1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 08.

-, HHS Public Access
«

Published in final edited form as:
IEEE Trans Med Imaging. 2017 August ; 36(8): 1650-1663. doi:10.1109/TMI.2017.2688377.

Pulmonary Lobe Segmentation with Probabilistic Segmentation
of the Fissures and a Groupwise Fissure Prior

Felix J.S. Bragman,
Centre for Medical Image Computing, Department of Medical Physics & Bioengineering,
University College London, WC1 6BT London, United Kingdom

Jamie R. McClelland,
Centre for Medical Image Computing, Department of Medical Physics & Bioengineering,
University College London, WC1 6BT London, United Kingdom

Joseph Jacob,
Centre for Medical Image Computing, Department of Medical Physics & Bioengineering,
University College London, WC1 6BT London, United Kingdom

Department of Radiology in the Mayo Foundation for Medical Education and Research, Mayo
Clinic, Rochester, Minnesota, USA

John R. Hurst, and
UCL Respiratory, University College London, WC1 6BT London, United Kingdom

David J. Hawkes
Centre for Medical Image Computing, Department of Medical Physics & Bioengineering,
University College London, WC1 6BT London, United Kingdom

Abstract

A fully automated, unsupervised lobe segmentation algorithm is presented based on a probabilistic
segmentation of the fissures and the simultaneous construction of a population model of the
fissures. A two-class probabilistic segmentation segments the lung into candidate fissure voxels
and the surrounding parenchyma. This was combined with anatomical information and a
groupwise fissure prior to drive non-parametric surface fitting to obtain the final segmentation.

The performance of our fissure segmentation was validated on 30 patients from the COPDGene
cohort, achieving a high median F;-score of 0.90 and showed general insensitivity to filter
parameters. We evaluated our lobe segmentation algorithm on the LOLAL11 dataset, which
contains 55 cases at varying levels of pathology. We achieved the highest score of 0.884 of the
automated algorithms. Our method was further tested quantitatively and qualitatively on 80
patients from the COPDGene study at varying levels of functional impairment. Accurate
segmentation of the lobes is shown at various degrees of fissure incompleteness for 96% of all
cases. We also show the utility of including a groupwise prior in segmenting the lobes in regions
of grossly incomplete fissures.
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[. Introduction

Segmentation of the pulmonary lobes can facilitate the localisation and quantification of
respiratory diseases and is of particular interest in Chronic Obstructive Pulmonary Disease
(COPD). COPD can alter the structure of the lung through emphysematous destruction of
lung parenchyma. The speed with which local pulmonary damage evolves can vary between
patients with COPD [1], [2], yet the heterogeneity of local disease progression [2] may not
be captured in lung physiologic indices that quantify function at a global level [1]. CT-based
lobe segmentation provides an anatomically consistent reference frame for the quantitative
analysis of parenchymal damage across large cohorts of patients and negates the requirement
of a groupwise space for analysis. Knowledge of the underlying lobar distribution of disease
may allow the identification of subtle COPD phenotypes or help identify patients that would
benefit from interventions such as lung volume reduction surgery [3].

To characterise CT disease extent on a lobar basis, it is necessary to identify the pulmonary
fissures. The fissures consist of invaginations of visceral pleura, which extend from the lung
periphery to the lung hilum and separate the right and left lung into five lobes. The oblique
and horizontal fissures divide the right lung into three lobes (upper, middle and lower) whilst
the left oblique fissure divides the left lung into upper and lower lobes. When visible on CT,
the fissures appear as bright, solid lines. They represent two apposed layers of visceral
pleura, which are usually devoid of airways and vascular structures [4]. However, the
appearances of the fissures on CT can be variable in the general population [5]. A
developmental failure of pleural invaginations can result in congenitally absent or
incomplete fissures [4] (Fig. 1b). Various pathological processes may damage the pleural
surfaces disrupting the integrity of the fissures [4] (Fig. 1c).

Automated lobar segmentation is most reliable when fissures are complete [6]. In cases with
incomplete fissures, various methods have been developed that draw information from
pulmonary anatomy and atlases. Lobe segmentation algorithms can be broadly categorised
as either supervised [7]-[12] or unsupervised [13]-[16]. In our study, we extend the
definition of supervised methods to encompass any algorithm that requires prior manual
labelling to determine optimal fissure properties or the construction of anatomical atlases.
Segmentation algorithms can be further subdivided on the basis of the segmentation of
auxiliary structures. Methods can be dependent [7], [10], [13]-[17] or independent [12], [18]
of the information provided by the airway and vascular trees. Algorithms can also be
classified based on their dependence on anatomical atlases [10]-[13], [18] or whether the
method is uniquely performed in the patient-space [7], [14].

Fissure segmentation can be classified as supervised when posed as a classification task or
unsupervised when applied with a filter. A major shortcoming of filters is their reliance on
arbitrary thresholds for segmentation. The inclusion of fixed segmentation thresholds may
ignore potential fissure voxels or include excessive false positive voxels. Such thresholds are
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often compromised when lung attenuation values themselves are variably influenced by a
range of factors including the CT reconstruction algorithm, CT slice thickness and patient
inspiratory effort. The issue of the removal of false-positive voxels and its dependence on
prior knowledge is a further limitation of several algorithms [7], [12], [19], [20]. The
likelihood function of Lassen et al. [7] requires prior knowledge of fissure Hessian
eigenvalues and may lead to an over-segmentation of fissure voxels that cannot be corrected
through post-processing techniques. The work of Wiemker et al. [19] requires knowledge of
the underlying Hounsfield intensity distribution of the fissures with no data-driven method
presented to determine these parameters. Ross et al. [12] sample the image domain to detect
the most likely fissure surface based on Hessian eigenvalues and a maximum a posteriori
estimation. Their technique requires a lobe boundary shape model based on manually
segmented data to improve their fissure discrimination. The method is similar to the
formulation of van Rikxoort et al. [21], which requires prior knowledge of manually labelled
voxels to build a classifier. Manual annotation of data is time consuming and impractical in
routine clinical practice. Moreover, it does not follow that a training dataset built on a single
set of scans will generalise to a new cohort derived using different scanners, with varying
reconstruction kernels. Such a constraint is also apparent in the likelihood function of Lassen
et al. [7]. Our technique however learns the necessary model parameters from the volume
being segmented, permitting the development of a robust segmentation tool, applicable
across a broad range of datasets.

The use of prior knowledge derived from population models has increased in popularity
[12], [18], [22], [23]. Zhang et al. [23] perform lobe segmentation using a single atlas search
initialisation. The average fissure surface from a training set is exploited in a fuzzy
reasoning system to segment the fissures and the lobes. An alternative multi-atlas selection
mechanism has been proposed by van Rikxoort et al. [10]. This selects the most similar atlas
to the patient by comparing the patient fissure segmentation to the atlas and exploits a
transformation to combine atlas lobe labels with an approximate lobe segmentation. Ross et
al. [12] exploit a deformable model in fissure surface extraction. The ability to exploit prior
knowledge is an implicit advantage of atlases. However, if the training data is not large
enough, this may not correctly model the shape variation within the population. These
methods described all require complete segmentations prior to model building, which is a
laborious task. We aim to build a simple population model of the fissures negating the need
for prior manual labelling without requiring complete fissure segmentations.

