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Abstract

A fully automated, unsupervised lobe segmentation algorithm is presented based on a probabilistic 

segmentation of the fissures and the simultaneous construction of a population model of the 

fissures. A two-class probabilistic segmentation segments the lung into candidate fissure voxels 

and the surrounding parenchyma. This was combined with anatomical information and a 

groupwise fissure prior to drive non-parametric surface fitting to obtain the final segmentation.

The performance of our fissure segmentation was validated on 30 patients from the COPDGene 

cohort, achieving a high median F1-score of 0.90 and showed general insensitivity to filter 

parameters. We evaluated our lobe segmentation algorithm on the LOLA11 dataset, which 

contains 55 cases at varying levels of pathology. We achieved the highest score of 0.884 of the 

automated algorithms. Our method was further tested quantitatively and qualitatively on 80 

patients from the COPDGene study at varying levels of functional impairment. Accurate 

segmentation of the lobes is shown at various degrees of fissure incompleteness for 96% of all 

cases. We also show the utility of including a groupwise prior in segmenting the lobes in regions 

of grossly incomplete fissures.

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 08.

Published in final edited form as:
IEEE Trans Med Imaging. 2017 August ; 36(8): 1650–1663. doi:10.1109/TMI.2017.2688377.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Lobe segmentation; fissure segmentation; pulmonary image analysis

I. Introduction

Segmentation of the pulmonary lobes can facilitate the localisation and quantification of 

respiratory diseases and is of particular interest in Chronic Obstructive Pulmonary Disease 

(COPD). COPD can alter the structure of the lung through emphysematous destruction of 

lung parenchyma. The speed with which local pulmonary damage evolves can vary between 

patients with COPD [1], [2], yet the heterogeneity of local disease progression [2] may not 

be captured in lung physiologic indices that quantify function at a global level [1]. CT-based 

lobe segmentation provides an anatomically consistent reference frame for the quantitative 

analysis of parenchymal damage across large cohorts of patients and negates the requirement 

of a groupwise space for analysis. Knowledge of the underlying lobar distribution of disease 

may allow the identification of subtle COPD phenotypes or help identify patients that would 

benefit from interventions such as lung volume reduction surgery [3].

To characterise CT disease extent on a lobar basis, it is necessary to identify the pulmonary 

fissures. The fissures consist of invaginations of visceral pleura, which extend from the lung 

periphery to the lung hilum and separate the right and left lung into five lobes. The oblique 

and horizontal fissures divide the right lung into three lobes (upper, middle and lower) whilst 

the left oblique fissure divides the left lung into upper and lower lobes. When visible on CT, 

the fissures appear as bright, solid lines. They represent two apposed layers of visceral 

pleura, which are usually devoid of airways and vascular structures [4]. However, the 

appearances of the fissures on CT can be variable in the general population [5]. A 

developmental failure of pleural invaginations can result in congenitally absent or 

incomplete fissures [4] (Fig. 1b). Various pathological processes may damage the pleural 

surfaces disrupting the integrity of the fissures [4] (Fig. 1c).

Automated lobar segmentation is most reliable when fissures are complete [6]. In cases with 

incomplete fissures, various methods have been developed that draw information from 

pulmonary anatomy and atlases. Lobe segmentation algorithms can be broadly categorised 

as either supervised [7]–[12] or unsupervised [13]–[16]. In our study, we extend the 

definition of supervised methods to encompass any algorithm that requires prior manual 

labelling to determine optimal fissure properties or the construction of anatomical atlases. 

Segmentation algorithms can be further subdivided on the basis of the segmentation of 

auxiliary structures. Methods can be dependent [7], [10], [13]–[17] or independent [12], [18] 

of the information provided by the airway and vascular trees. Algorithms can also be 

classified based on their dependence on anatomical atlases [10]–[13], [18] or whether the 

method is uniquely performed in the patient-space [7], [14].

Fissure segmentation can be classified as supervised when posed as a classification task or 

unsupervised when applied with a filter. A major shortcoming of filters is their reliance on 

arbitrary thresholds for segmentation. The inclusion of fixed segmentation thresholds may 

ignore potential fissure voxels or include excessive false positive voxels. Such thresholds are 
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often compromised when lung attenuation values themselves are variably influenced by a 

range of factors including the CT reconstruction algorithm, CT slice thickness and patient 

inspiratory effort. The issue of the removal of false-positive voxels and its dependence on 

prior knowledge is a further limitation of several algorithms [7], [12], [19], [20]. The 

likelihood function of Lassen et al. [7] requires prior knowledge of fissure Hessian 

eigenvalues and may lead to an over-segmentation of fissure voxels that cannot be corrected 

through post-processing techniques. The work of Wiemker et al. [19] requires knowledge of 

the underlying Hounsfield intensity distribution of the fissures with no data-driven method 

presented to determine these parameters. Ross et al. [12] sample the image domain to detect 

the most likely fissure surface based on Hessian eigenvalues and a maximum a posteriori 

estimation. Their technique requires a lobe boundary shape model based on manually 

segmented data to improve their fissure discrimination. The method is similar to the 

formulation of van Rikxoort et al. [21], which requires prior knowledge of manually labelled 

voxels to build a classifier. Manual annotation of data is time consuming and impractical in 

routine clinical practice. Moreover, it does not follow that a training dataset built on a single 

set of scans will generalise to a new cohort derived using different scanners, with varying 

reconstruction kernels. Such a constraint is also apparent in the likelihood function of Lassen 

et al. [7]. Our technique however learns the necessary model parameters from the volume 

being segmented, permitting the development of a robust segmentation tool, applicable 

across a broad range of datasets.

The use of prior knowledge derived from population models has increased in popularity 

[12], [18], [22], [23]. Zhang et al. [23] perform lobe segmentation using a single atlas search 

initialisation. The average fissure surface from a training set is exploited in a fuzzy 

reasoning system to segment the fissures and the lobes. An alternative multi-atlas selection 

mechanism has been proposed by van Rikxoort et al. [10]. This selects the most similar atlas 

to the patient by comparing the patient fissure segmentation to the atlas and exploits a 

transformation to combine atlas lobe labels with an approximate lobe segmentation. Ross et 

al. [12] exploit a deformable model in fissure surface extraction. The ability to exploit prior 

knowledge is an implicit advantage of atlases. However, if the training data is not large 

enough, this may not correctly model the shape variation within the population. These 

methods described all require complete segmentations prior to model building, which is a 

laborious task. We aim to build a simple population model of the fissures negating the need 

for prior manual labelling without requiring complete fissure segmentations.

The limitations associated with the dependence on manually segmented data, either to train 

classifiers or build atlases was a major motivation of the work presented. When considering 

fissure segmentation, there is sufficient data within a single scan to detect the fissures when 

visible whilst rejecting most false-positives. In view of large-scale studies such as 

COPDGene [24], CT scans can also be pooled together to produce a prior, which negates the 

need for complete manual segmentations.

