
phone motion to match lung function. Figure I shows this
computation of health status.

For 22 patients, all their 10-sec walking samples are identi-
cally predicted, and correctly reflect the patient’s GOLD stage.
This indicates that spatiotemporal motion reflects more stable
information than walking speed. Patients may speed up or slow
down during the 6MWT, but spatiotemporal motion will always
yield the correct health status. Thus, full 6MWTs are not nec-
essary for detecting health status of cardiopulmonary patients.
Instead, if we can find any good walking sessions identical to
the walking during the 6MWT, spatiotemporal motion data
from such session can be used to compute GOLD status.

For three patients, a few 10-sec samples are classified in-
correctly. For Patient 17, there is only one 10-sec sample with
false classification, from 32 eligible samples. For Patient 9,
there are two 10-sec samples with false classification, from 37
eligible samples. For Patient 7, 5 samples out of 38 eligible
samples get false classification. So voting with 85% threshold
does predict correct status. Patient 7 is a GOLD3 patient re-
flected by the FEV1% predicted value of 31% from his PFT.
However, this patient walked for 335 m for this 6MWT, which

is even better than general GOLD2 patients. Our model pre-
dicted five GOLD2 walk samples, reflecting the patient is
healthier than GOLD status during the walk test, matching the
evidence of longer walk distance. This patient may be in
transition between GOLD2 and GOLD3.

PHASE II: MODEL EVALUATION WITH UNLABELED
TESTING SET

We train a classification model with all 799 labeled samples
and apply this model on the testing set, forming by the un-
labeled samples. That is, the training set is the samples from
the first walking session, whereas the testing set is the samples
from the subsequent walking session(s), possibly including
status change for the patients. There are 435 unlabeled sam-
ples from 13 unique 6MWT sessions from 10 patients, whereby
3 patients have three 6MWT sessions (5, 16, and 21). Two of 13
walking sessions are classified differently from the patients’
first labeled 6MWT session. For all other patients, classifica-
tions of unlabeled 6MWT sessions are 100% identical to their
first 6MWT session for all samples, as shown in Figure 2.

Six-minute walk distance (6MWD) is considered as a gold
standard for diagnosis of COPD severity, but it is more accurate
for severe COPD than moderate or mild COPD.?° In our exper-
iment, 10 patients performed at least two 6MWT sessions,
usually several weeks apart. There are 13 sessions, because three
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Fig. 2. Evaluation of GOLD classification for unlabeled 6MWT sessions.
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patients also did a Session 3. The initial 6 MWDs average 310.8 +
95.16 m and the following 6MWDs average 367.1+ 106.5m. In
general, the patients walked further in later sessions, as expected
for patients undergoing rehabilitation.

Our analysis indicates that 6 MWD is not sufficient for
measuring COPD severity levels. In our data set, GOLD2 and
GOLD3 patients are not well distinguished by 6MWD. The
6MWD of GOLD3 patients can be as high as 350 m but 6MWD
of GOLD2 patients can be less than 250 m. Note that variation
between two different 6MWDs becomes larger when the dis-
tance is shorter, for example, second 6MWD of GOLD3 Patient
23 is 150 m longer than the initial 6MWD, even though per-
formed just 20 days after beginning the rehabilitation.

Our classification model again had high accuracy, because
such variation on total distance does not affect the stability of
patients’ motion pattern. Eight out of 10 patients are detected
strictly as having same GOLD status for their second or third
6MWT sessions. All 10-sec walking samples of their following
6MWT sessions are identical to their original GOLD status,
even for Patient 23, with the largest variation of 6MWDs. This
“unfair” 8 of 10 model accuracy for later sessions compared
with initial GOLD status is shown in Figure 2.

Two patients not correctly classified at subsequent sessions
have underlying clinical explanations. For Patient 1, the
second 6MWT session is 100% predicted as GOLD2, whereas
the first 6MWT session shows the patient is GOLD3, as FEV1
indicates with spirometry. He had clinical diagnosis of both
COPD and CHF when enrolled in pulmonary rehabilitation. His
medication regimen for CHF was adjusted at start of rehabil-
itation and his motion improved, likely from better control of
his CHF, so this “unfair” comparison of initial GOLD status to
improved GOLD status with the model may be measuring
actual improvement rather than model inaccuracy.

For Patient 16, the second 6MWT session is 68.97% pre-
dicted as GOLD2 and 31.03% predicted as GOLD3, whereas the
first 6MWT session is labeled GOLD3. Patient 16 also has a
third 6MWT, which is 10.34% predicted as GOLD1, 3.45%
predicted as GOLD2, and 86.21% predicted as GOLD3. So the
third session of Patient 16 is decided as GOLD3, same as the
first session.

