

The “Iron”-y of Iron Overload and Iron Deficiency in Chronic Obstructive Pulmonary Disease

Suzanne M. Cloonan¹, Sharon Mumby², Ian M. Adcock², Augustine M. K. Choi^{1,3}, Kian Fan Chung², and Gregory J. Quinlan⁴

¹Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York; ²Airway Disease and ⁴Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and ³New York-Presbyterian Hospital, New York, New York

ORCID ID: 0000-0001-5301-9926 (S.M.C.).

Chronic obstructive pulmonary disease (COPD) is a debilitating inflammatory lung disease and the third leading cause of death worldwide (1). COPD is characterized by three major disease states: (1) chronic bronchitis or excess mucus production in the larger airways, (2) emphysema or peripheral lung destruction and loss of alveolar attachments, and (3) small airway disease characterized by inflammation and airway remodeling. In addition, several subphenotypes of COPD exist, including some with a more rapid deterioration of disease associated with frequent exacerbations (2). Systemic components also play a significant role, and comorbidities linked to COPD have a marked effect on an individual patient's quality of life and prognosis. Patients with COPD have a greater risk of cardiovascular disease, lung cancer, cachexia, infection, anemia, and polycythemia (3). The overwhelming risk factor for the development of COPD in the Western world is tobacco smoking. In the developing world, air pollution and the indoor burning of biomass fuels are also major risk factors (4). Although

inhaled particulate exposure may act as a common disease driver in COPD, alternative mechanistic processes may be responsible for disease progression and for the incidence of comorbid conditions in COPD.

Genome-wide association studies (GWASs) of patients with COPD have highlighted the potential role of abnormal iron metabolism in COPD (5–9). A complex extracellular and intracellular iron-regulatory network operates within the lungs that is subject to disruption (10). Importantly, occupational exposure to iron-containing particulates and genetic susceptibility loci involving iron-associated genes are associated with manifestations of COPD (5). Moreover, because the airways are constantly exposed to atmospheric iron sources, with cigarette smoking further impacting these processes (10), there is a need for a regulatory network to sequester, detoxify, and excrete this prooxidant species and thereby maintain homeostasis. Abnormal iron regulation contributes to an array of cellular perturbations, including disrupted

mitochondrial and lysosomal function (11–13), intracellular oxidative stress and cell death, and promotion of the growth of bacteria (14).

Disrupted iron homeostasis and cellular iron accumulation in COPD is not just a local phenomenon observed in the lungs; it is also present systemically. Anemia and nonanemic iron deficiency (NAID) often accompany COPD (15), with anemia being an independent predictor of mortality (16–18) and with iron deficiency being strongly associated with frequent exacerbations, in contrast to the presentation in control subjects (19). Biochemical, genetic, or molecular indicators of iron metabolism may therefore provide useful biomarkers of disease severity. The aim of this Pulmonary Perspective is to expand and elaborate on the role of iron in the pathogenesis, susceptibility, and progression of COPD, with a view toward emphasizing the prospective therapeutic interventions for treating both local and systemic iron misregulation in patients with COPD.

(Received in original form February 8, 2017; accepted in final form April 12, 2017)

Supported by the National Institutes of Health (NIH) under NHLBI grants K99 HL125899 (S.M.C.), P01 HL114501, R01 HL055330, R01 HL079904, and P01 HL105339 (A.M.K.C.) and American Lung Association grant RG-348928 (S.M.C.); British Heart Foundation grants PG/14/27/30679 (S.M. and I.M.A.) and PG/15/56/31573 (G.J.Q.); the Medical Research Council/Association of British Pharmaceutical Industries COPDMAP (I.M.A.); the Wellcome Trust (093080/Z/10/Z [I.M.A.]); the National Institute for Health Research (NIHR) Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London (G.J.Q.); the Commission of European Communities grants 115010 and 643607 (K.F.C.); NIHR Senior Investigator Award NF-SI-0515-10016 (K.F.C.); National Institute of Environmental Health Sciences grant H50669 (K.F.C.); National Environmental Research Council grant NE/H012893 (K.F.C.); and Medical Research Council grant G1001367 (K.F.C.).

Author Contributions: S.M.C., S.M., and G.J.Q. wrote the paper; I.M.A., A.M.K.C., and K.F.C. provided critical analysis and discussions. All authors reviewed and approved the final manuscript.

Correspondence and requests for reprints should be addressed to Suzanne M. Cloonan, Ph.D., Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065. E-mail: szc2009@med.cornell.edu

This article has an online supplement, which is accessible from this issue's table of contents at www.atsjournals.org

Am J Respir Crit Care Med Vol 196, Iss 9, pp 1103–1112, Nov 1, 2017

Copyright © 2017 by the American Thoracic Society

Originally Published in Press as DOI: 10.1164/rccm.201702-0311PP on April 14, 2017

Internet address: www.atsjournals.org

Iron Handling in the Lung

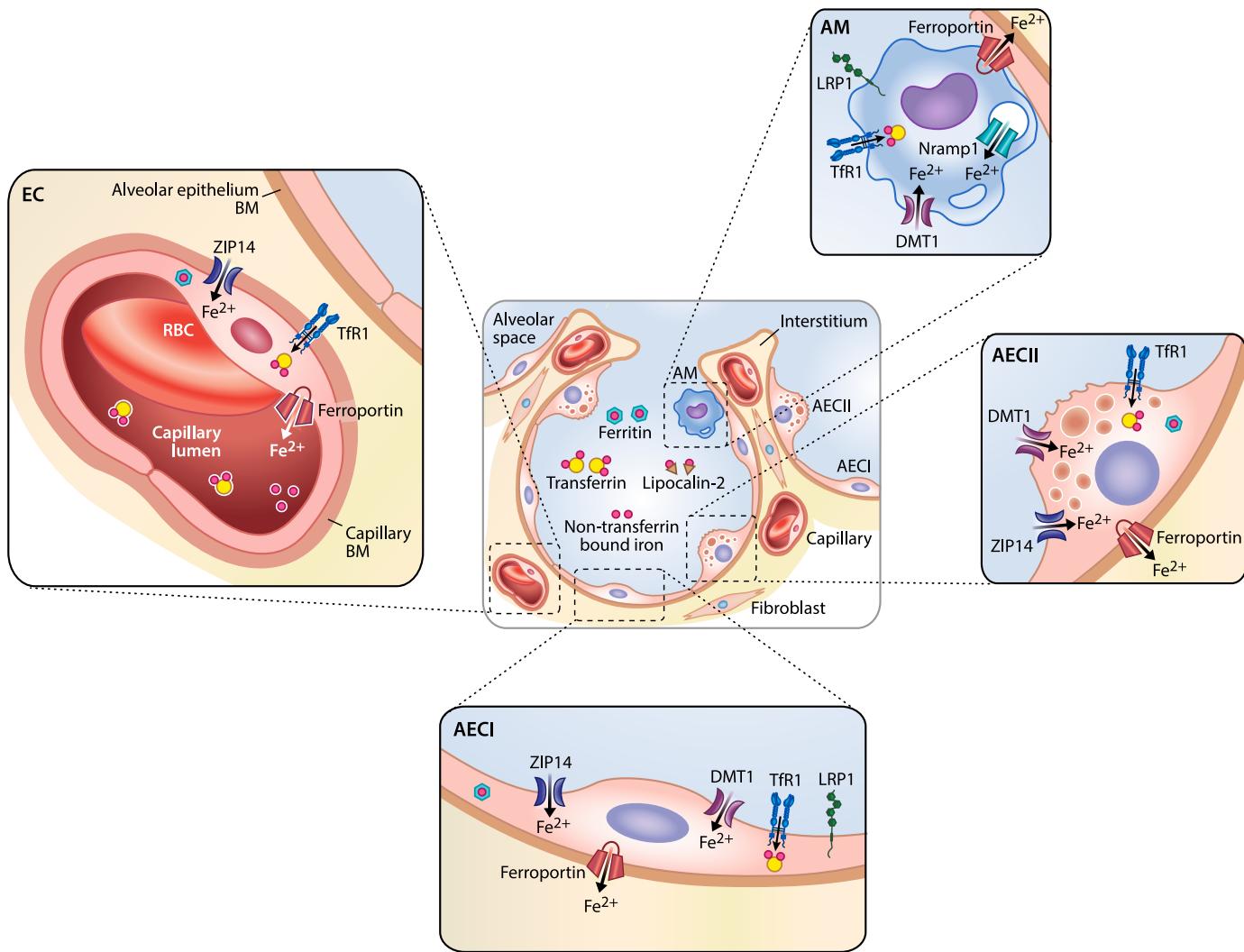
Iron is an essential nutrient used in almost every aspect of normal cell function. All cells require iron to proliferate, iron being essential for DNA biosynthesis, protein function, and cell-cycle progression. In healthy organisms, iron is maintained at a stable concentration (0.1%) in the plasma (bound to the transport protein transferrin) to deliver iron largely to the erythropoietic bone marrow but also to every cell in the body (14). Erythropoietic tissues require up to 20 mg of iron to maintain heme biosynthesis. The majority of total iron in the body is therefore bound by Hb in erythrocytes (approximately 50%) or is present in storage compartments of hepatocytes and macrophages (approximately 25%). Most of the iron that enters the extracellular fluid is recycled from senescent erythrocytes and is found in a chelated state (both ferrous $[Fe^{2+}]$ and ferric $[Fe^{3+}]$ forms of iron are highly reactive) to proteins or organic chelators (14). Globally, iron-regulatory responses are controlled via the action of the small peptide hormone hepcidin.