II. Method

We present an automatic lobe segmentation algorithm (Fig.2) based on a probabilistic 

segmentation of the fissures (Section II-B) and the construction of a groupwise fissure model 
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(Section II-C). Our study aimed to construct a fissure model (Section II-C) using complete 

and incomplete fissures to generate a confidence region based on a population. In the context 

of routine clinical care, new scans can be iteratively added if necessary to help strengthen 

the population model.

The main technical contributions of this paper are: a) unsupervised probabilistic 

segmentation of the fissures with iterative false-positive removal, b) the simultaneous 

construction of a groupwise prior without need for complete manual segmentations and c) 

post-processing of the airway segmentation to correct errors in seed labelling. An overview 

of the segmentation is shown in Fig. 2. The lungs, vessel and airway tree are first segmented. 

This is followed by a segmentation of the fissures using auxiliary tree structures as 

anatomical priors in a probabilistic setting. The segmented fissures are then combined using 

a groupwise registration framework to produce a population prior. The anatomical 

information, the segmented fissure and the groupwise fissure prior are then combined as a 

cost image for a watershed segmentation.

A. Data pre-processing

Lung masks are obtained with the algorithm of Hu et al. [25]. The vasculature is segmented 

by considering multiscale vessel filtering [26]. The airways are segmented using region 

growing via evolution of a wavefront, which iteratively corrects for leakage across the 

airway wall [14]. It is assumed that the remaining structures after segmentation are the 

fissures and the parenchyma. A skeletonisation of the airways reveals the branching 

structure, used to label the lobar bronchi to generate surface fitting seeds. All pre-processing 

is performed using the Pulmonary Toolkit1 with standard parameter settings.

B. Probabilistic fissure segmentation

We propose an unsupervised fissure segmentation framework that does not require any 

training data to classify fissure-voxels whilst negating the need to empirically determine 

algorithm parameters. We present a simple fissure enhancement filter that does not require 

any manual observations to set the parameters. We then construct a probabilistic framework 

to segment the fissures based on this enhancement filter. We assume a generative model 

between the observed filter result and the underlying segmentation of the lung and that these 

hidden segmentations exhibit separate Gaussian distributions. The proposed model assumes 

that the filtered image is generated by a two-class Gaussian mixture model (GMM), where 

the fissures and the parenchyma are the hidden segmentations that have generated the 

observed enhancement filter. Parameters of the GMM and the underlying segmentation are 

determined through application of the Expectation-Maximisation (EM) algorithm.

1) Multi-scale fissure enhancement filter—This filter aims to distinguish fissure-like 

voxels from surrounding structures. If we consider an image volume ℐt from the set of 

images ℐ = {ℐ1, ℐ2, ⋯ , ℐT}, the Hessian matrix (Ht) at a scale σ is obtained by 

considering the second derivative of ℐt convolved with a Gaussian kernel G (σ).

1https://github.com/tomdoel/pulmonarytoolkit
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The width of the pleural cavity is likely to vary. The filter is embedded in a multi-scale 

framework to capture this variation. A voxel-wise eigen-analysis of Ht (ℐt; σ) yields scale-

dependent eigenvalues λ1, λ2 and λ3, which are, ordered based on their magnitude such that 

|λ1| ≤ |λ2| ≤ |λ3|, with respective eigenvectors û1, û2 and û3. We adapt the vesselness filter 

of Frangi et al. [26] to capture voxels exhibiting a fissure-like shape.

As a sheet-like structure, a candidate fissure voxel will ideally be represented by a very large 

|λ3| >> 0 with λ2 ≈ λ1 ≈ 0. We aim to enhance voxels with this relationship whilst 

suppressing other auxiliary structures using the following parameters:

(1)

The parameter ℛa helps differentiate spherical structures from plate-like and tubular 

structures. To differentiate plates from tubes, ℛa is combined with the parameter ℛb, which 

seeks to enhance structures exhibiting a plate-like aspect ratio. A scale dependent filter (Eq. 

2) is obtained by combining both terms:

(2)

where (λ3(σ)) is an indicator function such that (λ3(σ)) = 0 when λ3(σ) > 0 to seek only 

bright features. The parameters A and B control the sensitivity of each parameter ℛa,b. 

Small values of A and B (≈ 0) will only be sensitive to voxels with ideal values for the filter 

parameters (ℛa,b → 0). Larger values for A and B (→ 0.5) will enhance voxels with less 

ideal relationships with the caveat of enhancing more false positives (Section IV-A). A final 

value of ℱt is found by computing the scale σ which maximises ℱt at a voxel x:

(3)

There is a deviation from the ideal plate-like eigenvalue relationship in the presence of 

partial-volume effects, image noise and patient motion, which may result in a loss in the 

discriminating power of ℱt. We assume that both tissue classes are hidden segmentations 

that generate a range of values stemming from Gaussian distributions. We aim to capture 

these class distributions to accurately segment the fissures, even when the filter response is 

poor at a fissure voxel by considering local neighbourhood properties.

2) Fissure segmentation using a Gaussian Mixture Model—The output of the filter 

ℱt is parameterised by a two-class GMM. The two underlying distributions in the signal 

correspond to the fissures and all other remaining structures. We assume that the fissures and 

lung tissue are hidden segmentations (z) that give rise to the observed values y of ℱt. The 

segmentation can be modelled as a random process with a probability density function f(z | 

Φz) with parameters Φz. The total filter signal has a probability density function f(y | z, Φy) 
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parameterised by the model parameters Φy. The goal is to estimate the segmentation z by the 

parameters Φ = {Φy, Φz}. This is performed using the EM algorithm by estimating the 

maximum-likelihood parameters Φ̂ via maximisation of the log-likelihood

(4)

We consider the image model of Van Leemput et al. [27]. The index of a voxel x is i ∈ {1, 2, 

…, n} where n is the number of voxels within the lung mask. There are K = 2 classes 

(fissure and tissue). The class of the ith voxel is defined as zi = ek. The variable ek represents 

the class membership e.g. ek=1 defines the fissure class and ek=2 is the surrounding lung 

parenchyma. The response of the filter at voxel xi is yi. The filter values belonging to each 

class k are assumed to be normally distributed after log transformation with mean μk and 

standard deviation σk such that ϕk = {μk, σk}. The vector Φy = {ϕk=1, ϕk=2} represents the 

model parameters for both tissue classes. The overall probability density for yi is defined as 

a mixture of normal distributions,

(5)

where Gσk represents the kth class zero-mean normal distribution with standard deviation σk 

and f(zi = ek) is the class prior probability of a voxel xi. By assuming statistical 

independence over all voxels x ∈ ℐ, the overall joint probability density is given by

(6)

The maximum-likelihood estimates for Φy are found using Eq. 4 by seeking the parameters 

that maximise Eq. 6, giving the following update equations for the model parameters

(7)

(8)

where
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(9)

is a probabilistic estimation of the hidden data zi of class k at voxel xi given the filter value 

yi. The class k is iterated with the class index j and m denotes the EM iteration number.

