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Abstract

Rationale: Chronic obstructive pulmonary disease (COPD) is
characterized by impaired clearance of pulmonary bacteria.

Objectives: The effect of COPD on alveolar macrophage (AM)
microbicidal responses was investigated.

Methods: AMs were obtained from bronchoalveolar lavage from
healthy donors or patients with COPD and challenged with opsonized
serotype 14 Streptococcus pneumoniae.Cellswere assessed for apoptosis,
bactericidal activity, andmitochondrial reactive oxygen species (mROS)
production. A transgenic mouse line in which the CD68 promoter
ensures macrophage-specific expression of human induced myeloid
leukemia cell differentiation protein Mcl-1 (CD68.hMcl-1) was used to
model the molecular aspects of COPD.

Measurements and Main Results: COPDAMs had elevated levels
of Mcl-1, an antiapoptotic B-cell lymphoma 2 family member, with
selective reductionofdelayed intracellular bacterial killing.CD68.hMcl-1

AMs phenocopied the microbicidal defect because transgenic mice
demonstrated impaired clearance of pulmonary bacteria and increased
neutrophilic inflammation.Murine bonemarrow–derivedmacrophages
andhumanmonocyte-derivedmacrophagesgeneratedmROSinresponse
to pneumococci, which colocalized with bacteria and phagolysosomes
to enhance bacterial killing. The Mcl-1 transgene increased oxygen
consumption rates and mROS expression in mock-infected bone
marrow–derived macrophages but reduced caspase-dependent mROS
production after pneumococcal challenge. COPD AMs also increased
basal mROS expression, but they failed to increase production after
pneumococcal challenge, in keeping with reduced intracellular bacterial
killing. The defect in COPD AM intracellular killing was associated with
a reduced ratio of mROS/superoxide dismutase 2.

Conclusions:Up-regulationofMcl-1andchronicadaptiontooxidative
stress alter mitochondrial metabolism and microbicidal function,
reducing the delayed phase of intracellular bacterial clearance in COPD.
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Chronic obstructive pulmonary disease
(COPD) is characterized by incompletely
reversible airway obstruction. Neutrophilic
inflammation drives airway narrowing and
alveolar destruction (1). Cigarette smoke and
biomass fuels are major factors initiating
COPD pathogenesis, and persistent
neutrophilic inflammation in those who quit
smoking emphasizes the importance of
additional etiologic factors in maintaining
progressive airway destruction (2, 3).

Clinical exacerbations of COPD
punctuate periods of relative stability in
many patients and contribute to the decline
in respiratory function (4). Exacerbations
are frequently associated with the
presence of pathogenic bacteria in the
lower airway, and the lower airway bacterial
load correlates with markers of neutrophilic
inflammation such as chemokine (C-X-C
motif) ligand 8 levels (5). This suggests
that a key driver of COPD pathogenesis
is a defect in airway innate immune
responses to pathogenic bacteria. Although
Haemophilus influenzae, Streptococcus
pneumoniae, and Moraxella catarrhalis are
all associated with infective exacerbations,
S. pneumoniae remains the major cause
of community-acquired pneumonia (CAP)

in COPD (6, 7). The relative risk of CAP,
pneumococcal CAP, and invasive
pneumococcal disease (IPD) is elevated
in patients with COPD to a greater extent
than in smokers, another group at
increased risk of IPD (8). This suggests
that patients with COPD possess
significant defects in their host defenses
to pneumococcal disease in the lower
airway. However, the basis of this
increased susceptibility to pneumococcal
pneumonia remains undefined.

Alveolar macrophages (AMs) are central
to the organization of pulmonary innate
immunity and are critical for clearance of
pneumococci from the alveolar space (9).
However, AMs do not possess several of the
microbicidal molecules used by neutrophils,
and pathogens have acquired adaptions to
resist others (10), which challenges AM
microbicidal capacity. Macrophages therefore
employ additional host defense strategies, and
induction of apoptosis is required for efficient
clearance of intracellular bacteria after
phagocytosis (9, 11). Apoptosis is controlled
by expression of the antiapoptotic induced
myeloid leukemia cell differentiation protein
Mcl-1, which is dynamically regulated after
bacteria are internalized (12, 13). COPD is
associated with decreased macrophage innate
competence, as illustrated by evidence of
impaired bacterial phagocytosis of
nontypeable H. influenzae and
S. pneumoniae, the pathogens that most
frequently colonize the lower airway in
COPD (14, 15). Little is known, however,
concerning the effect of COPD on AM
microbicidal responses.