The human lung contains about 0.4–0.9 mg Fe/g dry weight (20, 21), which is comparable to the iron content of the liver (0.2–2 mg Fe/g dry weight) (22, 23) but considerably less than that of the heart (2–6 mg Fe/g dry weight) (24). The airways are exposed to exogenous inhaled iron sources on a continuous basis. Iron is the most abundant metal present in the atmosphere. In remote areas, iron levels in air range from 50 to 90 ng/m³, and at urban sites, levels are about 1.3 μ g/m³. Concentrations up to 12 μ g/m³ have been reported in the vicinity of iron- and steel-producing plants (25), and iron is one of the most abundant metals in urban and rural particulate matter (10). Environmental pollutants complex iron and convert it into to a more soluble state that can be readily absorbed by the lung. The upper respiratory tract is exposed to about 10–25 μ g of iron daily (25), approximately 1/1000th of that in the gastrointestinal tract.

Little is known about the mechanisms by which the lung acquires iron independently to inhalation (only 0.025 mg). In a manner similar to that of other organs in the body, the lung most likely obtains its iron from the pulmonary vasculature in the form of transferrin-bound iron, lactoferrin-bound iron, cell-free Hb/heme, or non-transferrin-bound

iron (citrate- or acetate-bound iron). Both alveolar macrophages (AMs) and the bronchial and alveolar epithelia are able to sequester iron by various mechanisms, including receptor-mediated uptake of Fe^{3+} , followed by safe storage within ferritin. (Ferritin is effective in limiting extracellular iron-catalyzed oxidative stress.) In the lung, intracellular iron import is undertaken chiefly by the transferrin receptor 1 and the divalent metal transporter 1 (also known as SLC11A2), and in macrophages and neutrophils by the natural resistance-associated macrophage protein 1 (also known as SLC11A1) (26, 27). Lung cells also express other iron uptake molecules, including ZIP-14 (also known as SLC39A14), and the lactoferrin receptor low-density lipoprotein receptor-related protein 1 (26, 28–30) (Figure 1).

Iron is localized mostly inside lung tissues (55%), with remaining metal associated with bronchoalveolar lavage (BAL) protein as bound (22%) and unbound (5%) forms (31). One of the most abundant genes in lung tissue is ferritin light chain (32), which, in addition to ferritin heavy chain, is localized to lung-resident leukocytes such as AMs and alveolar epithelial cells, and endothelial cells (ECs) (28–30). Intracellular iron homeostasis is controlled chiefly by post-transcriptional feedback mechanisms involving the iron-regulatory proteins (IRPs). These cytosolic proteins (IRP-1 and IRP-2) bind to iron-responsive elements on untranslated regions of mRNAs that code for proteins that are involved with iron uptake (transferrin receptor 1 and divalent metal transporter 1), storage (ferritin light chain, ferritin heavy chain), and export (ferroportin), thereby regulating cellular iron availability (33).


Regulating extracellular free iron levels in the lung, numerous soluble iron-related proteins or carriers are found in BAL fluid, including transferrin (one of the most abundant BAL proteins [44.5%]) (34), ferritin (35), lactoferrin (a glycoprotein belonging to the transferrin family that sequesters iron) (36), ceruloplasmin (a ferroxidase that oxidizes iron to the Fe^{3+} state) (37), and lipocalin 2 (a siderophore that sequesters iron) (38), all of which are thought to be produced by secretory leukocytes, epithelial cells (EPIs), and/or ECs. Lung EPIs, AMs, and ECs transport iron out of the cell via the transmembrane iron transporter

ferroportin (also known as SLC40A1) (39; Figure 1). Cellular iron efflux is also more subtly regulated by the plasma copper protein ceruloplasmin, the ferroxidase activity of which is required to stabilize ferroportin (37). Ferroportin-mediated iron release occurs at the apical membrane of ECs and plays an important role in iron detoxification (39).

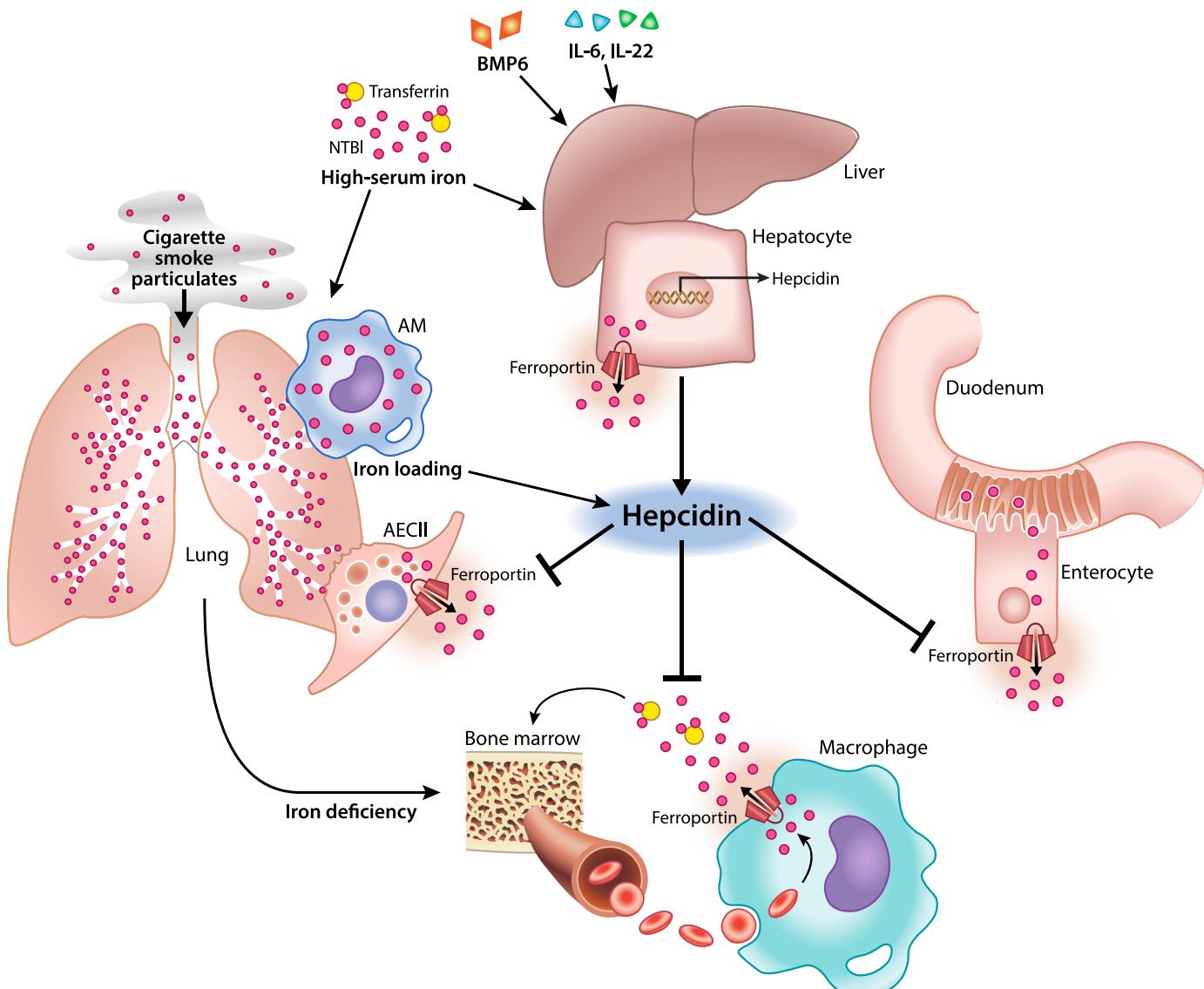
In macrophages and EPIs, ferroportin function is regulated by hepcidin (encoded by *HAMP*), a hormone produced chiefly in the liver, which regulates, and is in turn regulated by, systemic iron levels (40) (Figure 2). Hepcidin expression and release are induced by increased serum iron, by bone morphogenetic protein signaling (41), and by a number of proinflammatory cytokines, including IL-6 and IL-22 (42). Upregulation of hepcidin expression results in ferroportin endocytosis and proteolysis, preventing cellular iron export and reducing the influx of iron into the plasma from stores, as well as blocking further absorption of dietary iron (14). This may have profound consequences for the cell, particularly if iron-uptake stratagems remain operational, and may result in cellular iron accumulation and systemic hypoferremia or iron-deficiency (ID) anemia (40). Production of hepcidin by AMs has also been described (43), indicating a specific local role in the lung for this hormone.

