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Abstract

Objective

The purpose of this study was to investigate the relationship between visual score of emphy-
sema and homology-based emphysema quantification (HEQ) and evaluate whether visual
score was accurately predicted by machine learning and HEQ.

Materials and methods

A total of 115 anonymized computed tomography images from 39 patients were obtained
from a public database. Emphysema quantification of these images was performed by mea-
suring the percentage of low-attenuation lung area (LAA%). The following values related

to HEQ were obtained: nby and nb;. LAA% and HEQ were calculated at various threshold
levels ranging from —1000 HU to —700 HU. Spearman’s correlation coefficients between
emphysema quantification and visual score were calculated at the various threshold levels.
Visual score was predicted by machine learning and emphysema quantification (LAA% or
HEQ). Random Forest was used as a machine learning algorithm, and accuracy of predic-
tion was evaluated by leave-one-patient-out cross validation. The difference in the accuracy
was assessed using McNemar's test.

Results

The correlation coefficients between emphysema quantification and visual score were as
follows: LAA% (-950 HU), 0.567; LAA% (-910 HU), 0.654; LAA% (—875 HU), 0.704; nbg
(950 HU), 0.552; nby (—910 HU), 0.629; nby (-875 HU), 0.473; nb; (-950 HU), 0.149; nb,
(-910 HU), 0.519; and nb; (=875 HU), 0.716. The accuracy of prediction was as follows:
LAA%, 55.7% and HEQ, 66.1%. The difference in accuracy was statistically significant
(p=0.0290).
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Conclusion

LAA% and HEQ at —875 HU showed a stronger correlation with visual score than those at
-910 or —-950 HU. HEQ was more useful than LAA% for predicting visual score.

Introduction

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality
worldwide [1]. COPD causes considerable economic and social burden, which continue to
increase. The Global Initiative for Chronic Obstructive Lung Disease guideline defines COPD
as a preventable and treatable disease, which is characterized by persistent airflow limitation
[2]. The airflow limitation of COPD is usually progressive and associated with an enhanced
chronic inflammatory response in the airways and the lung to noxious particles or gases. The
airflow limitation is caused by a mixture of small airway disease and emphysema [2], which
are often regarded as discrete phenotypes [3].

The percentage of low-attenuation lung area (LAA%) and visual scoring based on com-
puted tomography (CT) images is frequently employed for evaluation of emphysema [3-13].
Although both these parameters are useful for evaluating the severity of emphysema, LAA%
has been more frequently used for research purposes owing to the wide availability of software
for calculating LAA% and the superior reproducibility of LAA%. However, visual score incor-
porates information that is not captured by LAA%, such as the spatial distribution of low-
attenuation lung regions and findings other than emphysema [8, 9]. For example, visual score
was shown to be associated with lung cancer risk in patients with emphysema, although the
quantitative measures of emphysema (including LAA%) did not show such an association
[10-12]. This implies that visual score may capture more clinically relevant information than
LAA%.

In recent years, image processing using homology method is increasingly being used [13-
18]. For example, Nishio et al used homology method for evaluating the spatial distribution of
low-attenuation lung regions in patients with and without COPD [13], and they showed that
homology-based emphysema quantification (HEQ) was useful for the assessment of emphy-
sema severity. Because the previous study [9] showed that visual score was affected not only by
LAA% but also by the spatial distribution of low-attenuation lung regions, it is conceivable
that HEQ could be a more accurate predictor of visual score than LAA%.

The purpose of the current study was to investigate the relationship between visual score
and emphysema quantification (LAA% and HEQ) and evaluate whether visual score was accu-
rately predicted by supervised machine learning and emphysema quantification. Previously, a
LAA% threshold was optimized by assessing the relationship between LAA% and severity of
COPD. To our knowledge, there was no study to investigate the effect of the LAA% threshold
on the relationship between LAA% and visual score. For this purpose, LAA% and HEQ were
calculated at various threshold levels in the present study. In addition, the combination of
emphysema quantification at various threshold levels was used for predicting visual score with
supervised machine learning. This method was inspired by persistent homology. Persistent
homology is a method for computing topological features at different spatial resolution [19,
20]. Unlike persistent homology, feature vector of the current study was simply constructed
using the concatenation of Betti numbers obtained from binarized CT images at the various
threshold levels. The method of the current study is similar to those used in bioinformatics,
such as Pse-in-One, Pse-Analysis, repDNA, and iDHS-EL [21-24]. These studies and the
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Fig 1. Representative CT images in the database. (A) visual score = 0 (no emphysema); (B) visual score = 3 (moderate); (C) visual
score =5 (very severe). The CT images were displayed with a lung window setting of 1600 HU window width and -550 HU window level.

https://doi.org/10.1371/journal.pone.0178217.9001

current study focused on how to create the feature vector which can be easily and effectively
combined with machine learning algorithm.