The segmentation resulting from Eq. 9 can be sensitive to noise, image artefacts and false 

positives as the segmentation is only based on y. Priors (πt,ik) that incorporate probabilistic 

information about the segmentation are typically added to the model [27], [28]. In the 

context of this work, we can quantify the likelihood of the fissure location (Fig. 4b) based on 

the vessel and airway tree. We quantify the vessel density (vd) [14], which is obtained by 

applying a strong (10mm isotropic) Gaussian filter to the vesselness filter of Frangi et al. 

[26]. This measure is inverted and scaled in the range [0, 1] using min-max scaling such that 

regions of low vessel density are close to 1. Airway density (ad) is estimated by computing 

the Euclidean distance transform to the airway segmentation and is normalised using min-

max scaling to the range [0, 1] such that regions of high distance to the airways are close to 

1. The fissure likelihood measure is defined as  and the tissue likelihood 

is πt,ik=2 = 1 − πt,ik=1. The subscript t is dropped in Eq. 10 and 11 for convenience. The 

anatomical information is integrated into Eq. 5 by setting f(zi = ek) = πik.

Information about lung structure, spatial smoothness and morphology can be also be 

enforced by considering a Markov Random Field (MRF) regularisation term (UMRF). The 

probability of a voxel i belonging to tissue class k is now dependent on the first-order 

neighbours i. The neighbourhood system at a voxel xi is defined as 

in the face-connected neighbourhood. The likelihood term (π) is now augmented with an 

MRF that is dependent on the probability and curvature of neighbouring voxels. By 

employing the formulation of Van Leemput et al. [27], Eq. 9 is updated to

(10)

with

(11)

where the MRF term UMRF (zi | p i, Φz) is an energy function dependent on Φz = {G} and 

the MRF weight βi is kept constant for all voxels i.
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Structure in the segmentation is enforced by considering neighbourhood probabilities (p ) 

and constraints on the curvature of the surface (fdotk) (Fig. 3b). The fissure surface exhibits 

low local curvature, which will be captured in the eigenvector û3. A weight in the MRF 

energy term is introduced based on the dot product of the eigenvectors of a neighbouring 

voxel xl with the center voxel xi such that

(12)

When considering the fissure class (k = 1), the weight will tend to 0 as dissimilarity in the 

local curvature increases (1 − exp(−|ûl,3 · ûi,3|) → 0). If neighbouring voxels xl and xi have 

similar curvature, fdot(xl, xi)k=1 will tend to 1. The goal of this function is to force candidate 

fissure voxels to have approximately equal curvature whilst negatively weighting the 

probabilities of false-positives with non-equal local curvature.

The possibility of anisotropic voxel sizes and slice spacing is considered with the 

connection-strength factor (s) introduced by Cardoso et al. [28], defined as 

 based on real-world distances between the centre of 

neighbouring voxels. Closer voxels will yield higher weights in the MRF. The total energy 

(UMRF) (Fig. 3) for a face-connected neighbourhood i centered at voxel xi in Eq. 11 is 

defined as

(13)

where G represents a K by K matrix whose elements Gkj represent the transition energy 

between tissue classes k and j and the the subscript l denotes the neighbourhood iterator in 

each direction x, y, z. Since this is a two-class problem, the matrix G is set up with diagonal 

elements equal to 0, off-diagonal elements set to 1 and is a constant in our framework.

Initial parameters for the mixture model (Eq. 7 and 8) are set to μ(m=0) = {0.10, 0.90} on the 

assumption that both class distributions are significantly different. The class standard 

deviations are initialised as the original standard deviation of the image filter (σ2(m=0) = 

{σ2(ℱt), σ2(ℱt)}). Initial values for the MRF energy weights (Eq. 11) are set to an even 

split of 0.5. A termination criteria based on the ratio of likelihood change is set to ε = 10−3.

The parameter β in Eq. 11 controls the regularisation strength. To mitigate dependence of 

the segmentation on a user-defined choice, the segmentation is performed iteratively whilst 

increasing the strength of β. The percentage of high probability fissure voxels (pi,k=1 ≥ 0.75) 
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with respect to the number of voxels n is quantified. This percentage decreases as β rises 

leading to a fall in false-positive fissure voxels. The initial regularisation is β = 0.75. The 

EM framework is run and the percentage high probability voxels is quantified. If there is a 

convergence of this percentage, the segmentation framework terminates. Otherwise, the 

regularisation is automatically increased by 0.50. Convergence is defined when the 

percentage has not fallen by at least 2% in 5 successive iterations. The output of the 

framework after convergence yields probabilistic fissure ( t,fissure) and tissue ( t,tissue) maps 

for each image ℐt. To obtain a binary segmentation of the fissures ( t), a two-pass analysis 

is performed. A connected component analysis of t,fissure using a face-connected 

neighbourhood is performed. Firstly, all components with a median probability below 0.50 

are removed then all components below a volumetric threshold of 0.50mL are discarded.

C. Groupwise fissure prior

In a given patient cohort, there will be a range of cases with incomplete fissures, which will 

complicate the segmentation of the lobes. The goal is to combine all segmented fissures into 

a groupwise space to create an average fissure model to help guide the lobe segmentation in 

problematic cases.

1) Groupwise registration—Given a set of T patients ℐ={ℐ1, ℐ2, … , ℐT}, a common 

average space Ωℐ̂ is computed by iteratively registering the set of patients ℐ to the Frêchet 

mean. The output is an average image ℐ̂avg and a set of forward and backward 

transformations (φℐT,ℐ̂ and φℐ̂,ℐt) such that φℐt,ℐ̂ : Ωℐt → Ωℐ̂ and φℐ̂,ℐt : Ωℐ̂ → Ωℐt.

The registration is performed using the NiftyReg software package [29]. The algorithm is 

motivated by the work of Ashburner et al. [30]. All patients in ℐ are initially registered to an 

initial template image , which is chosen at random from the set of images ℐ. The 

initial average space is created using a rigid registration. This prevents the atlas from being 

biased by the geometry of the initial template image. A set of n1 affine registrations using 

symmetric block-matching [31] are then performed followed by a set of n2 non-rigid 

registrations. The non-rigid registration uses a stationary velocity field, which is 

parameterised by a cubic B-spline with a 12mm spacing. The locally normalised cross-

correlation is used as the similarity with a Gaussian kernel of 50mm. The number of 

iterations was determined in a pilot experiment by computing the sum of squared differences 

similarity between successive average images  at iterations n and n + 1. 

Convergence of similarity measures occurred after n1 = 5 and n2 = 5 affine and nonrigid 

registrations.

At each iteration (n) of the algorithm, all patients are registered to the average image . 