Iron and Infection in the Lung

Given that iron acquisition is critical to the metabolism and growth of most microbes, limiting iron availability through the safe transport and sequestration of iron is of great importance in lung defense. Virtually all successful pathogens have evolved to acquire iron locally from their host, most by releasing siderophores, which scavenge iron from the host. During infection, the host chelates serum iron to transferrin, lactoferrin, and ceruloplasmin and to reticuloendothelial macrophages, and it also decreases the release of iron into the circulation by increasing hepcidin and ferritin expression. Lung infection results in increased iron-storage pathways inside cells and host production of lipocalin 2, (also known as neutrophil gelatinase-associated lipocalin), which is secreted by neutrophils, AMs, and EPIs to capture bacterial siderophores and sequester iron away from the pathogen (44–46). Infiltrating or

Figure 1. Iron import and export in the lung. Both alveolar macrophages and the bronchial and alveolar epithelial cells are able to sequester iron through transferrin receptor 1, divalent metal transporter 1 (DMT1, also known as SLC11A2), and in macrophages and neutrophils by natural resistance-associated macrophage protein 1 (NRAMP1, also known as SLC11A1). Lung cells also express other iron-uptake molecules, including ZIP-14 (also known as SLC39A14) and the lactoferrin receptor low-density lipoprotein receptor-related protein 1 (LRP1). Lung epithelial cells, alveolar macrophages, and endothelial cells transport iron out of the cell via the transmembrane iron transporter ferroportin (also known as SLC40A1). AECI = alveolar epithelial cell type I; AECII = alveolar epithelial cell type II; AM = alveolar macrophage; BM = basement membrane; EC = endothelial cell; RBC = red blood cell; TfR1 = transferrin receptor 1; ZIP14 = zinc transporter ZIP14.

resident leukocytes also produce or recycle iron, releasing it into the alveolar space.


Macrophages play a key role in host-driven inflammatory and immune responses to infection and injury, and they also have other homeostatic functions, including facilitating body iron turnover and storage (14). AMs act as key regulators of iron in the lower respiratory tract. Macrophages can be differentially phenotyped, dependent on environmental and biological signals, to a variety of phenotypes, including the classic M1 or M2 macrophages. In broad terms, M1 cells exhibit a proinflammatory/bactericidal phenotype, whereas M2 cells display

antiinflammatory, scavenging, and tissue repair properties (47). Iron-regulatory responses differ between these phenotypes: M1 cells accumulate iron as part of a bacteriostatic stratagem linked to the anemia of chronic inflammation, whereas the opposite is the case for M2 cells, where iron release is favored (48).

Cigarette Smoking Alters Iron Homeostasis in the Lung

Regular cigarette smoking greatly increases lung exposure to iron. Tobacco smoke

contains 440–1,150 $\mu\text{g/g}$ of iron (49); however, only 0.06% of this is transferred into mainstream cigarette smoke (CS). This equates to approximately 5.2–13.8 μg of iron daily in a subject smoking 20 cigarettes daily (50). Both current and former smokers have abnormally high levels of iron as a result of iron having a high affinity for oxygen donor ligands found in CS particles, leading to a higher rate of deposition in the lung (51). Furthermore, total nonheme iron and ferritin levels are increased in BAL fluid and in AMs of smokers compared with nonsmokers (49, 51–58), and redox-active iron levels in

Figure 2. Hepcidin and systemic iron homeostasis in chronic obstructive pulmonary disease (COPD). Hepcidin (encoded by *HAMP*) is a hormone produced chiefly in the liver, which regulates, and is in turn regulated by, systemic iron levels. Hepcidin expression and release is induced by increased serum iron; by bone morphogenetic protein 6 (BMP6) signaling; and by a number of proinflammatory cytokines, including IL-6 and IL-22. Up-regulation of hepcidin expression results in ferroportin endocytosis and proteolysis, preventing cellular iron export and reducing the influx of iron into the plasma from stores, as well as blocking further absorption of dietary iron. This may have profound consequences for the cell, particularly if iron-uptake stratagems remain operational, and may result in cellular iron accumulation and systemic hypoferremia or iron-deficiency anemia. Consistent with increased iron loading into cells, tissues, and iron-chelating proteins, serum hepcidin is increased in patients with COPD. Increased hepcidin may result in less iron delivery to extracellular fluid, in macrophages failing to release recycled iron, and in a rapid drop in systemic iron levels, leading to iron deficiency. AECII = alveolar epithelial cell type II; AM = alveolar macrophage; NTBI = non-transferrin bound iron.

exhaled breath condensate from smokers are increased compared with those of nonsmoking control subjects (59).

Systemically, serum ferritin levels are increased in former or current smokers (51, 60), a phenomenon thought to associate with spirometric resistance to CS (61), with higher serum iron being beneficial to lung health (62). Cigarette smoking increases blood Hb levels (63, 64), suggesting

protection from anemia; however, CS may affect the incidence as well as the diagnosis of anemia by negatively affecting hematopoiesis and inducing polycythemia (65). Smoking may increase the risk of anemia during pregnancy, may worsen iron accumulation, and may exacerbate preexisting iron-related conditions such as sickle cell disease (60, 66, 67). Smokers also have lower serum ceruloplasmin

levels than nonsmokers, suggesting impaired protection from reactive Fe^{2+} (68).

Iron and COPD

Genetic and Epidemiological Evidence

Researchers in multiple gene expression and genetic association studies have examined

the onset, progression, and severity of disease in COPD (69). Some of these differentially expressed genes indicate a role for iron in the genetic susceptibility to COPD. The most compelling evidence is for *IRP2* or iron-responsive element-binding protein 2 (*IREB2*). *IRP2* is associated with COPD susceptibility (5–9) and with pulmonary artery enlargement in COPD (70). This association may be sex specific (8, 71) and independent of smoking (72, 73), and it may also associate with severe alpha-1 antitrypsin (AAT) deficiency (71) and lung cancer (74, 75). *IRP2* is located within a cluster of genes on chromosome 15q25, which includes several components of the nicotinic acetylcholine receptor. The 15q25 locus has also been associated with lung cancer, peripheral arterial disease, and nicotine addiction (70, 75–78).