We observed that COPD AMs have
persistent up-regulation of Mcl-1, and we
used patient AMs and a unique murine
transgenic macrophage to test how Mcl-1
up-regulation alters pulmonary antibacterial
host defense. Specifically, we addressed how
Mcl-1 influenced AMs’ ability to generate
a mitochondrial microbicidal response
involving generation of mitochondrial
reactive oxygen species (mROS) in response
to S. pneumoniae and how this influenced
intracellular bacterial killing. Some of the
results of these studies were previously
reported in the form of an abstract (16).

Methods

Bacteria and Infection
Serotype 2 S. pneumoniae (D39 strain;
NCTC 7466) and serotype 1 S. pneumoniae

(World Health Organization reference
laboratory strain SSISP 1/1; Statens Serum
Institut, Copenhagen, Denmark), used in
murine experiments (9), and serotype 14
S. pneumoniae (NCTC 11902), used in
COPD experiments, were cultured and
opsonized in human (11) or murine serum
before infection of cells as previously
described (13).

Isolation and Culture of Macrophages
Bone marrow–derived macrophages
(BMDMs) were obtained as described
previously (9). Human monocyte-derived
macrophages (MDMs) were isolated from
whole blood donated by healthy volunteers
with written informed consent, as approved
by the South Sheffield Regional Ethics
Committee (11). AMs from patients with
COPD (enrolled through the Medical
Research Council COPD MAP
Consortium) or from healthy control
subjects (see Table E1 in the online
supplement) were isolated from
bronchoalveolar lavage (BAL) as previously
described (17), with written approved
consent obtained prior to inclusion in the
study as approved by the National Research
Ethics Service Committee for Yorkshire and
the Humber. Further information can be
found in the online supplement.

Western Blot Analysis
Whole-cell extracts were isolated using
sodium dodecyl sulfate lysis buffer and
separated by sodium dodecyl sulfate gel
electrophoresis. Detailed information can be
found in the online supplement.

Immunohistochemistry
Preparation of healthy and COPD lung
sections (Table E2), immunostaining, and
semiquantitative evaluation are described in
the online supplement.

Flow Cytometry
Caspase activity was measured using the
CellEvent Caspase 3/7 Green Flow
Cytometry Kit (Life Technologies, Carlsbad,
CA) according to the manufacturer’s
instructions. mROS were measured by flow
cytometry using the dye MitoSOX Red
(Life Technologies). Detailed information
can be found in the online supplement.

Microscopy
Nuclear fragmentation and condensation
indicative of apoptosis were detected using
4969-diamidino-2-phenylindole stain (11).

At a Glance Commentary

Scientific Knowledge on the
Subject: Patients with chronic
obstructive pulmonary disease
(COPD) are at increased risk for
bacterial respiratory infections, which
cause acute exacerbations, adding to
morbidity. Previous studies have
identified potential defects in innate
immunity, but the effect of COPD on
macrophage microbicidal responses
has been little investigated. Host-
mediated macrophage apoptosis in
response to bacteria increases bacterial
killing once canonical phagolysosomal
killing has become exhausted. Defects
in this pathway alter bacterial
clearance.

What This Study Adds to the
Field: We show that inhibition of
macrophage apoptosis and a failure to
induce mitochondrial reactive oxygen
species generation in COPD
macrophages contribute to impaired
clearance of pneumococci in the lung.
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To visualize mROS, cells were stained with
2 mM MitoSOX Red and visualized using a
Leica DMRB 1000 microscope (Leica
Microsystems, Buffalo Grove, IL) with a 340
lens objective. For colocalization experiments,
lysosomes were stained with 0.50 mM Cresyl
violet (Sigma-Aldrich, St. Louis, MO) or
challenged with D39 labeled with Alexa Fluor
647 carboxylic acid succinimidyl ester (Life
Technologies) and costained with MitoSOX
Red for 15 minutes, and then they were
visualized by confocal microscopy (LSM 510,
633 1.4 oil immersion lens objective; Carl
Zeiss Microscopy, Jena, Germany). In other
experiments, MDMs and BMDMs were
challenged with D39 labeled with Alexa Fluor
647, and 16 hours after challenge, cells were
stained with MitoSOX Red and visualized
by structured illumination microscopy.
Detailed information can be found in the
online supplement.