The limitations associated with the dependence on manually segmented data, either to train
classifiers or build atlases was a major motivation of the work presented. When considering
fissure segmentation, there is sufficient data within a single scan to detect the fissures when
visible whilst rejecting most false-positives. In view of large-scale studies such as
COPDGene [24], CT scans can also be pooled together to produce a prior, which negates the
need for complete manual segmentations.

We present an automatic lobe segmentation algorithm (Fig.2) based on a probabilistic
segmentation of the fissures (Section 11-B) and the construction of a groupwise fissure model
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(Section 11-C). Our study aimed to construct a fissure model (Section I1-C) using complete
and incomplete fissures to generate a confidence region based on a population. In the context
of routine clinical care, new scans can be iteratively added if necessary to help strengthen
the population model.

The main technical contributions of this paper are: a) unsupervised probabilistic
segmentation of the fissures with iterative false-positive removal, b) the simultaneous
construction of a groupwise prior without need for complete manual segmentations and c)
post-processing of the airway segmentation to correct errors in seed labelling. An overview
of the segmentation is shown in Fig. 2. The lungs, vessel and airway tree are first segmented.
This is followed by a segmentation of the fissures using auxiliary tree structures as
anatomical priors in a probabilistic setting. The segmented fissures are then combined using
a groupwise registration framework to produce a population prior. The anatomical
information, the segmented fissure and the groupwise fissure prior are then combined as a
cost image for a watershed segmentation.

A. Data pre-processing

Lung masks are obtained with the algorithm of Hu et al. [25]. The vasculature is segmented
by considering multiscale vessel filtering [26]. The airways are segmented using region
growing via evolution of a wavefront, which iteratively corrects for leakage across the
airway wall [14]. It is assumed that the remaining structures after segmentation are the
fissures and the parenchyma. A skeletonisation of the airways reveals the branching
structure, used to label the lobar bronchi to generate surface fitting seeds. All pre-processing
is performed using the Pulmonary Toolkit! with standard parameter settings.

B. Probabilistic fissure segmentation

We propose an unsupervised fissure segmentation framework that does not require any
training data to classify fissure-voxels whilst negating the need to empirically determine
algorithm parameters. We present a simple fissure enhancement filter that does not require
any manual observations to set the parameters. We then construct a probabilistic framework
to segment the fissures based on this enhancement filter. We assume a generative model
between the observed filter result and the underlying segmentation of the lung and that these
hidden segmentations exhibit separate Gaussian distributions. The proposed model assumes
that the filtered image is generated by a two-class Gaussian mixture model (GMM), where
the fissures and the parenchyma are the hidden segmentations that have generated the
observed enhancement filter. Parameters of the GMM and the underlying segmentation are
determined through application of the Expectation-Maximisation (EM) algorithm.

1) Multi-scale fissure enhancement filter—This filter aims to distinguish fissure-like
voxels from surrounding structures. If we consider an image volume \,from the set of
images ® = {2, Ry, --, R 7}, the Hessian matrix (H,) at a scale o is obtained by
considering the second derivative of «@;convolved with a Gaussian kernel G (o).

1https://github.com/tomdoel/pulmonarytoolkit
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The width of the pleural cavity is likely to vary. The filter is embedded in a multi-scale
framework to capture this variation. A voxel-wise eigen-analysis of H; (s%; o) yields scale-
dependent eigenvalues A1, A, and A3, which are, ordered based on their magnitude such that
IA1] < |A9| < |\3|, with respective eigenvectors (1, O, and (3. We adapt the vesselness filter
of Frangi et al. [26] to capture voxels exhibiting a fissure-like shape.

As a sheet-like structure, a candidate fissure voxel will ideally be represented by a very large
[A3] >> 0 with A, = Aq = 0. We aim to enhance voxels with this relationship whilst
suppressing other auxiliary structures using the following parameters:

A A
M Dol

o=l
|A2As3] sl (1)

The parameter R, helps differentiate spherical structures from plate-like and tubular
structures. To differentiate plates from tubes, ®.,is combined with the parameter ®. 4, which
seeks to enhance structures exhibiting a plate-like aspect ratio. A scale dependent filter (Eq.
2) is obtained by combining both terms:

%a(af

Fi(0)=1(A3(a)) - { exp(— Jexp(=—7>")}

where (A3(o)) is an indicator function such that I(A3(c)) = 0 when A3(c) > 0 to seek only
bright features. The parameters A and B control the sensitivity of each parameter ® ; 4.
Small values of A and B (» 0) will only be sensitive to voxels with ideal values for the filter
parameters (R, — 0). Larger values for Aand B (— 0.5) will enhance voxels with less
ideal relationships with the caveat of enhancing more false positives (Section IV-A). A final
value of &#;is found by computing the scale o which maximises #;at a voxel x:

ﬁt(x):a_glaaga F(x;0). 3)

There is a deviation from the ideal plate-like eigenvalue relationship in the presence of
partial-volume effects, image noise and patient motion, which may result in a loss in the
discriminating power of & We assume that both tissue classes are hidden segmentations
that generate a range of values stemming from Gaussian distributions. We aim to capture
these class distributions to accurately segment the fissures, even when the filter response is
poor at a fissure voxel by considering local neighbourhood properties.

2) Fissure segmentation using a Gaussian Mixture Model—The output of the filter
7 is parameterised by a two-class GMM. The two underlying distributions in the signal
correspond to the fissures and all other remaining structures. We assume that the fissures and
lung tissue are hidden segmentations () that give rise to the observed values y of #; The
segmentation can be modelled as a random process with a probability density function |
@) with parameters @ . The total filter signal has a probability density function Ay| z ®))
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parameterised by the model parameters @,. The goal is to estimate the segmentation z by the
parameters @ = {®, @ ;}. This is performed using the EM algorithm by estimating the
maximume-likelihood parameters ® via maximisation of the log-likelihood

d=arg max lo [
g ma gf(y|®) @

We consider the image model of Van Leemput et al. [27]. The index of a voxel xis /€ {1, 2,
..., 1} where nis the number of voxels within the lung mask. There are K= 2 classes
(fissure and tissue). The class of the 7 voxel is defined as z;= e, The variable e, represents
the class membership e.g. e,=1 defines the fissure class and ¢, is the surrounding lung
parenchyma. The response of the filter at voxel x;is y;. The filter values belonging to each
class kare assumed to be normally distributed after log transformation with mean pand
standard deviation o4 such that ¢4 = {Hix, o4} The vector @), = {¢4=1, d4=2} represents the
model parameters for both tissue classes. The overall probability density for y;is defined as
a mixture of normal distributions,

FWil®y)=> " Go, (yi — i) f(zi=ep)
k (5)

where G, represents the k' class zero-mean normal distribution with standard deviation o
and f{z;= ey is the class prior probability of a voxel x;. By assuming statistical
independence over all voxels x € &, the overall joint probability density is given by

£, =T1f (wils,)

The maximum-likelihood estimates for @, are found using Eq. 4 by seeking the parameters
that maximise Eq. 6, giving the following update equations for the model parameters

(m+1) _ ZiPEZhLl) Yi
Pe = (m+1)
2Pk @

(Ulgm-ﬂ)) 2: Zipz('ZH_ 1) <y<im_+ﬁ§cm+ 1) ) 2

2iPik 8)

where
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Jomi__ L (lzen 817) femer)
ik - =
SIS (wleimess @57) fimes) (g

is a probabilistic estimation of the hidden data z; of class kat voxel x;given the filter value
;. The class ks iterated with the class index jand /m denotes the EM iteration number.