Further evidence for the role of iron in genetic susceptibility to COPD includes observations that single-nucleotide polymorphism variants in the IL-6 gene (*IL6* –174G/C) associate with a rapid decline in FEV₁ (1) and susceptibility to COPD in smokers (79). IL-6 is important in the pathogenesis of COPD and is known to regulate iron homeostasis through induction of hepcidin expression (42). Genetic mutations in the Z allele at the AAT gene serpin family A member 1 (*SERPINA1*) have also been linked to altered systemic iron homeostasis (80, 81). Interestingly, some hemochromatosis (*HFE*) mutations are also strongly associated with AAT deficiency (82). Other potential genetic associations related to iron metabolism include porphyria, which results in disrupted mitochondrial iron/heme metabolism and has been linked to greater susceptibility to COPD (83). Epidemiological evidence derived from ferrous metallurgy workers demonstrated an increased risk of developing COPD, along with other respiratory symptoms, including persistent airway inflammation and compromised lung function, compared with nonindustry control subjects (84–87).

Increased Iron Loading in COPD

As is true of smokers, iron content and iron-binding molecules, including ferritin, lipocalin 2, and lactoferrin, are all increased in the lung tissue, sputum, BAL fluid, and AMs of patients with COPD (20, 35, 38, 51, 53, 55). Iron levels increase with disease severity and with reductions in lung function. *IRP-2* protein and mRNA levels increase in COPD lung tissue (5), and there is a

consequent reduction in the amount of free iron observed in exhaled breath condensate (59). Table E1 in the online supplement details these biomarkers together with their normal functional roles.

Despite iron loading occurring in the lungs of patients with COPD, this is not consistently reflected in systemic markers of iron metabolism. Serum iron is higher during exacerbations of COPD, and serum ferritin and lipocalin 2 levels are increased in COPD (18, 51, 60). Overall, higher serum iron may be beneficial and predictive of better spirometric values in older patients (61), and it is associated with a reduced the risk of developing COPD (88). Nevertheless, some studies have shown no difference in serum iron levels between patients with COPD and control subjects (Table E1).

Consistent with increased iron loading into cells, tissues, and iron-chelating proteins, serum hepcidin is increased in patients with COPD (18, 89). Increased hepcidin may result in less iron delivery to extracellular fluid, in macrophages failing to release recycled iron, and in a rapid drop in systemic iron levels, leading to ID (Figure 2) (90). Over time, elevations in hepcidin resulting from chronic inflammation may not respond appropriately to declining iron stores and may induce a functional ID. Interestingly, patients with COPD may have an inappropriate suppression of hepcidin in response to ID (18, 91) and may have less hepcidin expression in severe end-stage disease (91).

Prevalence of Anemia and ID in COPD

NAID is characterized as the decrease of total body iron content defined by serum ferritin concentrations less than 100 µg/L. In general, NAID can be characterized as absolute ID (in which iron stores are low) or functional ID (in which iron supply is inadequate to meet the demand for erythropoiesis and other cellular functions despite normal or abundant body iron stores). Functional ID frequently arises from a chronic inflammatory state associated with increased hepcidin and increased ferritin, and it is therefore hard to define in the face of chronic inflammation.

NAID is observed in 40 to 50% of patients with COPD (18, 92). However, existing strategies to define ID in patients with COPD may be confounded by pseudo increases in inflammation-associated ferritin (93), signifying that ID may be

underdiagnosed in COPD. In addition, ID could be particularly deleterious in patients with COPD with extrapulmonary manifestations such as pulmonary hypertension (PH). PH is one of the strongest predictors of decreased survival in COPD, and there is some evidence to suggest that ID augments PH in COPD (18, 93). In COPD, NAID is also associated with hypoxemia (independently of airflow limitation) (18), and ID also disturbs normal responses to hypoxia, as evidenced by exaggerated hypoxic PH that is reversed by subsequent iron administration (94).

ID anemia occurs when ID is sufficiently severe to reduce erythropoiesis. Only a small percentage of patients with COPD with ID present with concurrent anemia, suggesting that these two entities should be considered separately (95). See Table E2 for studies related to ID and anemia in COPD.

Anemia is defined as a reduction in one or more of the major red blood cell (RBC) measurements: Hb concentration, hematocrit, or RBC count. Anemia is a frequent comorbidity found in 5 to 30% of patients with COPD and predicts a worse outcome (90), both in terms of hospitalization with an acute exacerbation (16) and in the long term (17). Low Hb levels observed in anemic patients with COPD may result in lower exercise capacity and anaerobic threshold. In patients with NAID and COPD, exercise limitation might be a result of diminished oxygen use in the muscle cells caused by impaired function of iron-containing enzymes (96).

Cellular Repercussions of Abnormal Iron Homeostasis in COPD

Inappropriate levels of tissue iron (accumulation or deficit) can result in alterations in cellular homeostasis. In general, iron accumulates inside cells and tissues of *in vitro* and *in vivo* COPD models (49, 51, 57). Increased cellular iron may be both a pathogenic (33) and a protective (55) stratagem in COPD. Either way, cellular iron retention beyond normal limits has profound consequences for lung cell function and survival. Iron accumulation enhances the production of reactive oxygen species and induces mitochondrial dysfunction (97, 98), both of which are extensively documented in patients with COPD and model systems (49, 51, 57, 99–103). Functionally, exposure of

pulmonary EPIs or AMs to iron-containing particulates or CS results in apoptosis, proliferation, and fibrosis (104); increased release of cytokines (105); and impaired antimicrobial activity (106). All of these have potential implications for COPD.

Mitochondria are the main cellular consumers of iron, and a number of vital cellular processes rely on precise mitochondrial iron regulation. Failure to correctly regulate mitochondrial iron leads to mitochondrial dysfunction, which is observed in response to wood smoke (loss of mitochondrial iron [107]) and CS (increased mitochondrial iron [33]). In mice, *IRP2* deficiency protects against CS-induced COPD and CS-induced mitochondrial iron loading. Importantly, mitochondrial iron chelation or the use of iron-restricted diets ameliorated such responses, again highlighting the important role of disrupted iron homeostasis at the cellular/subcellular level in COPD (33).

Removal of damaged mitochondria by autophagy (mitophagy) may counterbalance abnormal cellular iron homeostasis (108). However, iron accumulation resulting from mitophagy and from the breakdown of iron-saturated ferritin, localized as hemosiderin, coupled with an acidic environment, maintains a prooxidant (Fe^{2+}) iron pool within the lysosome (11). Lysosomal membranes are vulnerable to iron-catalyzed peroxidation and rupture under such circumstances, releasing more reactive iron into the cytosol (109). CS induces mitophagy *in vitro* (12, 13), and loss of mitophagy is protective in murine models of COPD (110), suggesting that increased mitophagy, though it is a protective strategy, may ultimately be detrimental in the context of COPD.

Therapeutic Opportunities

Exposure of the respiratory system to particles (smoke, pollution) increases the uptake of iron into lung cells and BAL fluid of the lung. Increased inflammation in response to such exposures also results in the marked sequestration of iron into serum iron, iron storage proteins, and AMs, as well as decreased release of iron into the circulation by increasing hepcidin and ferritin. Increased iron deposition in the lungs of smokers and patients with COPD is therefore a key pathophysiological feature of COPD (20, 35, 38, 51, 53, 55).

Genetic factors may enhance or exacerbate this pathophysiological component of COPD (5–9). Increased iron deposition in the lung renders the lung more susceptible to respiratory infections such as pneumonia while altering the normal physiological functions of AMs, alveolar epithelial cells, and other lung cells (14).