In order to create the new average image  and the space Ωℐ̂n, the inverse average 

transformation from all patients is computed in the log-Euclidean space. Each patient 

transformation is demeaned using the inverse average transformation. All patients are 

subsequently resampled using the demeaned transformations to create . This new 

average image  is obtained by averaging all the resampled images.
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2) Construction of the population prior—The set of patients ℐ={ℐ1, ℐ2, …, ℐT} will 

have a corresponding set of binary fissure volumes ={ 1, 2, …, T}. The 

transformations resulting from the groupwise registration (φℐt,ℐ̂ and φℐ̂,ℐt) are exploited to 

build the fissure prior (𝒮̂
avg). Each fissure segmentation t is resampled into the groupwise 

space (Ωℐ̂) using the respective forward transformation φℐt,ℐ̂ to yield 𝒮̂
t. All resampled 

fissures (𝒮̂ = {𝒮̂
1, 𝒮̂

2, …, 𝒮̂
T}) are averaged in the groupwise space to create the average 

fissure 𝒮̂
avg. In order to exploit this information to help segment the lobes, the average 

fissure is resampled using the backwards transformation φℐ̂,ℐt into each patient space (Ωℐt) 

resulting in Πt. This prior is normalised to the range [0,1] for each patient and is 

subsequently smoothed using a Gaussian kernel (σ = 2.5mm). This produces a prior in the 

space of each patient, denoting a region where the fissure is expected.

D. Watershed surface fitting

The segmented fissure, the groupwise fissure prior and anatomical information are combined 

into a cost image inspired by the formulation of Lassen et al. [7]. They create a cost function 

by combining information from the vessel and airway tree, the segmented fissure and the 

voxel intensities. We build on this work by extending the cost function to utilise a fissure 

groupwise prior derived from the population to be segmented.

1) Watershed cost function—The population prior (Πt) is first combined with the 

segmented fissure ( t). The aim of this step is to produce an initial cost function, with 

regions of complete and incomplete fissures accentuated using information from the 

segmentation t and the population prior Πt. The inverted Euclidean distance function is 

applied to t to help deal with minor gaps in the segmentation. It is normalised with min-

max scaling to the range [0,1] with a value of 1 at the fissure. Only regions in the distance 

map (fdist ( t)) within 2.5mm of the fissure are considered. The distance map and the 

population prior are averaged and convolved with a small Gaussian kernel (σ = 1.0mm) to 

produce a smooth map in Eq. 14. The magnitude of c1 will be strongest when fdist ( t) and 

Πt are in the same anatomical location. When there are large gaps in t due to fissure 

incompleteness, Πt will provide a local maxima.

(14)

This is then combined with the anatomical information (πt,ik=1 ∀i → πt,k=1) and the binary 

segmentation ( t):

(15)

The fissure likelihood based on the vessel and airway tree (πt,k=1) provides a satisfactory 

estimate for regions of low and high fissure probability and helps guide the segmentation 

into regions of low vessel and airway density. In addition to c1, the original segmentation 
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( t) is reintroduced. This is performed to produce a high value in t at the segmented fissure 

since this is the true location of the lobar border.

2) Lobe seed labelling—We employ the method used by Doel et al. [14] to generate 

initial lobe seed labels from the segmented airway tree. The seed labels are dilated and 

allowed to grow according to the vessel density map for a limited amount of iterations using 

the watershed algorithm.

3) Lobe seed labelling post-processing—The segmentation is dependent on the initial 

seed labels. The quality of the initial labelling can be affected by segmentation failures and 

errors in the bronchial labelling. If a lobe seed is incorrectly labelled, the resulting 

segmentation will be erroneous despite successful segmentation of the fissures. To improve 

the robustness of the pipeline with respect to the airway tree segmentation, the following 

errors are accounted for: 1) mislabelled branches and 2) unsegmented branches.

a) Seed label correction - labelling errors: To detect and remove mislabelled branches, the 

centre of mass (CoM) of each set of label seeds is quantified. For each label set, the intra-

label distance of each component to the label CoM is computed. The inter-label distance of 

the components to all other label CoMs are also quantified. The dilated components are 

removed iteratively to minimise the amount of deleted seeds. A seed is marked for removal 

if its inter-label distance is smaller than its intra-label distance. The seed with the smallest 

inter-component distance of all candidate components is marked for removal. This 

component is discarded if its removal does not cause the number of components for that 

label to fall below a threshold (rthreshold = 4). If this threshold is met, the component with the 

next smallest distance is considered. Once a component is removed, the above method is 

repeated until removal is no longer possible. This enforces maximum separability between 

the seeds and removes all potentially erroneously labelled seeds.

b) Seed label correction - airway segmentation errors: If the airway tree segmentation 

fails, labelling of the branches will not yield the necessary seeds to segment all lobes. In this 

instance, the anatomical information (πt,k=1) and its distribution in non-fissure regions (16) 

is considered. The threshold is considered by analysing the distribution of the prior (πt,k=1) 

at the fissure t:

(16)

The low minima regions of πt,k=1 are defined as πt,k=1 < πt,threshold. These correspond to 

regions of high vessel and airway branching density. A mask of these regions is created and 

a connected component analysis is performed to extract the regions of local minima. These 

regions are analysed based on their position within the lung and are exploited to generate 

new seed labels should the airway tree segmentation fail.

4) Final lobe segmentation—Segmentation of the lobes (ℒt) is obtained by combining 

the cost image t and the processed seed labels in a watershed segmentation. The lobar 
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boundaries are smoothed to deal with minor artefacts in the segmentation. This is performed 

by normalised convolution with a 4.0mm3 Gaussian kernel.

III. Data

A. Dataset 1

Dataset 1 was based on the LObe and Lung Analysis 2011 (LOLA11) challenge [32]. It 

consists of 55 volumetric chest CT scans originating from a variety of source with a range of 

scans containing serious pathology and abnormalities. The inplane resolution is between 

0.53mm and 0.78mm whilst the slice thickness ranges from 0.3 to 1.5mm. The organisers 

manually segmented the lobes on 9 coronal slices with two human observers and were 

instructed only to label when the boundaries were visible. The inter-observer agreement 

between the lobar borders was 1.50mm ± 1.28mm.

B. Dataset 2

Dataset 2 was used to quantitatively and qualitatively validate the framework on patients 

with COPD from the COPDGene study [24]. We created a quantitative (Nquant = 30) and 

qualitative set (Nqual = 50) by randomly selecting patients from the study. Minimum 

thresholds (> 10%) for the level of emphysema in the inspiration scan and gas trapping in 

the corresponding expiration scan were set in the qualitative cohort to capture cases with 

significant pathology. The quantitative set averaged 12.8% ± 11.12% emphysema whilst the 

qualitative set averaged 22.50% ± 3.60% emphysema.

Analysed scans stem from GE Medical Systems (Light-Speed 16, Lightspeed VCT), 

Siemens (Sensation 16, Sensation 64 and Definition) and Philips (Brilliance 64) scanners. 

Scans with the STANDARD (GE), AS+ B31f and B31f (Siemens), and 64 B (Philips) 

reconstruction algorithms were analysed. Information about the scanning protocols can be 

viewed at the COPDGene website2. The slice thickness of the scans range from 0.62mm to 

1.00mm with in-plane dimensions ranging from 0.52 to 0.90mm.

The quantitative cohort was built by manually tracing the fissures in every fifth sagittal slice 

using ITK-SNAP [33]. The radiologist was asked to manually trace the fissures using three 

labels. Label 1 was used when the fissures were visible. Label 2 was employed in cases 

where extrapolation was possible. Label 3 was used in areas of high fissure uncertainty.