The segmentation resulting from Eqg. 9 can be sensitive to noise, image artefacts and false
positives as the segmentation is only based on y. Priors (rt; ) that incorporate probabilistic
information about the segmentation are typically added to the model [27], [28]. In the
context of this work, we can quantify the likelihood of the fissure location (Fig. 4b) based on
the vessel and airway tree. We quantify the vessel density (v,) [14], which is obtained by
applying a strong (10mm isotropic) Gaussian filter to the vesselness filter of Frangi et al.
[26]. This measure is inverted and scaled in the range [0, 1] using min-max scaling such that
regions of low vessel density are close to 1. Airway density (a,) is estimated by computing
the Euclidean distance transform to the airway segmentation and is normalised using min-
max scaling to the range [0, 1] such that regions of high distance to the airways are close to

1. The fissure likelihood measure is defined as 7y jx— ; =(ad+”d)/2 and the tissue likelihood
is 1 jk=p = 1 — ms jy=1. The subscript ¢is dropped in Eq. 10 and 11 for convenience. The
anatomical information is integrated into Eq. 5 by setting Az;= &) = mtjx

Information about lung structure, spatial smoothness and morphology can be also be
enforced by considering a Markov Random Field (MRF) regularisation term (Uyrg). The
probability of a voxel 7belonging to tissue class kis now dependent on the first-order

neighbours ./ ;. The neighbourhood system at a voxel x;is defined as #;={_#;*, #;Y 4%}
in the face-connected neighbourhood. The likelihood term (i) is now augmented with an
MREF that is dependent on the probability and curvature of neighbouring voxels. By
employing the formulation of Van Leemput et al. [27], Eq. 9 is updated to

(1) _ f (yi|zi:eka@;m)> f (Zi=6k|p%)7q’2")
. Zf;f <yi|zi:6j-,(b(ym)> f (Zz:cj|p%),¢§m)> (10)

with

—BiUyp (eklp(j}) ’(I)(Zm))
Tik€ '

3 m
f (Zizek |pr)a (I)gm)> = (m) £(m)Y
—BiUy\gp (SJ' ‘pﬂi o )

Yitime (11)

where the MRF term Upsrr (2;| pi/; @) is an energy function dependent on @, = {G} and
the MRF weight B, is kept constant for all voxels .

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bragman et al. Page 8

Structure in the segmentation is enforced by considering neighbourhood probabilities (0 )
and constraints on the curvature of the surface (%) (Fig. 3b). The fissure surface exhibits
low local curvature, which will be captured in the eigenvector (3. A weight in the MRF
energy term is introduced based on the dot product of the eigenvectors of a neighbouring
voxel xywith the center voxel x;such that

1 ( <\ﬁz,,3-ami.3|)°‘) £ b
—eXp{ 0.25 it k=1
Jaot (1, 24),= e

exp <_(\uzl,3-uzi,3\) ) 9

0.25 (12)

When considering the fissure class (k= 1), the weight will tend to 0 as dissimilarity in the
local curvature increases (1 — exp(—|Q,3 - 0;3]) — 0). If neighbouring voxels x;and x; have
similar curvature, 7yAX;, X)) =1 Will tend to 1. The goal of this function is to force candidate
fissure voxels to have approximately equal curvature whilst negatively weighting the
probabilities of false-positives with non-equal local curvature.

The possibility of anisotropic voxel sizes and slice spacing is considered with the
connection-strength factor () introduced by Cardoso et al. [28], defined as

1 1 1
s={sa, 5y, 5:}={ /dx ) /dy ) /dz} based on real-world distances between the centre of
neighbouring voxels. Closer voxels will yield higher weights in the MRF. The total energy
(Unrp (Fig. 3) for a face-connected neighbourhood ./ centered at voxel x;in Eq. 11 is
defined as

K
Untrr (€k|p/rg(m),‘1>z(m)> => Gig( > safaot (D) ;o154 D syfaor(ld) ;pig+ Y sofaor(d);pry)
=1

le® lesY leN?

(13)

where G represents a Kby K'matrix whose elements Gy;represent the transition energy
between tissue classes A and jand the the subscript /denotes the neighbourhood iterator in
each direction x, , z Since this is a two-class problem, the matrix G is set up with diagonal
elements equal to 0, off-diagonal elements set to 1 and is a constant in our framework.

Initial parameters for the mixture model (Eq. 7 and 8) are set to p{”=9 = {0.10, 0.90} on the
assumption that both class distributions are significantly different. The class standard
deviations are initialised as the original standard deviation of the image filter (o2(7=0) =
{c?(#), o%(F#)}). Initial values for the MRF energy weights (Eq. 11) are set to an even
split of 0.5. A termination criteria based on the ratio of likelihood change is setto e = 1073,

The parameter B in Eq. 11 controls the regularisation strength. To mitigate dependence of
the segmentation on a user-defined choice, the segmentation is performed iteratively whilst
increasing the strength of . The percentage of high probability fissure voxels (p; 4=1 = 0.75)
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with respect to the number of voxels nis quantified. This percentage decreases as f rises
leading to a fall in false-positive fissure voxels. The initial regularisation is p = 0.75. The
EM framework is run and the percentage high probability voxels is quantified. If there is a
convergence of this percentage, the segmentation framework terminates. Otherwise, the
regularisation is automatically increased by 0.50. Convergence is defined when the
percentage has not fallen by at least 2% in 5 successive iterations. The output of the
framework after convergence yields probabilistic fissure (2 fissure) and tissue (2 ttissye) Maps
for each image ;. To obtain a binary segmentation of the fissures (%), a two-pass analysis
is performed. A connected component analysis of Zfissure Using a face-connected
neighbourhood is performed. Firstly, all components with a median probability below 0.50
are removed then all components below a volumetric threshold of 0.50mL are discarded.

C. Groupwise fissure prior

In a given patient cohort, there will be a range of cases with incomplete fissures, which will
complicate the segmentation of the lobes. The goal is to combine all segmented fissures into
a groupwise space to create an average fissure model to help guide the lobe segmentation in
problematic cases.

1) Groupwise registration—Given a set of 7 patients @={\21, Ry, ... , R 7}, a common
average space Qg is computed by iteratively registering the set of patients & to the Fréchet
mean. The output is an average image &a,,g and a set of forward and backward
transformations (¢ 7.¢ and ¢ @) such that ¢g,0 : Qe,— Qg and g ¢, Qg — Qu,

The registration is performed using the NiftyReg software package [29]. The algorithm is
motivated by the work of Ashburner et al. [30]. All patients in W@ are initially registered to an

initial template image ﬁ;@g:()), which is chosen at random from the set of images . The
initial average space is created using a rigid registration. This prevents the atlas from being
biased by the geometry of the initial template image. A set of m affine registrations using
symmetric block-matching [31] are then performed followed by a set of 7, non-rigid
registrations. The non-rigid registration uses a stationary velocity field, which is
parameterised by a cubic B-spline with a 12mm spacing. The locally normalised cross-
correlation is used as the similarity with a Gaussian kernel of 50mm. The number of
iterations was determined in a pilot experiment by computing the sum of squared differences

similarity between successive average images fa@g) and ﬁ;ﬂ?g U at iterations 7and 77+ 1.
Convergence of similarity measures occurred after /7 =5 and , = 5 affine and nonrigid
registrations.