Inhaled iron chelators may therefore offer potential therapeutic relief for patients with acute exacerbations of COPD (33, 111). However, further studies are required to assess the effects of using inhaled iron chelators on systemic iron metabolism. In addition, selecting the type of iron chelator will be crucial in eliciting the correct therapeutic effect. Intracellular iron chelators such as deferiprone, which specifically target intracellular iron deposits and relocate them outside the cell to prevent cellular iron loading (112, 113), may have more therapeutic efficacy than regular cell-impermeable iron chelators such as deferoxamine (114).

During acute COPD exacerbations, repeated bursts of inflammation may lead to further dysfunction of iron homeostasis, with increased levels of inflammatory cytokines and alterations in the synthesis, release, and activity of hepcidin playing a significant role. As described above, elevated hepcidin levels result in a functional ID, with or without anemia (17). These individuals are not classically iron deficient; rather, their iron is unavailable for other physiological processes (18). Several strategies to antagonize hepcidin are currently under development and include decreasing endogenous hepcidin production (antagonists of hepcidin-stimulatory pathways such as bone morphogenetic protein or IL-6 signaling), neutralizing hepcidin peptides (antihepcidin antibodies or engineered protein or nucleic acid-based binders such as anticalins and Spiegelmers), and interfering with hepcidin binding to ferroportin using antiferroportin antibodies or small molecules such as fursultiamine (40). These have proved successful in animal models, and several agents are being evaluated in clinical trials for treatment of anemia of cancer and chronic kidney disease (40). However, whereas hepcidin is increased in stable COPD and during acute exacerbations (18, 91), patients with severe COPD may have lower hepcidin levels. Further studies are therefore required to more extensively define the role of hepcidin

in the development and progression of COPD.

Several studies have assessed the therapeutic benefit of blood transfusions and iron supplementation to treat anemic patients with COPD (115, 116). RBC transfusion reduces mean minute ventilation and work of breathing in anemic patients with COPD, as well as improves unloading of the respiratory muscles in ventilated patients with COPD with anemia (115, 116). Erythropoiesis-stimulating agents in combination with intravenous iron improves anemia and possibly improves dyspnea in anemic patients with COPD (92). The relationship between iron, hypoxia, inflammation, and erythropoietin is complex (117–120), and patients with hypoxia may benefit from ensuring adequate iron status (121). Intravenous iron therapy may also have beneficial effects for ID patients with COPD independently of Hb or respiratory outcomes, especially those patients with extrapulmonary conditions such as PH. Intravenous iron therapy has been shown to improve the symptoms and quality of life of patients with chronic heart failure and ID, with or without anemia (122).

Although iron supplementation therapy may prove beneficial, the risks must be weighed against the potential benefits for each patient. Iron supplementation is known to cause oxidative stress in the body (123), and intravenous iron provided in excess may lead to increased morbidity and mortality (124). In addition, there is some evidence to suggest that serum ferritin reduction improves peripheral arterial disease in smokers (125) and that phlebotomy may improve exercise tolerance in patients with COPD (with high hematocrit) with PH and severe secondary polycythemia, provided these patients do not enter an iron-deficient state (126, 127).

Conclusions

Cellular iron accumulation is a common manifestation observed in patients with COPD. Although anemia of inflammation is a systemic response, the consequences for the lungs and airways may be more profound, not least because these organs are continually exposed to exogenous iron sources, including particulate matter and, for some, continuing CS exposure. In addition, functional ID in COPD may be

underdiagnosed and may represent an entirely separate entity from ID with anemia, especially in relation to extrapulmonary manifestations such as PH. Strategies to define ID in patients with COPD may be confounded by pseudo increases in inflammation-associated ferritin and the presence of ID before a loss of Hb or mean corpuscular volume. The use of a more accurate definition of ID (ferritin

between 100 and 300 $\mu\text{g/L}$ and transferrin saturation $<20\%$) and the complementary measurement of soluble transferrin receptor or hepcidin may offer a more sensitive assessment of iron status and response to therapy in patients with COPD.

Additional studies are required not only to accurately define ID in COPD but also to investigate the balance between

alleviating iron overload in the lung with systemic ID. Therapeutic approaches must consider both sides of the coin. ■

Author disclosures are available with the text of this article at www.atsjournals.org.

Acknowledgment: The authors thank Peter Robbins (University of Oxford) for valuable discussion and input.

References

- Burney PG, Patel J, Newson R, Minelli C, Naghavi M. Global and regional trends in COPD mortality, 1990–2010. *Eur Respir J* 2015;45: 1239–1247.
- Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. *Lancet* 2007;370:765–773.
- Decramer M, Janssens W, Miravitles M. Chronic obstructive pulmonary disease. *Lancet* 2012;379:1341–1351.
- Mortimer K, Gordon SB, Jindal SK, Accinelli RA, Balmes J, Martin WJ II. Household air pollution is a major avoidable risk factor for cardiorespiratory disease. *Chest* 2012;142:1308–1315.
- DeMeo DL, Mariani T, Bhattacharya S, Srivasta S, Lange C, Litonjua A, Bueno R, Pillai SG, Lomas DA, Sparrow D, et al. Integration of genomic and genetic approaches implicates *IREB2* as a COPD susceptibility gene. *Am J Hum Genet* 2009;85:493–502.
- Chappell SL, Daly L, Lotya J, Alsaegh A, Guetta-Baranes T, Roca J, Rabinovich R, Morgan K, Millar AB, Donnelly SC, et al. The role of *IREB2* and transforming growth factor β -1 genetic variants in COPD: a replication case-control study. *BMC Med Genet* 2011;12:24.
- Du Y, Xue Y, Xiao W. Association of *IREB2* gene rs2568494 polymorphism with risk of chronic obstructive pulmonary disease: a meta-analysis. *Med Sci Monit* 2016;22:177–182.
- Hardin M, Zielinski J, Wan ES, Hersh CP, Castaldi PJ, Schwinder E, Hawrylkiewicz I, Sliwinski P, Cho MH, Silverman EK. *CHRNA3/5, IREB2*, and *ADCY2* are associated with severe chronic obstructive pulmonary disease in Poland. *Am J Respir Cell Mol Biol* 2012;47:203–208.
- Ding Y, Yang D, Xun X, Wang Z, Sun P, Xu D, He P, Niu H, Jin T. Association of genetic polymorphisms with chronic obstructive pulmonary disease in the Hainan population: a case-control study. *Int J Chron Obstruct Pulmon Dis* 2014;10:7–13.
- Ghio AJ. Disruption of iron homeostasis and lung disease. *Biochim Biophys Acta* 2009;1790:731–739.
- Kurz T, Gustafsson B, Brunk UT. Cell sensitivity to oxidative stress is influenced by ferritin autopagy. *Free Radic Biol Med* 2011;50:1647–1658.
- Ballweg K, Mutze K, Königshoff M, Eickelberg O, Meiners S. Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells. *Am J Physiol Lung Cell Mol Physiol* 2014;307:L895–L907.
- Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N, Yoshida M, Hara H, Minagawa S, Wakui H, Fujii S, et al. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. *Autophagy* 2015;11:547–559.
- Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. *Nat Rev Immunol* 2015;15:500–510.
- John M, Lange A, Hoernig S, Witt C, Anker SD. Prevalence of anemia in chronic obstructive pulmonary disease: comparison to other chronic diseases. *Int J Cardiol* 2006;111:365–370.
- Martinez-Rivera C, Portillo K, Muñoz-Ferrer A, Martínez-Ortiz ML, Molins E, Serra P, Ruiz-Manzano J, Morera J. Anemia is a mortality predictor in hospitalized patients for COPD exacerbation. *COPD* 2012;9:243–250.
- Boutou AK, Karrar S, Hopkinson NS, Polkey MI. Anemia and survival in chronic obstructive pulmonary disease: a dichotomous rather than a continuous predictor. *Respiration* 2013;85:126–131.
- Nickol AH, Frise MC, Cheng HY, McGahey A, McFadyen BM, Harris-Wright T, Bart NK, Curtis MK, Khandwala S, O'Neill DP, et al. A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. *BMJ Open* 2015;5:e007911.
- Mackay AJLM, Branigan BS, Baribaud F, George SN, Donaldson GC, Wedzicha JA. Serum amyloid A and hepcidin elevations characterise bacterial-associated exacerbations in frequently exacerbating COPD patients [abstract]. *Am J Respir Crit Care Med* 2015;191:A6336.
- Takemoto K, Kawai H, Kuwahara T, Nishina M, Adachi S. Metal concentrations in human lung tissue, with special reference to age, sex, cause of death, emphysema and contamination of lung tissue. *Int Arch Occup Environ Health* 1991;62:579–586.
- Díez M, Arroyo M, Cerdán FJ, Muñoz M, Martín MA, Balbrea JL. Serum and tissue trace metal levels in lung cancer. *Oncology* 1989;46:230–234.
- Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. *Magn Reson Imaging Clin N Am* 2010;18:359–381.
- Van Eijk HG, Wiltink WF, Bos G, Goossens JP. Measurement of the iron content in human liver specimens. *Clin Chim Acta* 1974;50:275–280.
- Carpenter JP, He T, Kirk P, Roughton M, Anderson LJ, de Noronha SV, Sheppard MN, Porter JB, Walker JM, Wood JC, et al. On T2* magnetic resonance and cardiac iron. *Circulation* 2011;123:1519–1528.
- World Health Organization (WHO). Guidelines for drinking-water quality. 2nd ed. Geneva: WHO; 1996.
- Ghio AJ, Carter JD, Richards JH, Richer LD, Grissom CK, Elstad MR. Iron and iron-related proteins in the lower respiratory tract of patients with acute respiratory distress syndrome. *Crit Care Med* 2003;31:395–400.
- Kim J, Molina RM, Donaghey TC, Buckett PD, Brain JD, Wessling-Resnick M. Influence of DMT1 and iron status on inflammatory responses in the lung. *Am J Physiol Lung Cell Mol Physiol* 2011;300: L659–L665.
- Du Y, Guo M, Whitsett JA, Xu Y. 'LungGENS': a web-based tool for mapping single-cell gene expression in the developing lung. *Thorax* 2015;70:1092–1094.
- Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al. Tissue-based map of the human proteome. *Science* 2015;347: 1260419.
- Lindskog C, Fagerberg L, Hallström B, Edlund K, Hellwig B, Rahnenführer J, Kampf C, Uhlén M, Pontén F, Micke P. The lung-specific proteome defined by integration of transcriptomics and antibody-based profiling. *FASEB J* 2014;28:5184–5196.
- Heilig EA, Thompson KJ, Molina RM, Ivanov AR, Brain JD, Wessling-Resnick M. Manganese and iron transport across pulmonary epithelium. *Am J Physiol Lung Cell Mol Physiol* 2006;290: L1247–L1259.
- Wu L, Ma L, Nicholson LF, Black PN. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. *Respir Med* 2011;105:329–336.
- Cloonan SM, Glass K, Lauchó-Contreras ME, Bhashyam AR, Cervo M, Pabón MA, Konrad C, Polverino F, Siempio II, Pérez E, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. *Nat Med* 2016;22:163–174.
- Szabó S, Barbu Z, Lakatos L, László I, Szabó A. Local production of proteins in normal human bronchial secretion. *Respiration* 1980;39: 172–178.