The manual segmentation provided an approximate estimate of fissure incompleteness with 

an average of 12.4% ± 8.3% across the quantitative set. This was computed by considering 

the percentage of voxels labelled 2 and 3. Intra-observer variability was obtained by a 

repeated segmentation of 3 datasets with varying degrees of fissure incompleteness (6.7%, 

23.0% and 31.3%). These were performed 14 days after to minimise recall bias. The intra-

observer agreement for all lobar boundaries across all patients was 1.54mm ± 0.45mm.

2copdgene.org/sites/default/files/COPDGene%20MOP%2006.19.2009.pdf

Bragman et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://copdgene.org/sites/default/files/COPDGene%20MOP%2006.19.2009.pdf


IV. EXPERIMENTS & RESULTS

A. Fissure segmentation evaluation

We investigated the effects of parameters A and B (Eq. 2) and the performance of our 

segmentation framework on the quantitative set of dataset 2 using label 1 of the reference 

set.

We used the method presented by Xiao et al. [34] to evaluate our fissure segmentation. We 

did not define a volume of interest (VoI) using a 40mm width band around each reference as 

this ignores potential false positives in the validation. The F1-score was used as quantitative 

index of performance. It is defined as 2·(Precision·Recall)/(Precision+Recall). The 

magnitude of F1 reflects the similarity between the segmentation and the reference. 

Precision and Recall are defined respectively as TP1/(TP1 + FP) and TP2/(TP2 + FN) [34]. 

Precision was quantified by considering the overlap of the binary result ( ) with the 

reference. A 3mm tolerance band was defined around the reference segmentation as 

performed by Xiao et al. [34]. Voxels of  are classified as true positive (TP1) if they fall 

within the 3mm band and false positive (FP) if otherwise. Recall was computed by defining 

a 3mm band around the binary result ( ). Reference voxels within this band were classified 

as TP2 and those outside as false-negative (FN).

We segmented the fissures using parameters A, B ∈ [0.05, 0.50]. We illustrate the 

performance of the segmentation for a subset of the parameter B ∈ [0.05, 0.10, 0.15, 0.25] 

with A ∈ [0.05, 0.50] in Fig. 7. The best performance over all datasets was achieved with 

parameters A = 0.25 and B = 0.10 with a median F1-score of 0.90 with median False-

Discovery Rate and False-Negative-Rate of 0.08 and 0.13 respectively. The F1-score 

remained relatively stable when set in the range A* = B* ∈ [0.10, 0.35] (Fig. 7). The mean 

F1-score over all combinations (A* × B*) was 0.87 ± 0.02 demonstrating stability in 

algorithm performance. The mean F1 over all values of A for increasing values of B is 

0.87±0.03 (Fig 7a), 0.87±0.03 (Fig 7b), 0.86±0.04 (Fig 7c), 0.83±0.08 (Fig. 7d). At higher 

values of B, this drops to 0.82 ± 0.09 (B = 0.30), 0.81 ± 0.10 (B = 0.35), 0.79 ± 0.12 (B = 

0.40), 0.78 ± 0.14 (B = 0.45) and 0.77 ± 0.15 (B = 0.50). This is expected as higher values 

decreases the separation between the tissue and fissure-class distributions.

B. Lobe segmentation validation

Algorithm parameters quoted within Section II were used in the validation of dataset 1 and 

2. The fissure filter parameters used were A = 0.20 and B = 0.20.

1) Dataset 1 - LOLA11—We evaluated our algorithm on the LOLA11 cohort and 

submitted our results for evaluation [32]. The LOLA11 evaluation metric is the volume 

overlap between the submission and the reference segmentation of one observer. The 

organisers defined a 2mm slack border around the borders of the lung and lobes to account 

for inter-observer variability. Voxels within this border were not accounted for during 

evaluation. The overlap is calculated for each lobe across all patients. We report the mean ± 

standard deviation, first quartile (Q1), median and third quartile (Q3) of the scores across all 

55 patients. The LOLA score is calculated as the average of all average overlaps over all 
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lobes. Table I shows the score for our lobe segmentation and those of van Rikxoort et al. 

[10] and Lassen et al. [7].

Five algorithms have been validated for lobe segmentation on this cohort. However, we have 

restricted our comparison to van Rikxoort et al. [10] and Lassen et al. [7] as they are fully 

automatic and do not require interactive post-processing to correct segmentations. We 

achieved the highest automatic average lobe score of 0.884 and an average median overlap 

of 0.950 (Table I).

2) Dataset 2 - Quantitative COPDGene—We assessed the performance of our 

algorithm quantitatively on dataset 2 using the mean, maximum and root-mean square error 

(RMSE) distance from the manual reference to the automatic boundary. This was performed 

by calculating the three-dimensional Euclidean distance between the reference voxels and 

the closest point on the automatic segmentation.

We assessed the segmentation for each label (Table IV). The algorithm achieved a mean of 

2.01mm ± 6.24mm when the fissures were visible (label 1). In cases where fissure 

extrapolation was possible (label 2), a mean of 5.16mm ± 6.12mm was achieved. The 

performance dropped to 7.31mm ± 4.88mm in regions of highest uncertainty (label 3). In 

one case, the right lobe segmentation failed and in a second case, segmentation of the right 

and left lobes failed. The failure was due to major errors in the airway branching labelling, 

which could not be corrected using our methodology. With a 2mm slack border, the mean 

distances were 1.65 ± 3.28mm (label 1), 3.31 ± 5.93mm (label 2) and 6.18 ± 4.70mm (label 

3). Errors were due to instances where the groupwise fissure was significantly different from 

label 2 and 3 of the reference or slightly biased the segmentation of label 1. Further typical 

errors were in cases where emphysametous bullae appearing as fissures lead to isolated 

errors in the lobe boundary segmentation.

The performance of our algorithm was also assessed against approximate fissure 

incompleteness (Fig. 8). The relationships between the mean distance and standard deviation 

of the distance to the closest points on the automatic segmentation were examined and the 

Pearson correlation coefficient was calculated for each lobar boundary. Weak relationships 

were observed between the mean distance and the degree of fissure incompleteness for each 

boundary (right minor: ρ = .47 (p < 0.05), right major: ρ = .66 (p < 0.05) and left major: ρ 
= .35 (p > 0.05)). Similar findings were observed in the standard deviation (right minor: ρ 
= .46 (p < 0.05), right major: ρ = .61 (p < 0.05) and left major: ρ = .23 (p > 0.05)).

3) Dataset 2 - Qualitative COPDGene—We qualitatively assessed (Table III) our 

algorithm on 50 patients with advanced disease using an adapted scoring system of van 

Rikxoort et al. [21], which scores the segmentations out of five. The radiologist assessed 

each lobe segmentation on the sagittal plane. The highest score (5) corresponded to a 

segmentation error below 3mm. A score of 4 reflected a segmentation error at any location 

between 3mm and 12mm. A score of 3 reflected a segmentation error greater than 12mm but 

where the overall lobe segmentation remained acceptable for analysis. The lowest scores (2 

and 1) were awarded when the maximum segmentation error was greater than 12mm and 
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segmentation quality was either equivocal or unusable. Scores were assigned to both 

complete and incomplete fissures.