At each iteration () of the algorithm, all patients are registered to the average image .ﬂffy;).

In order to create the new average image @;g and the space Qgn, the inverse average
transformation from all patients is computed in the log-Euclidean space. Each patient
transformation is demeaned using the inverse average transformation. All patients are

subsequently resampled using the demeaned transformations to create :nyg). This new

average image @V”g) is obtained by averaging all the resampled images.
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2) Construction of the population prior—The set of patients W={\21, Ry, ..., X7} will
have a corresponding set of binary fissure volumes ¥={%1, %>, ..., ¥ 7} The
transformations resulting from the groupwise registration (¢, and ¢ ) are exploited to
build the fissure prior (&avg). Each fissure segmentation .7 sis resampled into the groupwise
space (Qy) using the respective forward transformation ¢, to yield §'» All resampled
fissures (& = {S1, S, ..., & 73) are averaged in the groupwise space to create the average
fissure o§°avg. In order to exploit this information to help segment the lobes, the average
fissure is resampled using the backwards transformation ¢ ., into each patient space (Qy,)
resulting in I1; This prior is normalised to the range [0,1] for each patient and is
subsequently smoothed using a Gaussian kernel (o = 2.5mm). This produces a prior in the
space of each patient, denoting a region where the fissure is expected.

D. Watershed surface fitting

The segmented fissure, the groupwise fissure prior and anatomical information are combined
into a cost image inspired by the formulation of Lassen et al. [7]. They create a cost function
by combining information from the vessel and airway tree, the segmented fissure and the
voxel intensities. We build on this work by extending the cost function to utilise a fissure
groupwise prior derived from the population to be segmented.

1) Watershed cost function—The population prior (IT)) is first combined with the
segmented fissure (). The aim of this step is to produce an initial cost function, with
regions of complete and incomplete fissures accentuated using information from the
segmentation .¥'sand the population prior T, The inverted Euclidean distance function is
applied to .7 +to help deal with minor gaps in the segmentation. It is normalised with min-
max scaling to the range [0,1] with a value of 1 at the fissure. Only regions in the distance
map (75 () within 2.5mm of the fissure are considered. The distance map and the
population prior are averaged and convolved with a small Gaussian kernel (o = 1.0mm) to
produce a smooth map in Eq. 14. The magnitude of ¢; will be strongest when 75+ (%9 and
IT;are in the same anatomical location. When there are large gaps in .%’;due to fissure
incompleteness, IT; will provide a local maxima.

s (fdm(?)mt) D g

This is then combined with the anatomical information (rt; =1 Vi — 144=1) and the binary
segmentation (% ):

G (Ct,1+7ft,k:1+e5”t>
' 3 (15)

The fissure likelihood based on the vessel and airway tree (1t 4=1) provides a satisfactory
estimate for regions of low and high fissure probability and helps guide the segmentation
into regions of low vessel and airway density. In addition to ¢y, the original segmentation
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() is reintroduced. This is performed to produce a high value in ¢ ;at the segmented fissure
since this is the true location of the lobar border.

2) Lobe seed labelling—We employ the method used by Doel et al. [14] to generate
initial lobe seed labels from the segmented airway tree. The seed labels are dilated and
allowed to grow according to the vessel density map for a limited amount of iterations using
the watershed algorithm.

3) Lobe seed labelling post-processing—The segmentation is dependent on the initial
seed labels. The quality of the initial labelling can be affected by segmentation failures and
errors in the bronchial labelling. If a lobe seed is incorrectly labelled, the resulting
segmentation will be erroneous despite successful segmentation of the fissures. To improve
the robustness of the pipeline with respect to the airway tree segmentation, the following
errors are accounted for: 1) mislabelled branches and 2) unsegmented branches.

a) Seed label correction - labelling errors: To detect and remove mislabelled branches, the
centre of mass (CoM) of each set of label seeds is quantified. For each label set, the intra-
label distance of each component to the label CoM is computed. The inter-label distance of
the components to all other label CoMs are also quantified. The dilated components are
removed iteratively to minimise the amount of deleted seeds. A seed is marked for removal
if its inter-label distance is smaller than its intra-label distance. The seed with the smallest
inter-component distance of all candidate components is marked for removal. This
component is discarded if its removal does not cause the number of components for that
label to fall below a threshold (ri4respoig = 4)- If this threshold is met, the component with the
next smallest distance is considered. Once a component is removed, the above method is
repeated until removal is no longer possible. This enforces maximum separability between
the seeds and removes all potentially erroneously labelled seeds.

b) Seed label correction - airway segmentation errors: If the airway tree segmentation
fails, labelling of the branches will not yield the necessary seeds to segment all lobes. In this
instance, the anatomical information (m;x=1) and its distribution in non-fissure regions (16)
is considered. The threshold is considered by analysing the distribution of the prior (m;4=1)
at the fissure .7

T, threshold =H(Te k=1 € F4) — 20(Trik=1 € 71)  (16)

The low minima regions of mt .- are defined as 1t; =1 < 7 mresnorg: These correspond to
regions of high vessel and airway branching density. A mask of these regions is created and
a connected component analysis is performed to extract the regions of local minima. These
regions are analysed based on their position within the lung and are exploited to generate
new seed labels should the airway tree segmentation fail.

4) Final lobe segmentation—Segmentation of the lobes (£ ) is obtained by combining
the cost image % ;and the processed seed labels in a watershed segmentation. The lobar
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boundaries are smoothed to deal with minor artefacts in the segmentation. This is performed
by normalised convolution with a 4.0mms3 Gaussian kernel.

Dataset 1 was based on the LObe and Lung Analysis 2011 (LOLA11) challenge [32]. It
consists of 55 volumetric chest CT scans originating from a variety of source with a range of
scans containing serious pathology and abnormalities. The inplane resolution is between
0.53mm and 0.78mm whilst the slice thickness ranges from 0.3 to 1.5mm. The organisers
manually segmented the lobes on 9 coronal slices with two human observers and were
instructed only to label when the boundaries were visible. The inter-observer agreement
between the lobar borders was 1.50mm + 1.28mm.

Dataset 2 was used to quantitatively and qualitatively validate the framework on patients
with COPD from the COPDGene study [24]. We created a quantitative (Agyan = 30) and
qualitative set (Ve = 50) by randomly selecting patients from the study. Minimum
thresholds (> 10%) for the level of emphysema in the inspiration scan and gas trapping in
the corresponding expiration scan were set in the qualitative cohort to capture cases with
significant pathology. The quantitative set averaged 12.8% + 11.12% emphysema whilst the
qualitative set averaged 22.50% + 3.60% emphysema.