35. Fracchia A, Ubbiali A, El Bitar O, Pacetti M, Sommariva E, Arreghini M, Longhini E, Bonalumi GP. A comparative study on ferritin concentration in serum and bilateral bronchoalveolar lavage fluid of patients with peripheral lung cancer versus control subjects. *Oncology* 1999;56:181–188.

36. Ghio AJ, Carter JD, Dailey LA, Devlin RB, Samet JM. Respiratory epithelial cells demonstrate lactoferrin receptors that increase after metal exposure. *Am J Physiol* 1999;276:L933–L940.

37. Kono S, Yoshida K, Tomosugi N, Terada T, Hamaya Y, Kanaoka S, Miyajima H. Biological effects of mutant ceruloplasmin on hepcidin-mediated internalization of ferroportin. *Biochim Biophys Acta* 2010; 1802:968–975.

38. Iwamoto H, Gao J, Koskela J, Kinnula V, Kobayashi H, Laitinen T, Mazur W. Differences in plasma and sputum biomarkers between COPD and COPD–asthma overlap. *Eur Respir J* 2014;43:421–429.

39. Yang F, Haile DJ, Wang X, Dailey LA, Stonehuerner JG, Ghio AJ. Apical location of ferroportin 1 in airway epithelia and its role in iron detoxification in the lung. *Am J Physiol Lung Cell Mol Physiol* 2005; 289:L14–L23.

40. Arezes J, Nemeth E. Hepcidin and iron disorders: new biology and clinical approaches. *Int J Lab Hematol* 2015;37:92–98.

41. Babbitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. *Nat Genet* 2006;38:531–539.

42. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. *J Clin Invest* 2004; 113:1271–1276.

43. Nguyen NB, Callaghan KD, Ghio AJ, Haile DJ, Yang F. Hepcidin expression and iron transport in alveolar macrophages. *Am J Physiol Lung Cell Mol Physiol* 2006;291:L417–L425.

44. Carraway MS, Ghio AJ, Taylor JL, Piantadosi CA. Induction of ferritin and heme oxygenase-1 by endotoxin in the lung. *Am J Physiol* 1998; 275:L583–L592.

45. Damron FH, Oglesby-Sherrouse AG, Wilks A, Barbier M. Dual-seq transcriptomics reveals the battle for iron during *Pseudomonas aeruginosa* acute murine pneumonia. *Sci Rep* 2016;6:39172.

46. Seifert M, Nairz M, Schroll A, Schrettl M, Haas H, Weiss G. Effects of the *Aspergillus fumigatus* siderophore systems on the regulation of macrophage immune effector pathways and iron homeostasis. *Immunobiology* 2008;213:767–778.

47. Galván-Peña S, O'Neill LA. Metabolic reprogramming in macrophage polarization. *Front Immunol* 2014;5:420.

48. Recalcati S, Locati M, Gammella E, Invernizzi P, Cairo G. Iron levels in polarized macrophages: regulation of immunity and autoimmunity. *Autoimmun Rev* 2012;11:883–889.

49. Thompson AB, Bohling T, Heires A, Linder J, Rennard SI. Lower respiratory tract iron burden is increased in association with cigarette smoking. *J Lab Clin Med* 1991;117:493–499.

50. Mussalo-Rauhamaa H, Leppänen A, Salmela SS, Pyysalo H. Cigarettes as a source of some trace and heavy metals and pesticides in man. *Arch Environ Health* 1986;41:49–55.

51. Ghio AJ, Hilborn ED, Stonehuerner JG, Dailey LA, Carter JD, Richards JH, Crissman KM, Foronjy RF, Uyemilami DL, Pinkerton KE. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. *Am J Respir Crit Care Med* 2008;178:1130–1138.

52. Mateos F, Brock JH, Pérez-Arellano JL. Iron metabolism in the lower respiratory tract. *Thorax* 1998;53:594–600.

53. Corhay JL, Weber G, Bury T, Mariz S, Roelandts I, Radermecker MF. Iron content in human alveolar macrophages. *Eur Respir J* 1992;5:804–809.

54. McGowan SE, Henley SA. Iron and ferritin contents and distribution in human alveolar macrophages. *J Lab Clin Med* 1988;111:611–617.

55. Philippot Q, Deslée G, Adair-Kirk TL, Woods JC, Byers D, Conradi S, Dury S, Perotin JM, Lebargy F, Cassan C, et al. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease. *PLoS One* 2014;9:e96285.

56. Wesselius LJ, Flowers CH, Skikne BS. Alveolar macrophage content of isoferritins and transferrin: comparison of nonsmokers and smokers with and without chronic airflow obstruction. *Am Rev Respir Dis* 1992;145:311–316.

57. Wesselius LJ, Nelson ME, Skikne BS. Increased release of ferritin and iron by iron-loaded alveolar macrophages in cigarette smokers. *Am J Respir Crit Care Med* 1994;150:690–695.