The algorithm showed good performance across complete (3.9 ± 0.3) and incomplete 

fissures (3.8 ± 0.5). There was one notable failure (score = 2) to segment the right major 

fissure in a case with a complete fissure and one failure (score=1) of a segmentation of a 

right major fissure when it was grossly incomplete. Across cases with complete and 

incomplete fissures, the most commonly awarded score was 4. Only a small proportion of 

cases had maximum errors < 3mm (22% and 12.5% for complete and incomplete right 

minor fissures whilst 0% and 7.3% for complete and incomplete right major fissures).

C. Effect of the groupwise prior

We assessed the performance of the algorithm with and without the groupwise prior (Π) on 

dataset 2. We computed the mean of the distances from the automated segmentation to the 

reference and compared this to results using the prior. We did not include the boundaries that 

failed in the quantitative analysis of Section IV-B2 as these boundaries also failed without 

using the groupwise prior. We omitted cases with minor fissure incompleteness in the 

analysis. This was defined when a lobar boundary had less than 1% fissure incompleteness. 

This led to 19 analysed patients for the right major fissure, 23 for the right minor and 19 for 

the left major. There was 9.72% ± 8.66% fissure incompleteness in the right major, 36.44% 

± 18.91% for the right minor and 11.61% ± 9.81% for the left major in the new cohort. We 

calculated the cohort average for each boundary and for the segmentation labels of fissures 

not visible in CT, delineated as label 2 and 3. We performed a two- sample t-test under the 

null hypothesis that the mean results of the segmentation with and without the groupwise 

prior are significantly different.

We found a general increase in the distance to the reference for label 2 (5.87mm ± 3.72mm 

to 7.60mm ± 6.49mm) and label 3 (7.10mm ± 3.67mm to 8.59mm ± 5.77mm) when 

excluding the groupwise prior. We did not find a significant difference between the sets of 

mean distances for each lobar boundary stratified by reference label (Table II). This is due to 

the fact there may be extreme differences due to failures without the prior, smaller 

improvements using the prior but also cases where the prior negatively affects extrapolation 

of the fissure.

In areas of significant fissure incompleteness, the groupwise prior may help avoid leaking of 

the seed labels during the surface fitting whilst guiding the segmentation to the most 

probable location based on the population and the patient anatomy. This occurred in several 

cases (Figure 11(a–f)) where either the left major border or the right major border failed 

without the prior. Within this cohort, the right minor fissure had the highest level of fissure 

incompleteness. In various cases (Figure 11 (g–i)), the prior helped drive the lobar border 

towards the reference. However, there are several modes of variation in the right minor 

fissure (Figure 5). The patient anatomy may differ greatly from the population mean. The 

prior may negatively affect the final segmentation in areas of incomplete fissures. This led to 

a smaller difference in the population means in the right minor fissure (6.28mm to 6.51mm 

in label 2 and 6.41mm to 6.50mm in label 3). Despite this limitation, we can conclude that 
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the groupwise fissure prior, constructed from the same cohort using a combination of 

complete and incomplete segmented fissures is advantageous.

V. DISCUSSION AND CONCLUSION

We have presented a novel lobe segmentation algorithm based on an unsupervised 

segmentation of the fissures with iterative false-positive removal, the creation of a groupwise 

fissure prior and a cost function combining patient and population information. Our 

algorithm does not require prior training or manual labelling to segment the fissures and 

build a population prior of the fissures. Fissure probabilities were obtained by 

parameterising a fissure enhancement filter with a Gaussian Mixture Model (GMM). 

Smoothness and curvature constraints were enforced in the segmentation by considering a 

Markov Random Field (MRF) regularisation. This led to rejection of most false-positives 

leading to high maximum F1-score of 0.90. A method to construct a groupwise fissure prior 

given complete and incomplete fissures in a population was presented. We evaluated its role 

in identifying incomplete fissures whilst minimising potential segmentation failures. The 

method was validated on 55 cases from the LOLA11 study [32] and on 80 datasets from the 

COPDGene study [24]. We illustrated its applicability in correctly segmenting the lobes of 

patients with varying levels of disease severity and fissure incompleteness.

Correct removal of false-positive fissures is necessary to accurately segment the fissures. 

Whilst supervised filter techniques have been utilised to segment the fissures [8], [9], [12], 

they require a training dataset to perform the classification. Manual labelling of voxels is 

laborious and may not always be practicable in a clinical setting. The fissure segmentation 

used by van Rikxoort et al. [22] required a training set as part of their algorithm and can 

only be employed when manual labelling is possible by an expert. Moreover, the 

applicability of a training set built on an independent set of scans applied to those acquired 

on different scanners is debatable.

Ross et al. [12] exploited a deformable model to identify the fissure surfaces, which may fail 

when the patient anatomy cannot be modelled by the atlas. The fissure enhancement applied 

by Lassen et al. [7] required experimentation to yield optimal ranges for the Hessian 

eigenvalues. Applying pre-existing thresholds to new datasets and those acquired at lower 

doses can be problematic and may cause undesirable drops in algorithm specificity. 

Applying hard-constraints on eigenvalue magnitudes in new scans may not be beneficial. 

The eigenvalue range may differ whilst the ratio is expected to remain constant. This is 

because the ratio will model different orientation patterns unique to various structures 

(spherical, tubular and sheet-like). This may cause an over-segmentation with too many false 

positives. The limitation of pre-existing threshold can also be applied to the filter of 

Wiemker et al. [19], who developed a weighting term based on the expected intensity of the 

fissures. It requires specific knowledge about the HU of the fissures to determine parameters 

unique to scans. Finding optimal parameters that yield a robust filter across a broad range of 

datasets is difficult and not desirable.

Our segmentation framework requires little prior knowledge regarding algorithm parameters 

and will be more robust than methods requiring prior training. Our fissure enhancement 
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filter is based on ratios of Hessian eigenvalues. Given a set of new scans, separability 

between class distributions will exist since relationships between the eigenvalues should 

remain constant. Since we learn model parameters of the GMM, the segmentation of the 

fissures will be flexible when processing new scans. Classifying voxels by learning the 

underlying class distributions will capture a range of filter values; which can vary for each 

dataset. The integration of the MRF regularisation increases the robustness of the 

segmentation to noise. A voxel with a poor filter response can still receive a high fissure 

class probability when considering neighbourhood constraints on pairwise probabilities and 

Hessian eigenvectors.

We showed in Section IV-A that our method achieved a high median F1-score of 0.90 and 

insensitivity to the filter input parameters. These parameters govern the separability of the 

class distributions and do not rely on knowledge of specific CT features. There is a minor 

dependence on the initialisation of the model parameters in the GMM. However, the iterative 

framework for increasing the MRF regularisation means no user-interaction is required. The 

iterative increase also deals with false-positive rejection as constraints on neighbourhood 

properties are given more weight until algorithm convergence. Performance of the fissure 

segmentation could be improved in future work by modelling the signal as a mixture of 

skew-normals akin to the work of Häme et al. [35] since we chose a GMM for mathematical 

simplicity.