Patient 16 had diagnosis of sarcoidosis, which is a lung
disease with variable effects on pulmonary function. Sarcoi-
dosis cannot be well categorized by disease severity based on
GOLD criteria, as the physiological limitations are less clearly
correlated with predicted FEV 19, as with COPD. However, this
patient was measured through spirometry for FEV1, indicat-
ing GOLD3, which was correctly classified in Session 1. He
performed three 6MWT sessions at different visits, whereby the
second session was 1 month later than first session and third
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session was 5 months later than first session, beyond the
3-month rehabilitation period. In Session 2, there was mixed
classification with 2/3 intervals indicating GOLD2 and 1/3 in-
tervals indicating GOLD3. The patient was likely within tran-
sition between status levels, because of rehabilitation progress.

During much later Session 3, there was a clinical note
stating that the patient had suffered a significant illness, the
reason for return to rehabilitation. This session was the only
true mixture, with some classifications of GOLD1/2/3, al-
though 869% of the intervals indicated GOLD3 once again. So
lung physiological function likely worsened and the patient
regressed back to original status level. Our model would have
predicted this correctly, with threshold of 85%. Thus, there is
clinical evidence that our model can predict changes in pul-
monary function.

PHASE III: MODEL APPLICATION WITH PASSIVE
MONITOR DURING DAILY ACTIVITIES

Measuring motion is a potential solution for passive mon-
itoring, which has compliance advantages over active phone
applications. That is, patients simply use their personal phones
as usual during daily activities, with no special actions nec-
essary. The home trials are more complex than the hospital
trials because patients do many different activities throughout
the day, while periods when they are carrying their phones are
recorded by continuous monitor.

The passive monitor phone app in the home is a re-
implementation of the active monitor in the clinic, with a
series of cascading filters as input to the predictive model.
Such filters require software for activity recognition, beyond
simply detecting when the phone is moving. This is a well-
studied problem in computer science, using motion sensors to
detect which activity a person is performing.'>?' Moreover,
the sensor positions on human body can be distinguished with
proper training.?* Retrieving good walking passively requires
two binary filters. The activity filter needs only detect good
walking, when the body motion is similar to the walk test.
The position filter needs only detect good position, which is
when the phone sensor works on a position equivalent to L3.
Equivalent positions include empirically pant pockets, coat
pockets, belts, and packs, as normal positions for carrying
phones.? Our model needs walking sessions of 2 min to predict
effectively.23 As the amount is small, the filter can be tuned up
for high precision only during periods with definite mea-
surement of good walking on good position.

We have results from several patients who carried a Galaxy
S5 mini loaded with our passive monitor for 1 week. The good
walking filters on the phone and the server extracted the pe-
riods when qualified sessions were taking place. These home
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sessions with new patients were utilized as input to the uni-
versal model trained by the clinic experiments for status
prediction. The female Patient 30 with COPD/CHF and male
Patient 35 with COPD were correctly assessed as GOLD3 and
GOLD2 during multiple sessions (7 and 75) recognized as good
walking, during their daily activities. In addition, we have a
prospective patient, who is a GOLD1 smoker with COPD.

Conclusions

In this study, we expand our previous results’ utilizing
phone sensors into accurate prediction of pulmonary func-
tion. This requires utilizing demographic features with better
training sets and better statistical models, which analyze
characteristic motions in addition to step counting. Every
patient now has correct modeling of GOLD level, not only
session by session (6min) but also almost every sample
by sample (10-sec).

The trained model is providing perfect computation of pul-
monary function category (classifying GOLD stage). This is
especially true for the first session with pulmonary patients,
whereby spirometry has just measured the function so the
pulmonary function value can be directly compared with the
phone motion value. For senior patients undergoing pulmonary
rehabilitation, respiration and motion are closely correlated.
This is why the classification is so accurate, in the hospital
setting with monitored walk test. The result is encouraging,
even when relaxing constraints on our measurements, moving
closer to daily activities in the real world, for example, patients
bringing smartphones home from rehabilitation, predicting
pulmonary functions during daily activities.

In this prototype, we did not expect all population variation
could be caught up by a model trained with only 25 patients.
However, the model perfectly captured status on 10 of the
same patients, with subsequent walk test data in Phase II ex-
periments, including clinical changes. Moreover, the three
subjects in Phase III experiments did not participate in model
training, yet their status is correctly predicted, even in the
more complex passive monitoring.

We are optimistic that full-scale clinical trials are possible
to predict health status for cardiopulmonary patients. They
need only carry their own phones and do some limited good
walking during the day while the passive monitor records
unobtrusively. We are actively planning Phase IV for field
trials with large populations, extending from 10 patients to
10,000 patients. Care routing can be supported, whereby daily
prediction of pulmonary function is utilized to adjust treatment
in response to dynamic status, along lines of Phase Il and Phase
III. More training with more variation will be necessary for the
universal model to still be accurate for all patients across all
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statuses. As the cheapest smartphones are adequate for re-
cording, large-scale population measurement can become an
everyday reality for health systems.
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