Analysed scans stem from GE Medical Systems (Light-Speed 16, Lightspeed VCT),
Siemens (Sensation 16, Sensation 64 and Definition) and Philips (Brilliance 64) scanners.
Scans with the STANDARD (GE), AS+ B31f and B31f (Siemens), and 64 B (Philips)
reconstruction algorithms were analysed. Information about the scanning protocols can be
viewed at the COPDGene website2. The slice thickness of the scans range from 0.62mm to
1.00mm with in-plane dimensions ranging from 0.52 to 0.90mm.

The quantitative cohort was built by manually tracing the fissures in every fifth sagittal slice
using ITK-SNAP [33]. The radiologist was asked to manually trace the fissures using three
labels. Label 1 was used when the fissures were visible. Label 2 was employed in cases
where extrapolation was possible. Label 3 was used in areas of high fissure uncertainty.

The manual segmentation provided an approximate estimate of fissure incompleteness with
an average of 12.4% = 8.3% across the quantitative set. This was computed by considering
the percentage of voxels labelled 2 and 3. Intra-observer variability was obtained by a
repeated segmentation of 3 datasets with varying degrees of fissure incompleteness (6.7%,
23.0% and 31.3%). These were performed 14 days after to minimise recall bias. The intra-
observer agreement for all lobar boundaries across all patients was 1.54mm + 0.45mm.

2copdgene.org/sites/defauIt/fiIes/COPDGene%ZOMOP%ZOOﬁ.19.2009.pdf
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IV. EXPERIMENTS & RESULTS

A. Fissure segmentation evaluation

We investigated the effects of parameters A and B (Eq. 2) and the performance of our
segmentation framework on the quantitative set of dataset 2 using label 1 of the reference
set.

We used the method presented by Xiao et al. [34] to evaluate our fissure segmentation. We
did not define a volume of interest (Mol) using a 40mm width band around each reference as
this ignores potential false positives in the validation. The F;-score was used as quantitative
index of performance. It is defined as 2-(Precision-Recalll( Precision+Recall). The
magnitude of F reflects the similarity between the segmentation and the reference.
Precision and Recall are defined respectively as 7P /(TP, + FP) and TRI(TP, + FN) [34].
Precision was quantified by considering the overlap of the binary result (%) with the
reference. A 3mm tolerance band was defined around the reference segmentation as
performed by Xiao et al. [34]. Voxels of .7 are classified as true positive (77,) if they fall
within the 3mm band and false positive (FP) if otherwise. Recallwas computed by defining
a 3mm band around the binary result (%). Reference voxels within this band were classified
as 7P, and those outside as false-negative (FN).

We segmented the fissures using parameters A, B € [0.05, 0.50]. We illustrate the
performance of the segmentation for a subset of the parameter B € [0.05, 0.10, 0.15, 0.25]
with A € [0.05, 0.50] in Fig. 7. The best performance over all datasets was achieved with
parameters A = 0.25 and B = 0.10 with a median F;-score of 0.90 with median False-
Discovery Rate and False-Negative-Rate of 0.08 and 0.13 respectively. The F;-score
remained relatively stable when set in the range A* = B* € [0.10, 0.35] (Fig. 7). The mean
F1-score over all combinations (A* x B*) was 0.87 £+ 0.02 demonstrating stability in
algorithm performance. The mean £, over all values of A for increasing values of Bis
0.87+0.03 (Fig 7a), 0.87+0.03 (Fig 7b), 0.86+0.04 (Fig 7c), 0.83+0.08 (Fig. 7d). At higher
values of B, this drops to 0.82 + 0.09 (8= 0.30), 0.81 £ 0.10 (B=0.35),0.79 £ 0.12 (B=
0.40), 0.78 £ 0.14 (B=0.45) and 0.77 £ 0.15 (B = 0.50). This is expected as higher values
decreases the separation between the tissue and fissure-class distributions.

B. Lobe segmentation validation

Algorithm parameters quoted within Section Il were used in the validation of dataset 1 and
2. The fissure filter parameters used were A = 0.20 and B=0.20.

1) Dataset 1 - LOLA11—We evaluated our algorithm on the LOLAL1 cohort and
submitted our results for evaluation [32]. The LOLA11 evaluation metric is the volume
overlap between the submission and the reference segmentation of one observer. The
organisers defined a 2mm slack border around the borders of the lung and lobes to account
for inter-observer variability. Voxels within this border were not accounted for during
evaluation. The overlap is calculated for each lobe across all patients. We report the mean +
standard deviation, first quartile (Q1), median and third quartile (Q3) of the scores across all
55 patients. The LOLA score is calculated as the average of all average overlaps over all
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lobes. Table I shows the score for our lobe segmentation and those of van Rikxoort et al.
[10] and Lassen et al. [7].

Five algorithms have been validated for lobe segmentation on this cohort. However, we have
restricted our comparison to van Rikxoort et al. [10] and Lassen et al. [7] as they are fully
automatic and do not require interactive post-processing to correct segmentations. We
achieved the highest automatic average lobe score of 0.884 and an average median overlap
of 0.950 (Table I).

2) Dataset 2 - Quantitative COPDGene—We assessed the performance of our
algorithm quantitatively on dataset 2 using the mean, maximum and root-mean square error
(RMSE) distance from the manual reference to the automatic boundary. This was performed
by calculating the three-dimensional Euclidean distance between the reference voxels and
the closest point on the automatic segmentation.

We assessed the segmentation for each label (Table 1V). The algorithm achieved a mean of
2.01mm % 6.24mm when the fissures were visible (label 1). In cases where fissure
extrapolation was possible (label 2), a mean of 5.16mm + 6.12mm was achieved. The
performance dropped to 7.31mm + 4.88mm in regions of highest uncertainty (label 3). In
one case, the right lobe segmentation failed and in a second case, segmentation of the right
and left lobes failed. The failure was due to major errors in the airway branching labelling,
which could not be corrected using our methodology. With a 2mm slack border, the mean
distances were 1.65 + 3.28mm (label 1), 3.31 = 5.93mm (label 2) and 6.18 £ 4.70mm (label
3). Errors were due to instances where the groupwise fissure was significantly different from
label 2 and 3 of the reference or slightly biased the segmentation of label 1. Further typical
errors were in cases where emphysametous bullae appearing as fissures lead to isolated
errors in the lobe boundary segmentation.

The performance of our algorithm was also assessed against approximate fissure
incompleteness (Fig. 8). The relationships between the mean distance and standard deviation
of the distance to the closest points on the automatic segmentation were examined and the
Pearson correlation coefficient was calculated for each lobar boundary. Weak relationships
were observed between the mean distance and the degree of fissure incompleteness for each
boundary (right minor: p = .47 (p < 0.05), right major: p = .66 (p < 0.05) and left major: p
= .35 (p>0.05)). Similar findings were observed in the standard deviation (right minor: p

= .46 (p < 0.05), right major: p = .61 (p< 0.05) and left major: p = .23 (p> 0.05)).