Intracellular Killing Assay
Assessment of intracellular bacterial viability
was performed by gentamicin protection
assay as previously described (18).

Metabolic Measurements
Measurements of oxygen consumption rate
(OCR) and extracellular acidification rate
were performed using the Seahorse XF24
Extracellular Flux Analyzer (Seahorse
Bioscience/Agilent Technologies, Santa
Clara, CA). Additional information can be
found in the online supplement.

In Vivo Infections
Mcl-1–transgenic mice and wild-type
littermates were infected and analyzed as
outlined in the online supplement. Animal
experiments were conducted in accordance
with the Home Office Animals (Scientific
Procedures) Act of 1986, authorized under
U.K. Home Office License 40/3251 with
approval of the Sheffield Ethical Review
Committee, Sheffield, United Kingdom.

Statistics
Data are presented as mean and SE unless
otherwise indicated in the figure legends.
Sample sizes were informed by SEs obtained
from similar assays in prior publications
(12, 13). Analysis was performed with tests, as
outlined in the figure legends, using Prism
6.0 software (GraphPad Inc., La Jolla, CA),
and significance was defined as P, 0.05.
Decisions on use of parametric or
nonparametric tests were based upon results
of D’Agostino-Pearson normality tests.

Results

Mcl-1 Is Up-regulated and Is
Associated with Reduced
Intracellular Bacterial Killing in
COPD AMs
The B-cell lymphoma 2 family member
Mcl-1 regulates both macrophage viability
(19) and delayed bacterial killing through
induction of apoptosis during exposure to
bacteria such as the pneumococcus (12, 13).
We therefore investigated whether Mcl-1
expression was altered in AMs by COPD.
These experiments were conducted with a
strain of S. pneumoniae that frequently
colonizes this patient group and that also
can cause IPD (20). Because macrophages
from patients with COPD have an impaired
capacity to ingest bacteria (14, 15), we
modified the inoculum presented to control
human AMs to normalize intracellular
bacterial numbers (Figure E1) and
demonstrated significant reduction in Mcl-1
expression in healthy donor AMs but no
reduction in expression in COPD AMs after
bacterial challenge (Figure 1A). We also
examined whether there was increased Mcl-1
expression in AMs in the COPD lung. As
illustrated, quantification revealed enhanced
Mcl-1 expression in lung biopsies of patients
with COPD compared with control donors
without COPD, which showed a focal
distribution of high intensity (Figures
1B–1D). The level of expression in control
subjects was not altered by whether they
were current smokers or nonsmokers, and
results were similar when expression was
analyzed either by individual cell expression
(Figure 1C) or by donor overall (Figure 1D).

We next addressed whether COPD AMs
had any defects in early microbicidal
responses. In keeping with prior reports on
MDMs (14), we documented reduced
phagocytosis of pneumococci by COPD AMs
(Figure 2A). Of note, in contrast to AMs from
healthy donors, there was no evidence of the
normal opsonic uplift in phagocytosis of
pneumococci in COPD AMs (17). Despite
differences in initial internalization of
opsonized bacteria and COPD, there was no
evidence of significant reduction in early
intracellular bacterial killing, which is linked
to initial bacterial phagocytosis in myeloid
cells and reactive oxygen species (ROS)
generation via nicotinamide adenine
dinucleotide phosphate oxidase (21). To
exclude confounding effects of differential
bacterial internalization, we adjusted the

multiplicity of infection used to challenge
control AMs, ensuring normalization of
initial internalization (Figure E1) because
apoptosis is directly related to initial
bacterial ingestion (11). Up-regulation of
Mcl-1 was associated with reduced
apoptosis in COPD AMs (Figure 2B) and
with enhanced survival of intracellular
bacteria at a later time point (Figure 2C),
supporting a defect in delayed apoptosis-
associated pneumococcal killing by AMs
(12, 13).

Mcl-1 Up-regulation in AMs Impairs
Bacterial Clearance in the Lung
CD68.hMcl-11 transgenic mice were used to
explore the functional consequence of Mcl-1
up-regulation for bacterial clearance and the
putative association of Mcl-1 up-regulation
with altered intracellular bacterial clearance
in COPD AMs. Expression of a human
Mcl-1 transgene in myeloid cell populations
extends macrophage survival while ensuring
cells remain sensitive to physiological
constraints on viability so that there is
normal distribution of myeloid subsets and
development (22). Using a low dose of
pneumococci, which AMs are able to
contain (9), we demonstrated that the
presence of the macrophage transgene
results in impaired bacterial clearance from
the lung and also increased bacteremia
(Figures 3A and 3B). These changes were
found in association with reduced AM
apoptosis (Figure 3C) and increased
numbers of neutrophils in the BAL fluid
(Figure 3D).