58. Nelson ME, O'Brien-Ladner AR, Wesselius LJ. Regional variation in iron and iron-binding proteins within the lungs of smokers. *Am J Respir Crit Care Med* 1996;153:1353–1358.

59. Mumby S, Saito J, Adcock IM, Chung KF, Quinlan GJ. Decreased breath excretion of redox active iron in COPD: a protective failure? *Eur Respir J* 2016;47:1267–1270.

60. Lee CH, Goag EK, Lee SH, Chung KS, Jung JY, Park MS, Kim YS, Kim SK, Chang J, Song JH. Association of serum ferritin levels with smoking and lung function in the Korean adult population: analysis of the fourth and fifth Korean National Health and Nutrition Examination Survey. *Int J Chron Obstruct Pulmon Dis* 2016;11:3001–3006.

61. Shibata Y, Inoue S, Igarashi A, Yamauchi K, Abe S, Aida Y, Nunomiya K, Sato M, Nakano H, Sato K, et al. Elevated serum iron is a potent biomarker for spirometric resistance to cigarette smoke among Japanese males: the Takahata study. *PLoS One* 2013;8:e74020.

62. McKeever TM, Lewis SA, Smit HA, Burney P, Cassano PA, Britton J. A multivariate analysis of serum nutrient levels and lung function. *Respir Res* 2008;9:67.

63. Smith JR, Landaw SA. Smokers' polycythemia. *N Engl J Med* 1978; 298:6–10.

64. Nordenberg D, Yip R, Binkin NJ. The effect of cigarette smoking on hemoglobin levels and anemia screening. *JAMA* 1990;264:1556–1559.

65. Leifert JA. Anaemia and cigarette smoking. *Int J Lab Hematol* 2008;30: 177–184.

66. Sadreameli SC, Kopp BT, Creary SE, Eakin MN, McGrath-Morrow S, Strouse JJ. Secondhand smoke is an important modifiable risk factor in sickle cell disease: a review of the current literature and areas for future research. *Int J Environ Res Public Health* 2016;13:1131.

67. Cohen RT, Strunk RC, Field JJ, Rosen CL, Kirkham FJ, Redline S, Stocks J, Rodeghier MJ, DeBaun MR. Environmental tobacco smoke and airway obstruction in children with sickle cell anemia. *Chest* 2013;144:1323–1329.

68. Pacht ER, Davis WB. Decreased ceruloplasmin ferroxidase activity in cigarette smokers. *J Lab Clin Med* 1988;111:661–668.

69. Ingebrigtsen T, Thomsen SF, Vestbo J, van der Sluis S, Kyvik KO, Silverman EK, Svartengren M, Backer V. Genetic influences on chronic obstructive pulmonary disease – a twin study. *Respir Med* 2010;104:1890–1895.

70. Lee JH, Cho MH, Hersh CP, McDonald ML, Wells JM, Dransfield MT, Bowler RP, Lynch DA, Lomas DA, Crapo JD, et al.; COPDGene and ECLIPSE Investigators. *IREB2* and *GALC* are associated with pulmonary artery enlargement in chronic obstructive pulmonary disease. *Am J Respir Cell Mol Biol* 2015;52:365–376.

71. Kim WJ, Wood AM, Barker AF, Brantly ML, Campbell EJ, Eden E, McElvaney G, Rennard SI, Sandhaus RA, Stocks JM, et al. Association of *IREB2* and *CHRNA3* polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. *Respir Res* 2012;13:16.

72. Siedlinski M, Tingley D, Lipman PJ, Cho MH, Litonjua AA, Sparrow D, Bakke P, Gulsvik A, Lomas DA, Anderson W, et al.; COPDGene and ECLIPSE Investigators. Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. *Hum Genet* 2013;132:431–441.

73. Zhou H, Yang J, Li D, Xiao J, Wang B, Wang L, Ma C, Xu S, Ou X, Feng Y. Association of *IREB2* and *CHRNA3/5* polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. *J Hum Genet* 2012;57:738–746.

74. Ziolkowska-Suchanek I, Mosor M, Gabryel P, Grabicki M, Żurawek M, Fichna M, Strauss E, Batura-Gabryel H, Dyszkiewicz W, Nowak J. Susceptibility loci in lung cancer and COPD: association of *IREB2* and *FAM13A* with pulmonary diseases. *Sci Rep* 2015;5:13502.

75. Liu Y, Kheradmand F, Davis CF, Scheurer ME, Wheeler D, Tsavachidis S, Armstrong G, Simpson C, Mandal D, Kupert E, et al. Focused analysis of exome sequencing data for rare germline mutations in familial and sporadic lung cancer. *J Thorac Oncol* 2016;11:52–61.

76. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, Feng S, Hersh CP, Bakke P, Gulsvik A, et al.; ICGN Investigators. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. *PLoS Genet* 2009;5: e1000421.

77. Saccone NL, Culverhouse RC, Schwantes-An TH, Cannon DS, Chen X, Cichon S, Giegling I, Han S, Han Y, Keskitalo-Vuokko K, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. *PLoS Genet* 2010;6:6.

78. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. *Nature* 2008;452:638–642.

79. He JQ, Foreman MG, Shumansky K, Zhang X, Akhabir L, Sin DD, Man SF, DeMeo DL, Litonjua AA, Silverman EK, et al. Associations of *IL6* polymorphisms with lung function decline and COPD. *Thorax* 2009;64:698–704.

80. Ghio AJ, Soukup JM, Richards JH, Fischer BM, Voynow JA, Schmeichel DE. Deficiency of α -1-antitrypsin influences systemic iron homeostasis. *Int J Chron Obstruct Pulmon Dis* 2013;8:45–51.

81. Fischer BM, Domowicz DA, Zheng S, Carter JL, McElvaney NG, Taggart C, Lehmann JR, Voynow JA, Ghio AJ. Neutrophil elastase increases airway epithelial nonheme iron levels. *Clin Transl Sci* 2009;2:333–339.

82. Lam M, Torbenson M, Yeh MM, Vivekanandan P, Ferrell L. HFE mutations in alpha-1-antitrypsin deficiency: an examination of cirrhotic explants. *Mod Pathol* 2010;23:637–643.

83. Linet MS, Gridley G, Nyren O, Mellemkjaer L, Olsen JH, Keehn S, Adami HO, Fraumeni JF Jr. Primary liver cancer, other malignancies, and mortality risks following porphyria: a cohort study in Denmark and Sweden. *Am J Epidemiol* 1999;149:1010–1015.

84. Bala S, Tabaku A. Chronic obstructive pulmonary disease in iron-steel and ferrochrome industry workers. *Cent Eur J Public Health* 2010;18:93–98.

85. Hedlund U, Järvholt B, Lundbäck B. Persistence of respiratory symptoms in ex-underground iron ore miners. *Occup Med (Lond)* 2006;56:380–385.

86. Adelroth E, Hedlund U, Blomberg A, Helleday R, Ledin MC, Levin JO, Pourazar J, Sandström T, Järvholt B. Airway inflammation in iron ore miners exposed to dust and diesel exhaust. *Eur Respir J* 2006;27:714–719.

87. Hedlund U, Järvholt B, Lundbäck B. Respiratory symptoms and obstructive lung diseases in iron ore miners: report from the obstructive lung disease in northern Sweden studies. *Eur J Epidemiol* 2004;19:953–958.

88. Hirayama F, Lee AH, Oura A, Mori M, Hiramatsu N, Taniguchi H. Dietary intake of six minerals in relation to the risk of chronic obstructive pulmonary disease. *Asia Pac J Clin Nutr* 2010;19:572–577.

89. Dickens JA, Miller BE, Edwards LD, Silverman EK, Lomas DA, Tai-Singer R; Evaluation of COPD Longitudinally to Identify Surrogate Endpoints (ECLIPSE) study investigators. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort. *Respir Res* 2011;12:146.

90. Portillo K, Martinez-Rivera C, Ruiz-Manzano J. Anaemia in chronic obstructive pulmonary disease: does it really matter? *Int J Clin Pract* 2013;67:558–565.