Materials and methods

The current study used anonymized data from a public database. Therefore, approval of insti-
tutional review board or informed consent obtained from patients was not necessary in our
country.

Database of CT images

The details of the CT database are available elsewhere [25, 26]. CT images of 39 subjects (9
never smokers, 10 smokers without COPD, and 20 smokers with COPD) were obtained from
the database. The CT examinations were performed using four-detector rows CT scanner
(LightSpeed QX/i; General Electric Medical Systems, Milwaukee, WI, USA). The following
parameters were used: in-plane resolution, 0.78 x 0.78 mm; slice thickness, 1.25 mm; tube volt-
age, 140 kV; and tube current-time product, 200 mAs. The CT images were reconstructed
using a high-spatial-resolution algorithm. The database provided 115 high-resolution CT
slices. The severity of emphysema for each of the 115 slices was assessed as visual score by an
experienced chest radiologist and a CT experienced pulmonologist. The score criteria were as
follows: 0, no emphysema; 1, minimal; 2, mild; 3, moderate; 4, severe; and 5, very severe
emphysema. A consensus was reached in case of any disagreement. Representative CT images
of the database are shown in Fig 1. Summary of visual score in the 115 CT slices is shown in
Fig 2.

Emphysema quantification

The methodology for calculation of LAA% and HEQ is described in the previously published
papers [4, 13]. First, the lungs were automatically segmented from the CT images based on
region-growing method and a threshold of —500 HU. After lung segmentation, LAA% was cal-
culated as follows: LAAY% = Iolnumber of low—atenuation lung piels ' yyhere Jow-attenuation lung pixels

Total number of lung pixels
were defined as lung pixels with CT values lower than the predefined threshold [4]. When cal-
culating LAA%, the CT images were binarized using the predefined threshold and results of
lung segmentation. In the binarized CT images, 1 indicated a normal lung pixel and 0
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Fig 2. Summary of visual score in the 115 CT slices. Note: Visual score was based on the following criteria: 0, no
emphysema; 1, minimal; 2, mild; 3, moderate; 4, severe; and 5, very severe emphysema.

https://doi.org/10.1371/journal.pone.0178217.9002

indicated a non-lung pixel or low-attenuation lung pixel. Representative images of the binar-
ized CT images are shown in Fig 3. The binarized images were used for HEQ.

Next, HEQ was performed. Betti numbers are important indices in homology and were
used as HEQ in a previous study [13]. Betti numbers comprise by and b, in case of two-dimen-
sional images. In the current study, b, corresponds to the number of low-attenuation lung
regions, and b, corresponds to the number of normal lung regions surrounded by the low-
attenuation lung regions. Intuitively, b, and b, are related to “holes” formed because of emphy-
sema. Betti numbers could be calculated from the binarized CT images prepared when calcu-
lating LAA%. The detailed process of calculating b, and b; has been described elsewhere [13].
The examples of calculating by and b, are available in S1 Fig (Supporting information).
Because b, and b; were affected by size of lung area, b, and b; were normalized by the total
number of lung pixels [13]. These normalized values were referred to as nby and nb,, and were
used as the results of HEQ.

LAA% and HEQ were calculated in each of the 115 slices at various threshold levels ranging
from —1000 HU to —700 HU. The threshold level was increased in increments of 5 HU. There-
fore, LAA% and HEQ was calculated at 60 different threshold levels. Fig 4 shows representative

Fig 3. Representative CT and binarized images at multiple threshold levels. (A) CT image; (B)—(E) binarized images at threshold levels
of =975, 950, -925, and —900 HU. Note: Fig 3(A) is identical to Fig 1(C). The CT images were displayed with a lung window setting of 1600
HU window width and =550 HU window level.

https://doi.org/10.1371/journal.pone.0178217.9003
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Fig 4. Representative results of HEQ at the 60 threshold levels ranging from —1000 HU to =700 HU.
Note: Results of Fig 4(A)—4(C) were obtained from CT images of Fig 1(A)-1(C), respectively. Abbreviation:
HEQ, homology-based emphysema quantification; nby, the zero-dimensional Betti number normalized by the
total number of lung pixel; nby, the one-dimensional Betti number normalized by the total number of lung pixel.

https://doi.org/10.1371/journal.pone.0178217.9004

results of HEQ at the 60 different threshold levels, which were obtained from the CT images
shown in Fig 1.