Mcl-1 Modulates Generation of mROS
and mROS-Dependent Bacterial
Killing
We next explored the links between
induction of the Mcl-1–regulated apoptotic
program and microbicidal responses, using
BMDMs as a model of differentiated
macrophages. Mcl-1 regulates apoptosis at
the level of the mitochondrion (12, 13), and
mROS has emerged as an important
microbicidal strategy used by macrophages
(23). mROS was significantly increased in
CD68.hMcl-12 (but not CD68.hMcl-11)
BMDMs 20 hours after bacterial challenge,
with significantly lower levels in
CD68.hMcl-11 compared with CD68.hMcl-12

BMDMs (Figures 4A and 4B). mROS
colocalized with phagolysosomes and with
bacteria, in contrast to the endoplasmic
reticulum, used as a control, which did
not colocalize with either bacteria or
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phagolysosomes (Figure 4C–4F, E2, and
E3). mROS staining was inhibited by an
inhibitor (mitoTEMPO; Enzo Life Sciences,
Exeter, UK), and each stain provided

minimal background signal (Figures
E2–E4). mROS colocalization with bacteria
was also visible in human MDMs (Figures
4E, E2F, and E2G). mitoTEMPO blocked

the delayed phase of pneumococcal killing
in CD68.hMcl-12 (but not CD68.hMcl-11)
BMDMs (Figure 4G) and also in MDMs
(Figure 4H).

Mcl-1 Modulates Mitochondrial
Oxidative Phosphorylation in
Macrophages
Generation of mROS occurs during oxidative
phosphorylation when electron leak,
predominantly from complex I, results in
generation of superoxide (24). We examined
whether Mcl-1 modulates oxidative
metabolism. As anticipated, pneumococcal
infection enhanced glycolytic metabolism
(Figure 5A), in keeping with the known
enhancement of glycolytic metabolism
during macrophage responses to bacteria
(25), but the CD68.hMcl-1 transgene did not
alter glycolytic metabolism after infection.
Also as expected, infection was associated
with a reduction in several parameters
associated with oxidative phosphorylation,
but the transgene itself resulted in increased
baseline and maximal OCR in mock-
infected cells, though it had no effect on the
levels after pneumococcal challenge (Figures
5B–5F). In association with alterations in
OCR parameters, the transgene was also
associated with increased baseline mROS
levels in mock-infected cells (Figure 5G).
Because caspase activation enhances mROS
production through interference with
complex I of the electron transport chain
(26), we next tested if Mcl-1 inhibited the
inducible mROS expression observed after
pneumococcal challenge in a caspase-
dependent process and whether this
overwhelmed Mcl-1’s baseline effects on
oxidative phosphorylation. As shown in
Figures 5H and 5I, Mcl-1 overexpression
inhibited the increase in mROS production
after bacterial challenge. Mcl-1 also
specifically reduced the mROS production
due to caspase activation after bacterial
challenge because treatment with the caspase
inhibitor carbobenzoxy-valyl-alanyl-
aspartyl-[O-methyl]-fluoromethylketone
(zVAD) reduced MitoSOX Red levels to
levels comparable to those of the Mcl-
1–transgenic mice. In these experiments
with zVAD and benzyl N-[1-[(4-fluoro-3-
oxobutan-2-yl)amino]-1-oxo-3-
phenylpropan-2-yl]carbamate (zFA), the
baseline level of mROS was lower than in the
experiments shown in Figure 5G, reflecting
reduced sensitivity of detection in the
presence of these chemicals, and the baseline
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Figure 1. Induced myeloid leukemia cell differentiation protein Mcl-1 up-regulation occurs in chronic
obstructive pulmonary disease (COPD). (A) Alveolar macrophages obtained from bronchoalveolar
lavage of healthy control subjects or patients with COPD were mock infected (MI) or challenged with
opsonized serotype 14 Streptococcus pneumoniae (S14) at the designated multiplicity of infection (MOI).
Sixteen hours after challenge, the levels of Mcl-1 on alveolar macrophages were probed by western
blotting. A representative blot and densitometric analysis are shown. n = 6; *P, 0.05, repeated
measures one-way analysis of variance. (B and C) Lung sections from patients with COPD or healthy
control subjects were double-stained with CD68 and Mcl-1. Total corrected cellular fluorescence of
Mcl-1 in CD681 cells was quantified. Representative images (B) and collated data (C and D) are
shown (scale bars= 50 mM). In C, each point represents an individual cell (n = 74 healthy control, n = 90
COPD, from 10 donors), and in D, each point represents the median fluorescence of all cells analyzed
from individual donors. For C and D, *P, 0.05, Kruskal-Wallis test. ns = nonsignificant.
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alteration in mROS production due to the
transgene was no longer apparent.