91. Tandara L, Grubisic TZ, Ivan G, Jurisic Z, Tandara M, Gugo K, Mladinov S, Salamunic I. Systemic inflammation up-regulates serum hepcidin in exacerbations and stable chronic obstructive pulmonary disease. *Clin Biochem* 2015;48:1252–1257.

92. Silverberg DS, Mor R, Weu MT, Schwartz D, Schwartz IF, Chernin G. Anemia and iron deficiency in COPD patients: prevalence and the effects of correction of the anemia with erythropoiesis stimulating agents and intravenous iron. *BMC Pulm Med* 2014;14:24.

93. Plesner LL, Schoos MM, Dalsgaard M, Goetze JP, Kjøller E, Vestbo J, Iversen K. Iron deficiency in COPD associates with increased pulmonary artery pressure estimated by echocardiography. *Heart Lung Circ* 2017;26:101–104.

94. Frise MC, Cheng HY, Nickol AH, Curtis MK, Pollard KA, Roberts DJ, Ratcliffe PJ, Dorrington KL, Robbins PA. Clinical iron deficiency disturbs normal human responses to hypoxia. *J Clin Invest* 2016;126:2139–2150.

95. Boutou AK, Polkey MI, Hopkinson NS. Non-anaemic iron deficiency in COPD: a potential therapeutic target? *Respirology* 2015;20:1004–1005.

96. Barberan-Garcia A, Rodríguez DA, Blanco I, Gea J, Torralba Y, Arbillaga-Etxarri A, Barberà JA, Vilaró J, Roca J, Orozco-Levi M. Non-anaemic iron deficiency impairs response to pulmonary rehabilitation in COPD. *Respirology* 2015;20:1089–1095.

97. Huang ML, Lane DJ, Richardson DR. Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease. *Antioxid Redox Signal* 2011;15:3003–3019.

98. Chen C, Paw BH. Cellular and mitochondrial iron homeostasis in vertebrates. *Biochim Biophys Acta* 2012;1823:1459–1467.

99. Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. *Eur Respir J* 2008;31:1334–1356.

100. Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, Bao W, Pavlidis S, Barnes PJ, Kanerva J, et al.; COPDMAP. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. *J Allergy Clin Immunol* 2015;136:769–780.

101. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. *Eur Respir J* 2006;28:219–242.

102. Kamp DW, Greenberger MJ, Sbalchiero JS, Preusen SE, Weitzman SA. Cigarette smoke augments asbestos-induced alveolar epithelial cell injury: role of free radicals. *Free Radic Biol Med* 1998;25:728–739.

103. Wesselius LJ, Williams WL, Bailey K, Vamos S, O'Brien-Ladner AR, Wiegmann T. Iron uptake promotes hyperoxic injury to alveolar macrophages. *Am J Respir Crit Care Med* 1999;159:100–106.

104. Dai J, Xie C, Churg A. Iron loading makes a nonfibrogenic model air pollutant particle fibrogenic in rat tracheal explants. *Am J Respir Cell Mol Biol* 2002;26:685–693.

105. Smith LA, Paszkiewicz GM, Hutson AD, Pauly JL. Inflammatory response of lung macrophages and epithelial cells to tobacco smoke: a literature review of ex vivo investigations. *Immunol Res* 2010;46:94–126.

106. Gally F, Chu HW, Bowler RP. Cigarette smoke decreases airway epithelial FABP5 expression and promotes *Pseudomonas aeruginosa* infection. *PLoS One* 2013;8:e51784.

107. Ghio AJ, Soukup JM, Dailey LA, Tong H, Kesic MJ, Budinger GR, Mutlu GM. Wood smoke particle sequesters cell iron to impact a biological effect. *Chem Res Toxicol* 2015;28:2104–2111.

108. Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA, Mahmood A, Washko GR, et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. *J Clin Invest* 2014;124:3987–4003.

109. Brunk UT, Neuzil J, Eaton JW. Lysosomal involvement in apoptosis. *Redox Rep* 2001;6:91–97.

110. Huang ML, Becker EM, Whitnall M, Suryo Rahmanto Y, Ponka P, Richardson DR. Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant. *Proc Natl Acad Sci USA* 2009;106:16381–16386.

111. Yatmark P, Morales NP, Chaisri U, Wichaiyo S, Hemstapat W, Srichairatanakool S, Svasti S, Fucharoen S. Effects of iron chelators on pulmonary iron overload and oxidative stress in β -thalassemic mice. *Pharmacology* 2015;96:192–199.

112. Sohn YS, Breuer W, Munnich A, Cabantchik ZI. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. *Blood* 2008;111:1690–1699.

113. Filosa A, Vitrano A, Rigano P, Calvaruso G, Barone R, Capra M, Cuccia L, Gagliardotto F, Pitrilo L, Prossomariti L, et al. Long-term treatment with deferiprone enhances left ventricular ejection function when compared to deferoxamine in patients with thalassemia major. *Blood Cells Mol Dis* 2013;51:85–88.

114. Zhou T, Ma Y, Kong X, Hider RC. Design of iron chelators with therapeutic application. *Dalton Trans* 2012;41:6371–6389.

115. Schönhofer B, Wenzel M, Geibel M, Köhler D. Blood transfusion and lung function in chronically anemic patients with severe chronic obstructive pulmonary disease. *Crit Care Med* 1998;26:1824–1828.

116. Schönhofer B, Böhrer H, Köhler D. Blood transfusion facilitating difficult weaning from the ventilator. *Anaesthesia* 1998;53:181–184.

117. John M, Hoernig S, Doehner W, Okonko DD, Witt C, Anker SD. Anemia and inflammation in COPD. *Chest* 2005;127:825–829.

118. Boutou AK, Pitsiou GG, Stanopoulos I, Kontakiotis T, Kyriazis G, Argyropoulou P. Levels of inflammatory mediators in chronic obstructive pulmonary disease patients with anemia of chronic disease: a case-control study. *QJM* 2012;105:657–663.

119. Tassiopoulos S, Kontos A, Konstantopoulos K, Hadzistavrou C, Vaiopoulos G, Aessopos A, Tassiopoulos T. Erythropoietic response to hypoxaemia in diffuse idiopathic pulmonary fibrosis, as opposed to chronic obstructive pulmonary disease. *Respir Med* 2001;95:471–475.

120. Sala E, Balaguer C, Villena C, Ríos A, Noguera A, Núñez B, Agustí A. Low erythropoietin plasma levels during exacerbations of COPD. *Respiration* 2010;80:190–197.

121. Smith TG, Balanos GM, Croft QP, Talbot NP, Dorrington KL, Ratcliffe PJ, Robbins PA. The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. *J Physiol* 2008;586:5999–6005.

122. Schoos MM, Dalsgaard M, Kjærgaard J, Moesby D, Jensen SG, Steffensen I, Iversen KK. Echocardiographic predictors of exercise capacity and mortality in chronic obstructive pulmonary disease. *BMC Cardiovasc Disord* 2013;13:84.

123. Steinbicker AU, Muckenthaler MU. Out of balance—systemic iron homeostasis in iron-related disorders. *Nutrients* 2013;5:3034–3061.

124. Van Buren P, Velez RL, Vaziri ND, Zhou XJ. Iron overdose: a contributor to adverse outcomes in randomized trials of anemia correction in CKD. *Int Urol Nephrol* 2012;44:499–507.

125. DePalma RG, Zacharski LR, Chow BK, Shamayeva G, Hayes VW. Reduction of iron stores and clinical outcomes in peripheral arterial disease: outcome comparisons in smokers and non-smokers. *Vascular* 2013;21:233–241.

126. Martinez JA, Guerra CC, Nery LE, Jardim JR. Iron stores and coagulation parameters in patients with hypoxic polycythemia secondary to chronic obstructive pulmonary disease: the effect of phlebotomies. *Sao Paulo Med J* 1997;115:1395–1402.

127. Chetty KG, Light RW, Stansbury DW, Milne N. Exercise performance of polycythemic chronic obstructive pulmonary disease patients. Effect of phlebotomies. *Chest* 1990;98:1073–1077.