Prediction of visual score using machine learning

Visual score was predicted using supervised machine learning and the results of emphysema
quantification (LAA% or HEQ). Random Forest algorithm was adopted for supervised
machine learning [27]. As hyperparameters of Random Forest, the following values were used:
number of trees in the forest, 10, 100, or 1000; and number of features to consider when
searching best split, (length of feature vector) x 0.1, 0.3, 0.5, 0.7, or 0.9. The values of LAA% at
the threshold levels ranging from —1000 HU to —700 HU were used as the feature vector of
Random Forest, and the classifier for predicting visual score was built. In this classifier
(Craa%), the length of feature vector was 60. The other type of classifier was built using Ran-
dom Forest and the values of nby and nb; at the threshold levels ranging from —1000 HU to
—-700 HU. In the classifier (Cygq), the length of feature vector was 120. For example, for CT
images shown in Fig 1(A)-1(C), the feature vector of Cyrq was constructed based on the con-
catenation of the 1% and 2™ column of Fig 4.

Furthermore, we evaluated the effect of the threshold level on classifiers’ prediction. The
lower limit of the threshold was changed from —1000 HU to the following values: —950, —900,
-850, —800, and —750 HU. Similarly, the upper limit of the threshold was changed from -700
HU to the following values: —950, —900, -850, —800, and —750 HU. Each combination of the
upper and lower limits of the thresholds was evaluated for both C; s s, and Cygq. The length
of feature vector was changed based on the lower and upper limits of the threshold. For exam-
ple, when —1000 and —1000 andere used as the lower and upper limits of the threshold, the
length of feature vector of Cy 44, was 30.
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Statistical analysis

First, the relationship between emphysema quantification and visual score was evaluated by
calculating the Spearman’s correlation coefficient at the various threshold levels. Next, for both
Cr.aao and Cygq, results of prediction were obtained using leave-one-patient-out cross valida-
tion. The best hyperparameters of Random Forest were selected based on the results of the
cross validation. To evaluate the performance of Cy 40 and Cyrq, contingency tables were
prepared for the prediction of classifiers and actual visual score based on the results of the
cross validation. Then, accuracy of prediction was calculated using the following equation:

B TP+ TN
ccuracy =
Y= TP+ TN+ FP+ EN’

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false negatives,
respectively. Using the contingency tables of the current study, accuracy was obtained by
dividing sum of main diagonal by sum of all elements. The difference in the accuracy between
Craag and Cygq was investigated using the McNemar’s test. In addition to accuracy, weighted
Kappa was calculated between prediction of classifiers and actual visual score. All statistical
analyses were performed using R-3.2.2 (available at http://www.r-project.org/). To perform the
exact McNemar’s test and calculate the weighted Kappa, exact2x2 package (version-1.4.1) and
irr package (version-0.84), respectively, were used. For calculating the weighted Kappa, kappa2
function of irr package was used. “squared” was passed to the kappa2 function as its weight
argument.

Feature selection and others

Because the feature vector obtained in the current study might be redundant, feature selection
was performed. The selection was performed based on the importance of the feature calculated
by Random Forest. Originally, this method was used in support vector machines, wherein
weights of classifier calculated by support vector machines were used as the criteria for the fea-
ture selection [28, 29]. The feature selection was performed on the training partitions of leave-
one-patient-out cross validation. For each type of the feature vector, the length was reduced by
10%, 30%, and 50% of the original, by using the feature selection. Other types of feature selec-
tion and classifier were also evaluated (For the detail, see Supporting information).

Results

The Spearman’s correlation coefficients for emphysema quantification and visual score at the
60 threshold levels are listed in S1 Table (Supporting information). Table 1 summarizes the
results of Spearman’s correlation coefficients. The correlation coefficients were as follows:
LAA% at -950 HU, 0.567; LAA% at —910 HU, 0.654; LAA% at —875 HU, 0.704; nb, at —950
HU, 0.552; nb, at —910 HU, 0.629; nb, at —875 HU, 0.473; nb, at =950 HU, 0.149; nb, at —910
HU, 0.519; and nb; at —875 HU, 0.716. For both LAA% and nb, the best correlation was
obtained at the threshold = -875 HU.

Tables 2 and 3 show the accuracy of C; x4 and Cygq at each combination of the threshold
levels, respectively. The best accuracy was as follows: Cp aau, 55.7% and Cygq, 66.1%. The best
accuracy of Cy a9, was obtained when using LAA% at the threshold levels ranging from —1000
HU to -850 HU or from —950 HU to —850 HU. The best accuracy of Cyyq was obtained
using nb, and nb, at the threshold levels ranging from —1000 HU to —700 HU. The difference
between the best accuracy of Cp a0 and Cygpq was statistically significant (p = 0.0290). Tables
4 and 5 show the contingency tables for the most accurate Cy a9 and Cygq, respectively.
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Table 1. Spearman’s correlation coefficients for emphysema quantification and visual score.