3) Dataset 2 - Qualitative COPDGene—We qualitatively assessed (Table I111) our
algorithm on 50 patients with advanced disease using an adapted scoring system of van
Rikxoort et al. [21], which scores the segmentations out of five. The radiologist assessed
each lobe segmentation on the sagittal plane. The highest score (5) corresponded to a
segmentation error below 3mm. A score of 4 reflected a segmentation error at any location
between 3mm and 12mm. A score of 3 reflected a segmentation error greater than 12mm but
where the overall lobe segmentation remained acceptable for analysis. The lowest scores (2
and 1) were awarded when the maximum segmentation error was greater than 12mm and
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segmentation quality was either equivocal or unusable. Scores were assigned to both
complete and incomplete fissures.

The algorithm showed good performance across complete (3.9 £ 0.3) and incomplete
fissures (3.8 £ 0.5). There was one notable failure (score = 2) to segment the right major
fissure in a case with a complete fissure and one failure (score=1) of a segmentation of a
right major fissure when it was grossly incomplete. Across cases with complete and
incomplete fissures, the most commonly awarded score was 4. Only a small proportion of
cases had maximum errors < 3mm (22% and 12.5% for complete and incomplete right
minor fissures whilst 0% and 7.3% for complete and incomplete right major fissures).

C. Effect of the groupwise prior

We assessed the performance of the algorithm with and without the groupwise prior (IT) on
dataset 2. We computed the mean of the distances from the automated segmentation to the
reference and compared this to results using the prior. We did not include the boundaries that
failed in the quantitative analysis of Section IV-B2 as these boundaries also failed without
using the groupwise prior. We omitted cases with minor fissure incompleteness in the
analysis. This was defined when a lobar boundary had less than 1% fissure incompleteness.
This led to 19 analysed patients for the right major fissure, 23 for the right minor and 19 for
the left major. There was 9.72% =+ 8.66% fissure incompleteness in the right major, 36.44%
+ 18.91% for the right minor and 11.61% + 9.81% for the left major in the new cohort. We
calculated the cohort average for each boundary and for the segmentation labels of fissures
not visible in CT, delineated as label 2 and 3. We performed a two- sample t-test under the
null hypothesis that the mean results of the segmentation with and without the groupwise
prior are significantly different.

We found a general increase in the distance to the reference for label 2 (5.87mm + 3.72mm
to 7.60mm £ 6.49mm) and label 3 (7.10mm £ 3.67mm to 8.59mm * 5.77mm) when
excluding the groupwise prior. We did not find a significant difference between the sets of
mean distances for each lobar boundary stratified by reference label (Table II). This is due to
the fact there may be extreme differences due to failures without the prior, smaller
improvements using the prior but also cases where the prior negatively affects extrapolation
of the fissure.

In areas of significant fissure incompleteness, the groupwise prior may help avoid leaking of
the seed labels during the surface fitting whilst guiding the segmentation to the most
probable location based on the population and the patient anatomy. This occurred in several
cases (Figure 11(a—f)) where either the left major border or the right major border failed
without the prior. Within this cohort, the right minor fissure had the highest level of fissure
incompleteness. In various cases (Figure 11 (g—i)), the prior helped drive the lobar border
towards the reference. However, there are several modes of variation in the right minor
fissure (Figure 5). The patient anatomy may differ greatly from the population mean. The
prior may negatively affect the final segmentation in areas of incomplete fissures. This led to
a smaller difference in the population means in the right minor fissure (6.28mm to 6.51mm
in label 2 and 6.41mm to 6.50mm in label 3). Despite this limitation, we can conclude that
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the groupwise fissure prior, constructed from the same cohort using a combination of
complete and incomplete segmented fissures is advantageous.

V. DISCUSSION AND CONCLUSION

We have presented a novel lobe segmentation algorithm based on an unsupervised
segmentation of the fissures with iterative false-positive removal, the creation of a groupwise
fissure prior and a cost function combining patient and population information. Our
algorithm does not require prior training or manual labelling to segment the fissures and
build a population prior of the fissures. Fissure probabilities were obtained by
parameterising a fissure enhancement filter with a Gaussian Mixture Model (GMM).
Smoothness and curvature constraints were enforced in the segmentation by considering a
Markov Random Field (MRF) regularisation. This led to rejection of most false-positives
leading to high maximum F;-score of 0.90. A method to construct a groupwise fissure prior
given complete and incomplete fissures in a population was presented. We evaluated its role
in identifying incomplete fissures whilst minimising potential segmentation failures. The
method was validated on 55 cases from the LOLAL1 study [32] and on 80 datasets from the
COPDGene study [24]. We illustrated its applicability in correctly segmenting the lobes of
patients with varying levels of disease severity and fissure incompleteness.

Correct removal of false-positive fissures is necessary to accurately segment the fissures.
Whilst supervised filter techniques have been utilised to segment the fissures [8], [9], [12],
they require a training dataset to perform the classification. Manual labelling of voxels is
laborious and may not always be practicable in a clinical setting. The fissure segmentation
used by van Rikxoort et al. [22] required a training set as part of their algorithm and can
only be employed when manual labelling is possible by an expert. Moreover, the
applicability of a training set built on an independent set of scans applied to those acquired
on different scanners is debatable.

Ross et al. [12] exploited a deformable model to identify the fissure surfaces, which may fail
when the patient anatomy cannot be modelled by the atlas. The fissure enhancement applied
by Lassen et al. [7] required experimentation to yield optimal ranges for the Hessian
eigenvalues. Applying pre-existing thresholds to new datasets and those acquired at lower
doses can be problematic and may cause undesirable drops in algorithm specificity.
Applying hard-constraints on eigenvalue magnitudes in new scans may not be beneficial.
The eigenvalue range may differ whilst the ratio is expected to remain constant. This is
because the ratio will model different orientation patterns unique to various structures
(spherical, tubular and sheet-like). This may cause an over-segmentation with too many false
positives. The limitation of pre-existing threshold can also be applied to the filter of
Wiemker et al. [19], who developed a weighting term based on the expected intensity of the
fissures. It requires specific knowledge about the HU of the fissures to determine parameters
unique to scans. Finding optimal parameters that yield a robust filter across a broad range of
datasets is difficult and not desirable.

Our segmentation framework requires little prior knowledge regarding algorithm parameters
and will be more robust than methods requiring prior training. Our fissure enhancement
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filter is based on ratios of Hessian eigenvalues. Given a set of new scans, separability
between class distributions will exist since relationships between the eigenvalues should
remain constant. Since we learn model parameters of the GMM, the segmentation of the
fissures will be flexible when processing new scans. Classifying voxels by learning the
underlying class distributions will capture a range of filter values; which can vary for each
dataset. The integration of the MRF regularisation increases the robustness of the
segmentation to noise. A voxel with a poor filter response can still receive a high fissure
class probability when considering neighbourhood constraints on pairwise probabilities and
Hessian eigenvectors.

We showed in Section IV-A that our method achieved a high median /;-score of 0.90 and
insensitivity to the filter input parameters. These parameters govern the separability of the
class distributions and do not rely on knowledge of specific CT features. There is a minor
dependence on the initialisation of the model parameters in the GMM. However, the iterative
framework for increasing the MRF regularisation means no user-interaction is required. The
iterative increase also deals with false-positive rejection as constraints on neighbourhood
properties are given more weight until algorithm convergence. Performance of the fissure
segmentation could be improved in future work by modelling the signal as a mixture of
skew-normals akin to the work of Hame et al. [35] since we chose a GMM for mathematical
simplicity.