We evaluated our algorithm on the LOLA11 dataset [32], which enabled direct comparison 

with the work of Lassen et al. [7] and van Rikxoort et al. [10]. We achieved the highest score 

of 0.884 in comparison to Lassen et al. [7] (0.881) and van Rikxoort et al. [10] (0.851). Both 

algorithms used superior lung segmentation algorithms (0.947 (our method) versus 0.962 

[10] and 0.971 [7]), which may have had detrimental effects on our lobe segmentation scores 

in the most challenging cases (e.g. Fig. 10h, i, k and l).

The quantitative experiment on dataset 2 highlighted the accuracy of the algorithm in areas 

with varying fissure visibility (Table IV). The high standard deviation associated with the 

segmentation of the right minor fissure was due to the failure of lobar segmentation in 2/30 

cases. In these two cases, post-processing of airway labelling errors could not be 

automatically corrected. The respective fissure means and standard deviations were: 1.52mm 

± 1.49mm, 46.06mm ± 30.74mm and 1.33mm ± 2.06mm for the right major and minor 

fissures and and left major fissure respectively, which displays the isolated error. The large 

maximum errors in certain cases with low mean distances occurred in isolated areas close to 

the ribcage and near the lung hila where the automated segmentation disagreed significantly 

with the radiologist.

Qualitative testing (Table III) highlighted the ability of the algorithm to produce good 

segmentation results in cases with higher severities of disease. The low proportion of lobar 

boundaries scoring 5 (errors < 3mm) in cases with complete fissures (Table IIIa) are a result 

of the narrow boundary definitions of the scoring system. The scoring system may not 

adequately reflect the performance of the algorithm since an isolated error will reduce the 

score to 4 when it would otherwise be graded as 5. Most of these errors were less than 6mm 

from the reference fissure line and occurred in isolated regions prone to artefacts such as 
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close to the rib-cage, the lung hila and the intersection between the right major and minor 

boundaries. Importantly, the algorithm was able to interpolate incomplete fissures (Table 

IIIb) and demonstrated equivalence in performance to cases with complete fissures. The 

findings highlight the ability of the groupwise prior in conjunction with information from 

the vessel and airway tree to successfully guide fissure segmentation towards correct 

locations as defined by the reference standard.

Our work bears many similarities with the implementation of Lassen et al. [7]. They also 

exploited information from auxiliary structures by combining the airway and vessel tree with 

the segmented fissures to create a cost image for watershed segmentation. Our algorithm 

differs primarily in the fissure segmentation and in the inclusion of population information 

in the cost image. Priors dependent on the segmentation of the vessel and airway tree might 

not always be fully informative. Airway tree segmentation is challenging and may not be 

sufficiently segmented to provide enough information about the location of lobar borders. 

The vessel tree may also not provide sufficient information in areas of largely incomplete 

fissures. The additional information provided by the groupwise fissure prior helps mitigate 

these issues. Within the LOLA11 dataset, the effect is marginal on the overall scores (0.884 

versus 0.881). The dataset included many highly irregular scans, which made it difficult to 

create an accurate population model. The effect of the groupwise prior was more noticeable 

in dataset 2 from the COPDGene study (Fig. 6 and 11) where we demonstrated the utility of 

the groupwise fissure.

The technique by which we construct the groupwise prior has the advantage of not requiring 

any pre-existing data. This does not require an expert to manually delineate complete 

fissures including visible and non-visible fissures. Since we construct the prior on the 

current set of data, it is not biased towards particular types of imaging data. The groupwise 

prior acted as a guide or region of confidence within the patient space rather than rigidly 

guiding the segmentation based on shapes in the training set, facilitating the segmentation of 

lobes of varying shape. Its effect was demonstrated on dataset 2 (Table II) and visualised in 

Fig. 11. Our method for constructing the groupwise prior suffers from a lack of flexibility in 

comparison to deformable models. A prior created by averaging all segmented fissures in the 

groupwise space may be over simplistic. Despite the simplicity of its construction, the 

application can bias the results in certain cases. This was seen in the weak relationships 

calculated between segmentation errors and fissure incompleteness (Fig. 8) but also when 

quantifying the effect of the prior (Section IV-C). Since the average fissure is directly added 

within the patient space, it does not take into account the shape of the segmented fissure. 

This introduces a bias if the patient anatomy differs significantly from the mean. This 

occurred mostly in the right minor fissure, where several modes in the population exist (Fig. 

5). This led to a smaller average increase in the errors when testing algorithm performance 

without the prior (Table II).

The dependence of our work on the construction of a groupwise space is a limitation. 

Groupwise registration is computationally expensive and measuring registration accuracy of 

inter-patient registration is difficult. Errors in the registration may be present, which can 

decrease the strength of our calculated groupwise prior. The work of Li et al. [36] used 

annotated landmarks from the airway tree to drive inter-patient landmark and intensity-based 
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registration, indicating the applicability of detecting landmarks in inter-patient registration. 

Inclusion of the vessel density map in a multi-modal registration scheme to construct our 

groupwise space may then produce a more accurate fissure prior. Improving the inter-patient 

registration is then likely to increase the flexibility of the fissure prior. The transformation 

between the average space and the patient space acts as a deformable model. A more 

accurate mapping; obtained by including extra morphological information will help deform 

the groupwise prior to more unusual geometries.

The need to segment the airway tree may also decrease the applicability of our framework. 

Segmentation of the bronchial tree is an important determinant in the success of our 

algorithm as demonstrated by several failures in dataset 2. The vessel density map produces 

a good approximation of the fissure location, which may negate the need to use the airway 

tree in the fissure segmentation and cost function. However, initial seed labelling for the 

watershed still relies on the airway tree. Whilst we developed post-processing methods to 

make the method more robust to the quality of the airway segmentation, errors can lead to 

failures. A combination of the groupwise framework and the labelling method described in 

Section II-D3 may help generate better seeds without needing the airway tree.

The segmentation of incomplete fissures remains one of the biggest challenges in lobe 

segmentation. We presented the simultaneous construction of a groupwise prior to address 

this challenge. When the fissures are not-visible on CT, this is because they may be 

congenitally absent or destroyed by inflammatory disease processes. The segmentation may 

therefore be creating an artificial division between lobes. In reality, the anatomical boundary 

between the lobes has either been destroyed or is absent. This is seldom mentioned in the 

lobe segmentation literature. When comparing our results with the label 3 reference, it is 

therefore important to note we are comparing algorithm extrapolation with the educated 

guess of an expert. Furthermore, it is not yet known what accuracy is needed in the 

segmentation of incomplete fissures to produce regional markers of disease that are 

clinically useful.

Despite the ability to correctly guide the segmentation in regions of incomplete fissures in 

most cases, the application of the groupwise prior requires further work. There may be 

issues when the mean of the population deviates significantly from the patient being 

segmented. In order to fully exploit the power obtained by fusing complete and incomplete 

segmentations, it is necessary to dynamically weight the groupwise prior in regions when it 

is needed and regions where information stemming from the patient is sufficient. Another 

solution may lie in creating various fissure models using different sets of patients from the 

population to mimic multi-atlas selection.