Threshold (HU) LAA% nbo nb;
-1000 0.410 0.432 -0.170
-975 0.516 0.517 -0.099
-950 0.567 0.552 0.149
-910 0.654 0.629 0.519
-900 0.671 0.616 0.632
-875 0.704 0.473 0.716
-850 0.689 0.095 0.654
-825 0.650 -0.437 0.536
-800 0.600 -0.552 0.333

Note: Spearman'’s correlation coefficients at the 60 threshold levels are available in the Supporting
information.

Abbreviations: LAA%, percentage of low-attenuation lung area; nby, the zero-dimensional Betti number
normalized by the total lung pixel; nb4, the one-dimensional Betti number normalized by the total lung pixel.

https://doi.org/10.1371/journal.pone.0178217.t001

Using the contingency tables provided as Tables 4 and 5, the weighted Kappa was as follows:
LAA%, 0.688 and HEQ, 0.697.

S2 Table (Supporting information) shows the results of feature selection for Cy s ¢, and
Cugq- In both Cp o, and Cygq, there were minimal differences between best accuracy with
and without feature selection. This implies either that there was little redundancy in LAA% or
HEQ at different thresholds, or that Random Forest could build robust classifiers using LAA%

Table 2. Effect of the threshold level on the predictive accuracy of C, aa-, for visual score.

upper limit of threshold (HU) -950
-900
-850
-800
-750
-700

lower limit of threshold (HU)

-1000 -950 -900 -850 -800 =750
47.0%

54.8% 54.8%

55.7% 55.7% 51.3%

54.8% 53.0% 52.2% 48.7%

51.3% 52.2% 48.7% 49.6% 47.8%

50.4% 53.9% 49.6% 50.4% 48.7% 47.0%

Note: The best accuracy was 55.7%. Abbreviation: C aa«, classifier using percentage of low-attenuation lung area as feature vector.

https://doi.org/10.1371/journal.pone.0178217.t1002

Table 3. Effect of the threshold level on predictive accuracy of Cygq for visual score.

upper limit of threshold (HU) -950
-900
-850
-800
-750
-700

lower limit of threshold (HU)

-1000 -950 -900 -850 -800 =750
52.2%

61.7% 59.1%

60.9% 63.5% 53.9%

63.5% 63.5% 57.4% 54.8%

62.6% 65.2% 58.3% 55.7% 54.8%

66.1% 63.5% 59.1% 56.5% 53.9% 53.0%

Note: The best accuracy was 66.1%. Abbreviation: Creq, classifier using homology-based emphysema quantification as feature vector.

https://doi.org/10.1371/journal.pone.0178217.t1003
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Table 4. Contingency table for visual score and prediction of C_aa.

prediction

0 1 2 3 4 5

visual score 0 48 11 1 1 0 0
1 15 8 0 3 0 0

2 4 1 5 1 0 0

3 1 3 2 3 2 1

4 0 0 0 2 0 1

5 0 0 0 2 0 0

Note: Accuracy was 64/115 = 55.7%; Abbreviation: C|aa«, classifier using percentage of low-attenuation
lung area as feature vector.

https://doi.org/10.1371/journal.pone.0178217.1004

Table 5. Contingency table for visual score and prediction of Cygq.

prediction

0 1 2 3 4 5

visual score 0 52 6 3 0 0 0
1 6 17 3 0 0 0

2 5 2 2 2 0 0

3 3 1 2 5 0 1

4 0 0 0 2 0 1

5 0 0 0 2 0 0

Note: Accuracy was 76/115 = 66.1%. Abbreviation: Ceq, classifier using homology-based emphysema
quantification as feature vector.

https://doi.org/10.1371/journal.pone.0178217.1005

or HEQ even if LAA% or HEQ at the different threshold levels provided redundant informa-
tion. S3 Table and S1 Doc show the results of other types of feature selection and classifier.

Discussion

The current study evaluated the relationship between emphysema quantification and visual
score. Both LAA% and HEQ showed the strong correlation with visual score; the best correla-
tion coefficients of LAA% and nb, were 0.704 and 0.716, respectively. For the correlation
between visual score and emphysema quantification, the optimal threshold level for both LAA
% and HEQ was —875 HU. When using emphysema quantification and supervised machine
learning to predict visual score, HEQ was more useful for predicting visual score than LAA%.
The accuracy of Cygq was statistically better than that of Cp e (p = 0.0290).