We evaluated our algorithm on the LOLA11 dataset [32], which enabled direct comparison
with the work of Lassen et al. [7] and van Rikxoort et al. [10]. We achieved the highest score
of 0.884 in comparison to Lassen et al. [7] (0.881) and van Rikxoort et al. [10] (0.851). Both
algorithms used superior lung segmentation algorithms (0.947 (our method) versus 0.962
[10] and 0.971 [7]), which may have had detrimental effects on our lobe segmentation scores
in the most challenging cases (e.g. Fig. 10h, i, k and ).

The quantitative experiment on dataset 2 highlighted the accuracy of the algorithm in areas
with varying fissure visibility (Table 1V). The high standard deviation associated with the
segmentation of the right minor fissure was due to the failure of lobar segmentation in 2/30
cases. In these two cases, post-processing of airway labelling errors could not be
automatically corrected. The respective fissure means and standard deviations were: 1.52mm
+ 1.49mm, 46.06mm + 30.74mm and 1.33mm + 2.06mm for the right major and minor
fissures and and left major fissure respectively, which displays the isolated error. The large
maximum errors in certain cases with low mean distances occurred in isolated areas close to
the ribcage and near the lung hila where the automated segmentation disagreed significantly
with the radiologist.

Qualitative testing (Table I11) highlighted the ability of the algorithm to produce good
segmentation results in cases with higher severities of disease. The low proportion of lobar
boundaries scoring 5 (errors < 3mm) in cases with complete fissures (Table I11a) are a result
of the narrow boundary definitions of the scoring system. The scoring system may not
adequately reflect the performance of the algorithm since an isolated error will reduce the
score to 4 when it would otherwise be graded as 5. Most of these errors were less than 6mm
from the reference fissure line and occurred in isolated regions prone to artefacts such as
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close to the rib-cage, the lung hila and the intersection between the right major and minor
boundaries. Importantly, the algorithm was able to interpolate incomplete fissures (Table
I11b) and demonstrated equivalence in performance to cases with complete fissures. The
findings highlight the ability of the groupwise prior in conjunction with information from
the vessel and airway tree to successfully guide fissure segmentation towards correct
locations as defined by the reference standard.

Our work bears many similarities with the implementation of Lassen et al. [7]. They also
exploited information from auxiliary structures by combining the airway and vessel tree with
the segmented fissures to create a cost image for watershed segmentation. Our algorithm
differs primarily in the fissure segmentation and in the inclusion of population information
in the cost image. Priors dependent on the segmentation of the vessel and airway tree might
not always be fully informative. Airway tree segmentation is challenging and may not be
sufficiently segmented to provide enough information about the location of lobar borders.
The vessel tree may also not provide sufficient information in areas of largely incomplete
fissures. The additional information provided by the groupwise fissure prior helps mitigate
these issues. Within the LOLA11 dataset, the effect is marginal on the overall scores (0.884
versus 0.881). The dataset included many highly irregular scans, which made it difficult to
create an accurate population model. The effect of the groupwise prior was more noticeable
in dataset 2 from the COPDGene study (Fig. 6 and 11) where we demonstrated the utility of
the groupwise fissure.

The technique by which we construct the groupwise prior has the advantage of not requiring
any pre-existing data. This does not require an expert to manually delineate complete
fissures including visible and non-visible fissures. Since we construct the prior on the
current set of data, it is not biased towards particular types of imaging data. The groupwise
prior acted as a guide or region of confidence within the patient space rather than rigidly
guiding the segmentation based on shapes in the training set, facilitating the segmentation of
lobes of varying shape. Its effect was demonstrated on dataset 2 (Table I1) and visualised in
Fig. 11. Our method for constructing the groupwise prior suffers from a lack of flexibility in
comparison to deformable models. A prior created by averaging all segmented fissures in the
groupwise space may be over simplistic. Despite the simplicity of its construction, the
application can bias the results in certain cases. This was seen in the weak relationships
calculated between segmentation errors and fissure incompleteness (Fig. 8) but also when
quantifying the effect of the prior (Section 1V-C). Since the average fissure is directly added
within the patient space, it does not take into account the shape of the segmented fissure.
This introduces a bias if the patient anatomy differs significantly from the mean. This
occurred mostly in the right minor fissure, where several modes in the population exist (Fig.
5). This led to a smaller average increase in the errors when testing algorithm performance
without the prior (Table I1).

The dependence of our work on the construction of a groupwise space is a limitation.
Groupwise registration is computationally expensive and measuring registration accuracy of
inter-patient registration is difficult. Errors in the registration may be present, which can
decrease the strength of our calculated groupwise prior. The work of Li et al. [36] used
annotated landmarks from the airway tree to drive inter-patient landmark and intensity-based

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 August 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bragman et al.

Page 19

registration, indicating the applicability of detecting landmarks in inter-patient registration.
Inclusion of the vessel density map in a multi-modal registration scheme to construct our
groupwise space may then produce a more accurate fissure prior. Improving the inter-patient
registration is then likely to increase the flexibility of the fissure prior. The transformation
between the average space and the patient space acts as a deformable model. A more
accurate mapping; obtained by including extra morphological information will help deform
the groupwise prior to more unusual geometries.

The need to segment the airway tree may also decrease the applicability of our framework.
Segmentation of the bronchial tree is an important determinant in the success of our
algorithm as demonstrated by several failures in dataset 2. The vessel density map produces
a good approximation of the fissure location, which may negate the need to use the airway
tree in the fissure segmentation and cost function. However, initial seed labelling for the
watershed still relies on the airway tree. Whilst we developed post-processing methods to
make the method more robust to the quality of the airway segmentation, errors can lead to
failures. A combination of the groupwise framework and the labelling method described in
Section 11-D3 may help generate better seeds without needing the airway tree.

The segmentation of incomplete fissures remains one of the biggest challenges in lobe
segmentation. We presented the simultaneous construction of a groupwise prior to address
this challenge. When the fissures are not-visible on CT, this is because they may be
congenitally absent or destroyed by inflammatory disease processes. The segmentation may
therefore be creating an artificial division between lobes. In reality, the anatomical boundary
between the lobes has either been destroyed or is absent. This is seldom mentioned in the
lobe segmentation literature. When comparing our results with the label 3 reference, it is
therefore important to note we are comparing algorithm extrapolation with the educated
guess of an expert. Furthermore, it is not yet known what accuracy is needed in the
segmentation of incomplete fissures to produce regional markers of disease that are
clinically useful.

Despite the ability to correctly guide the segmentation in regions of incomplete fissures in
most cases, the application of the groupwise prior requires further work. There may be
issues when the mean of the population deviates significantly from the patient being
segmented. In order to fully exploit the power obtained by fusing complete and incomplete
segmentations, it is necessary to dynamically weight the groupwise prior in regions when it
is needed and regions where information stemming from the patient is sufficient. Another
solution may lie in creating various fissure models using different sets of patients from the
population to mimic multi-atlas selection.