In conclusion, we have presented a lobe segmentation algorithm, which requires no prior 

training or manual labelling to both segment the fissures and build a population prior of the 

fissures. We have tested the method on 135 different datasets with varying levels of disease 

severity and complexity. The presented algorithm can be used in large studies to perform 

accurate regional quantification of disease progression and shows great promise to be 

integrated within a clinical setting.
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Fig. 1. 
Example in the variation of fissure integrity. Scans with complete (a) and incomplete (b and 

c) fissures can be visualised. The incomplete fissures are due to fusion of lung tissue (b) or 

pathology (c). Slices are displayed in the intensity range ℐ ∈ [−1024 HU, −600 HU].
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Fig. 2. 
Lobe segmentation algorithm for processing a set of T patients, given by ℐ = {ℐ1, ℐ2, ⋯ , 

ℐt, ⋯ , ℐT}. The lung mask, airway and vascular tree are segmented as preprocessing steps. 

Anatomical information (πt,k, k = (fissure, tissue)) is derived from the airway and vascular 

tree. A probabilistic segmentation of the fissures based on a filter (ℱt) exploits these priors. 

This yields fissure segmentations ( t) for each patient n. For a given cohort (ℐ = {ℐ1, ℐ2, 

⋯ , ℐT}), a groupwise space is constructed yielding the set of transformations φℐt,ℐ̂ to the 

common space ℐ̂. This space is exploited to construct an average model of the fissures 

(𝒮̂
avg). This is combined with the segmented fissures t and the patient-specific anatomical 

information (πt,k) in a cost function for non-parametric surface fitting. Final lobe 

segmentations (ℒ = {ℒ1, ℒ2, ⋯ , ℒT}) are obtained for each patient (t) in the cohort (ℐ = 

{ℐ1, ℐ2, ⋯ , ℐT}).
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Fig. 3. 
Illustration of the local neighbourhood i used in Eq. 13. The index l iterates over each 

component in i whilst j is the tissue class iterator. The real-world distances are represented 

by sx and sy, both measured in mm.
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Fig. 4. 
Given a patient ℐt (a), an anatomical prior (πt) (b) is derived from the vessel density and 

airway tree distance transform. A multi-scale filter is applied to ℐt to yield ℱt (c). Gaussian 

mixture modelling with an MRF yields a probabilistic segmentation (d) of the fissures 

t,fissure.
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Fig. 5. 
Average fissure in the groupwise space Ωℐ̂. The average lung at the sagittal midsection of 

the right and left lung with the respective average fissures can be seen.
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Fig. 6. 
Groupwise prior in the patient space Ωℐt. a) The patient volume (ℐt), b) the resampled 

average fissure (Πt) and c) the smoothed prior (Πt * G(σ)).
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Fig. 7. 
Boxplots of the fissure segmentation with increasing values of B whilst varying constant A 
of the multiscale filter (Eq. 2).
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Fig. 8. 
Relationship between incompleteness and segmentation performance. One case where the 

right major fissure failed and another where both the left and right lungs failed were 

removed as outliers for better visualisation.
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Fig. 9. 
Illustration of the segmentation on examples from the qualitative set of dataset 2 (top row) 

and the quantitative set (bottom row) at various levels of COPD severity.
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Fig. 10. 
Illustration of the segmentation on a variety of cases from dataset 1 with complete and 

incomplete fissures in addition to various levels of pathology.

Bragman et al. Page 31

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Lobe segmentation results without and with the groupwise prior (Π) in four different 

patients. The reference for non-visible fissures (label 2 and 3) is overlaid on the lobe 

segmentation. The colour of the reference was chosen to aid the visualisation and is not 

representative of the segmentation label.
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Table I

LOLA 11 lobe segmentation overlap results

Lobe Mean ± STD Q1 Median Q3

LUL 0.906 ± 0.202 0.946 0.975 0.988

LLL 0.880 ± 0.243 0.919 0.962 0.980

RUL 0.928 ± 0.071 0.888 0.960 0.980

RML 0.799 ± 0.235 0.759 0.891 0.941

RLL 0.908 ± 0.194 0.937 0.961 0.976

Our method 0.884 0.950

Lassen et al. [7] 0.881 0.951

van Rikxkoort et al. [10] 0.851 0.943
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Table II

Quantitative Results - Fissure Metrics with and without Groupwise Prior

WITH (mm) WITHOUT (mm) p-Value

Label 2

Right Major 5.29 ± 3.00 5.71 ± 2.75 p=0.65

Right Minor 6.28 ± 3.52 6.51 ± 3.51 p=0.83

Left Major 6.05 ± 4.64 10.59 ± 16.32 p=0.25

Total 5.87 ± 3.72 7.60 ± 6.49 -

Label 3

Right Major 6.94 ± 3.24 8.18 ± 4.28 p=0.34

Right Minor 6.41 ± 2.81 6.50 ± 2.84 p=0.92

Left Major 7.94 ± 4.95 11.09 ± 10.19 p=0.67

Total 7.10 ± 3.67 8.59 ± 5.77 -
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Table III

Qualitative Scoring Results for Complete Fissures (a) and Incomplete Fissures (b)

Score Right Major Right Minor Left Major Total Score

% 5 0.0 22.0 0.0

3.9 ± 0.3

% 4 82.4 58.0 76.5

% 3 15.6 20.0 23.5

% 2 2.0 0.0 0.0

% 1 0.0 0.0 0.0

(a)

Score Right Major Right Minor Left Major Total Score

% 5 7.3 12.5 2.4

3.8 ± 0.5

% 4 68.3 50.0 70.7

% 3 22.0 37.5 26.8

% 2 0.0 0.0 0.0

% 1 2.4 0.0 0.0

(b)
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Table IV

Quantitative Results - Fissure Metrics

average of patient mean (mm) average of patient max (mm) average of patient rmse (mm)

Label 1

Right Major 1.66 ± 3.61 15.42 ± 14.91 2.72 ± 5.67

Right Minor 2.31 ± 11.10 18.60 ± 20.10 3.32 ± 12.82

Left Major 2.07 ± 4.03 28.50 ± 27.89 3.95 ± 6.85

Total 2.01 ± 6.24 20.85 ± 20.96 3.33 ± 8.44

Label 2

Right Major 5.44 ± 5.55 14.22 ± 14.45 6.69 ± 6.98

Right Minor 5.39 ± 8.50 18.65 ± 18.96 7.23 ± 8.48

Left Major 4.65 ± 4.30 16.15 ± 16.75 6.01 ± 5.81

Total 5.16 ± 6.12 16.34 ± 16.72 6.64 ± 7.09

Label 3

Right Major 7.21 ± 4.18 20.95 ± 21.02 8.65 ± 6.15

Right Minor 7.56 ± 5.49 19.05 ± 17.62 8.44 ± 7.28

Left Major 7.16 ± 34.96 23.23 ± 23.23 9.78 ± 5.58

Total 7.31 ± 4.88 21.08 ± 20.62 8.95 ± 6.34
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