The best correlation between LAA% and visual score in our study was observed at the
threshold of —875 HU, which was higher than the optimal threshold reported in previous stud-
ies. For example, a single LAA% threshold of —950 HU was earlier reported to be an acceptable
threshold for emphysema quantification [30]. In previous studies, the LAA% threshold was
optimized by assessing the relationship between LAA% and severity of COPD using modalities
such as the pulmonary function test. However, we optimized the threshold of LAA% by assess-
ing its relationship with visual score. As a result, the optimal threshold determined in the pres-
ent study is different from that reported earlier. A previous study [9] suggested that visual
score of emphysema was not only determined by LAA% but also by other factors such as lesion
size, predominant type, distribution of emphysema, and small-airway disease. These factors
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may affect the optimal threshold of LAA% determined on the basis of its correlation with
visual score.

One clinical application of the current study is to change the threshold of LAA% when lung
cancer risk is predicted using CT images. Previous studies have investigated the relationship
between emphysema severity (e.g. LAA%) and lung cancer risk using the conventional thresh-
old level (e.g., =950 or —910 HU) [10-12]. These studies showed the significant correlation of
visual score of emphysema, but not of LAA%, with the risk of lung cancer. In the present
study, the correlation between emphysema quantification and visual score was stronger at the
relatively higher threshold level (875 HU) than the conventional threshold level; therefore, it
is speculated that at the relatively high threshold level, LAA% may be significantly associated
with the risk of lung cancer. This speculation should be investigated in a larger cohort in
future.

Another application of the current study is to utilize the results of Cyypq to predict the risk
of lung cancer. Although visual score was significantly associated with the risk of lung cancer,
visual score of emphysema can be a severe burden for radiologists or pulmonologists if a lung
cancer screening program utilizes CT as a tool for risk stratification. Use of the results of Cyypq
in place of visual score may reduce the burden on radiologists or pulmonologists. Because the
weighted Kappa between Cygq and visual score was better than 0.6, Cyrq may potentially be
used as a substitute to visual score.

According to Tables 2-5 and the results of the McNemar’s test, the predictive accuracy of
Crgq Wwas statistically better than that of Cy 4 a«,. In a previous study, HEQ was found useful
for evaluating the spatial distribution of low-attenuation lung region [13]. We speculate that
because HEQ provides a measure of the spatial distribution of low-attenuation lung region, it
may be superior to LAA% for predicting visual score. In our study, use of a wider threshold
range improved the predictive accuracy of HEQ (Table 3). This implies that visual score was
affected by the spatial distribution of low-attenuation lung region at the relatively high thresh-
old level. This speculation is, at least partially, consistent with the results of a previous study
[9].

We used the changes in Betti numbers of the binarized CT images to construct the feature
vector for machine learning. Adcock et al used intensity filtration and matching metric to uti-
lize support vector machine for classification of liver tumor on CT images [18]. Although their
intensity filtration was partly similar to our method, their construction of feature vector was
based on the metric of barcode. Qaiser et al showed that automated tumor segmentation on
histology images could be performed rapidly using topological changes in Betti numbers [31].
Although their method (persistent homology profiles) was compatible with ours, their task
was different from ours.

There are several limitations to this study. First, the number of patients was relatively small.
In particular, the number of patients with severe or very severe emphysema cases was very
small. According to Tables 4 and 5, the predictive accuracy in severe or very severe emphysema
cases was worse than that in the other cases. This deterioration in the predictive accuracy may
be attributable to the limited number of cases with severe or very severe emphysema. To
improve the predictive accuracy and validate the results of the current study, a larger cohort of
patients is required for future research. Second, two-dimensional image analyses were per-
formed. Recently, quantification based on thin-slice volumetric CT images has been frequently
used. In future, we will extend our method for three-dimensional image analyses. Third,
although lung cancer risk was discussed in the current paper, we did not investigate the associ-
ation between HEQ and the risk. Fourth, although support vector machine with metric or ker-
nel trick specialized in persistent homology was suggested [18, 32], we did not evaluate these
methods in the present study. Fifth, the clinical application of HEQ was not investigated in the
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present study. Because a previous study examined the relationship between HEQ and COPD
severity [13], we focused on the relationship between HEQ and visual score of emphysema in
the present study.

In conclusion, LAA% and HEQ at —875 HU showed a stronger correlation with visual
score as compared to that at the conventional threshold level (=950 or ~910 HU). By providing
a measure of the spatial distribution of low-attenuation lung region, HEQ was more useful for
predicting visual score as compared to LAA%.
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