In conclusion, we have presented a lobe segmentation algorithm, which requires no prior
training or manual labelling to both segment the fissures and build a population prior of the
fissures. We have tested the method on 135 different datasets with varying levels of disease
severity and complexity. The presented algorithm can be used in large studies to perform
accurate regional quantification of disease progression and shows great promise to be
integrated within a clinical setting.
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(a) (b) (c)

Fig. 1.

Example in the variation of fissure integrity. Scans with complete (a) and incomplete (b and
c) fissures can be visualised. The incomplete fissures are due to fusion of lung tissue (b) or
pathology (c). Slices are displayed in the intensity range ¥ € [-1024 HU, —600 HU].
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Fig. 2.
Lobe segmentation algorithm for processing a set of 7 patients, given by @ = {{21, Ry, -,

W, -+, R 7} The lung mask, airway and vascular tree are segmented as preprocessing steps.
Anatomical information (4, &= (fissure, tissue)) is derived from the airway and vascular
tree. A probabilistic segmentation of the fissures based on a filter (7)) exploits these priors.
This yields fissure segmentations (%) for each patient 7. For a given cohort ({2 = {21, W,
-+, ¥ 7}), a groupwise space is constructed yielding the set of transformations ¢, to the
common space L. This space is exploited to construct an average model of the fissures
(cfavg). This is combined with the segmented fissures .#;and the patient-specific anatomical
information (m,) in a cost function for non-parametric surface fitting. Final lobe
segmentations (£, = {£.1, £, -+, £ 7}) are obtained for each patient () in the cohort (K =

{le; &2’ T bQT})
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(a) Two-dimensional neighbourhood N;(b) Features used in the MRF energy

Fig. 3.

for a component (I1) in N

Illustration of the local neighbourhood ./ ;used in Eq. 13. The index /iterates over each
component in ./ ;whilst jis the tissue class iterator. The real-world distances are represented

by syand s, both measured in mm.
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(@) Z¢ (b) ¢ (c) Ft (d) 7Dt,ﬁssure

Fig. 4.

Given a patient £ (a), an anatomical prior (1) (b) is derived from the vessel density and
airway tree distance transform. A multi-scale filter is applied to W to yield & (c). Gaussian
mixture modelling with an MRF yields a probabilistic segmentation (d) of the fissures

P tfissure:
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(a) Z (b) Save ) I (d) Save

Fig. 5.
Average fissure in the groupwise space Q4. The average lung at the sagittal midsection of

the right and left lung with the respective average fissures can be seen.
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(@) Iy (b) I ) Iy * G(o)

Fig. 6.
Groupwise prior in the patient space Q, &) The patient volume (,), b) the resampled

average fissure (IT) and c¢) the smoothed prior (IT;* G(o)).
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Boxplots of the fissure segmentation with increasing values of Bwhilst varying constant A

of the multiscale filter (Eq. 2).
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Fig. 8.

Relationship between incompleteness and segmentation performance. One case where the

right major fissure failed and another where both the left and right lungs failed were
removed as outliers for better visualisation.
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AAAAANL

(a) Qual. 1 (b) Qual. 2 (c) Qual. 3 (d) Qual. 4 (e) Qual. 5 (f) Qual. 6 (g) Qual. 7
. ! »
(h) Quant. 1 (i) Quant. 2 (j) Quant. 3 (k) Quant. 4 (1) Quant. 5 (m) Quant. 6 (n) Quant. 7
Fig. 9.

Illustration of the segmentation on examples from the qualitative set of dataset 2 (top row)
and the quantitative set (bottom row) at various levels of COPD severity.
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(h) lolal1-55 (i) lolal1-21 (j) lolal1-14 (k) lolal11-25 (1) lola11-52 (m) lolal1-23

Fig. 10.
Illustration of the segmentation on a variety of cases from dataset 1 with complete and

incomplete fissures in addition to various levels of pathology.
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(h) () I1 () (k)

Fig. 11.
Lobe segmentation results without and with the groupwise prior (IT) in four different

patients. The reference for non-visible fissures (label 2 and 3) is overlaid on the lobe
segmentation. The colour of the reference was chosen to aid the visualisation and is not
representative of the segmentation label.
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Table |
LOLA 11 lobe segmentation overlap results
Lobe Mean £ STD Q1 Median Q3
LUL 0.906 +£0.202 0.946 0.975 0.988
LLL 0.880 +0.243 0.919 0.962 0.980
RUL 0.928 +0.071 0.888 0.960 0.980
RML 0.799£0.235 0.759 0.891 0.941
RLL 0.908 +0.194 0.937 0.961 0.976
Our method 0.884 0.950
Lassen et al. [7] 0.881 0.951
van Rikxkoort et al. [10] 0.851 0.943
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Table Il

Quantitative Results - Fissure Metrics with and without Groupwise Prior

WITH (mm) WITHOUT (mm) p-Value

Right Major ~ 5.29 + 3.00 571+2.75 p=0.65
Right Minor  6.28 + 3.52 6.51+3.51 p=0.83
Label 2
Left Major 6.05 + 4.64 10.59 + 16.32 p=0.25
Total 5.87£3.72 7.60 + 6.49 -
Right Major ~ 6.94 £ 3.24 8.18 +4.28 p=0.34
Right Minor ~ 6.41+2.81 6.50 +2.84 p=0.92
Label 3 .
Left Major 7.94 £4.95 11.09 £10.19 p=0.67
Total 7.10 £ 3.67 8.59 +5.77 -
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Table Il

Qualitative Scoring Results for Complete Fissures (a) and Incomplete Fissures (b)

Score Right Major Right Minor Left Major  Total Score
%5 0.0 22.0 0.0
% 4 824 58.0 76.5
% 3 15.6 20.0 235 39+0.3
% 2 2.0 0.0 0.0
% 1 0.0 0.0 0.0

(@)
Score Right Major Right Minor  Left Major  Total Score
%5 7.3 125 2.4
% 4 68.3 50.0 70.7
%3 22.0 375 26.8 38+05
% 2 0.0 0.0 0.0
% 1 2.4 0.0 0.0

(b)
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Quantitative Results - Fissure Metrics

Table IV

average of patient mean (mm)

average of patient max (mm)

average of patient rmse (mm)

Right Major 1.66 +3.61 1542+ 1491 2.72 £5.67

Right Minor 231+11.10 18.60 + 20.10 3.32+£12.82

Label 1 Left Major 2.07 £4.03 28.50 + 27.89 3.95+6.85
Total 2.01+6.24 20.85 + 20.96 3.33+£8.44

Right Major 5.44 £5.55 14.22 + 14.45 6.69 +6.98

Label 2 Right Minor 5.39 +£8.50 18.65 + 18.96 7.23+8.48
Left Major 4.65+4.30 16.15 + 16.75 6.01 +5.81

Total 516 £6.12 16.34 + 16.72 6.64 £7.09

Right Major 7.21+4.18 20.95 £ 21.02 8.65 +6.15

Right Minor 7.56 £5.49 19.05 + 17.62 8.44 £7.28

Label 3 Left Major 7.16 + 34.96 23.23£23.23 9.78 £5.58
Total 7.31+4.88 21.08 + 20.62 8.95+6.34
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