COPD AMs Fail to Increase mROS
Production after Pneumococcal
Challenge
Because patients with COPD had enhanced
expression of Mcl-1 in AMs (Figures
1A–1C), phenocopying the CD68.hMcl-11

BMDMs, we next addressed whether they
also had modulation of mROS generation in
response to pneumococci and whether this
influenced intracellular bacterial killing.
AMs from patients with COPD had
enhanced levels of mROS at baseline and no
increase with infection (Figure 6A).
Inhibition of mROS in COPD AMs did not
increase intracellular bacterial numbers,
suggesting that mROS plays little role in
bacterial killing in COPD AMs (Figure 6B).
COPD is associated with enhanced
antioxidant expression as an adaptation to
chronic production of ROS (27). The major
antioxidant against superoxide in AMs that
are localized to mitochondria is manganese
superoxide dismutase 2 (MnSOD, also
termed SOD2) (28). AMs from patients with
COPD had enhanced expression of SOD2 at
baseline and maintained expression after

bacterial challenge (Figure 6C). Thus, when
we calculated a ratio of the change in mROS
to SOD2 as a marker of mitochondrial
oxidant–antioxidant balance, there was a
significant increase in this ratio after
infection in healthy control but not
COPD AMs (Figure 6D). To test whether
increased mROS reconstituted bacterial
killing in COPD AMs, we added the
mitochondrial complex I inhibitor rotenone,
which enhances mROS production (29),
confirming it enhanced bacterial killing in
both healthy control and COPD AMs
(Figure 6E). In keeping with a limited role
for mROS in induction of apoptosis under
these circumstances, as well as with the
well-developed resistance of AMs to
oxidative stress (30), we found that rotenone
resulted in only a limited increase in AM
apoptosis. Once again, this suggested
mROS was an effector of bacterial killing
downstream of apoptosis rather than a
stimulus for apoptosis induction (Figure 6F).

Discussion

We demonstrate that COPD AMs possess a
specific defect in the delayed phase of

intracellular bacterial killing in association
with impairment of mROS generation. This
phase of bacterial killing is regulated by the
antiapoptotic protein Mcl-1 (12, 13), and we
provide evidence that Mcl-1 is up-regulated
in COPD AMs. Using a novel transgenic
mouse line in which human Mcl-1 is
governed by the CD68 promoter, we show
that overexpression of Mcl-1 results in a
reduction of bacterial clearance from the
murine lung and that mROS is both
required for the delayed phase of clearance
and regulated via Mcl-1 expression. Mcl-1
enhances the OCR during oxidative
phosphorylation and mROS production in
mock-infected macrophages, but during
infection, its major effect is to regulate
caspase-dependent mROS production.
COPD AMs have both high basal
mROS generation and a failure to enhance
mROS production after pneumococcal
challenge, which results in decreased
bacterial killing.

COPD is characterized by bacterial
persistence in the airway and by enhanced
rates of CAP and IPD (8, 31). Bacterial load
in the airway correlates with progressive
airway obstruction and maintenance of
neutrophilic inflammation (5). Moreover,
researchers using a recent murine model
involving polymeric immunoglobulin-
deficient mice demonstrated that
persistent exposure to lung bacteria drive
inflammatory changes and lung
remodeling in the small airways (32).
This suggests that innate immune
dysfunction and impaired handling of
respiratory pathogens are central
features of COPD pathogenesis. In line
with these observations, several groups
have demonstrated that COPD AMs have
altered activation states (33, 34),
cytokine responses (35), and phagocytic
capacity (14, 15, 36). Despite this, there
has been little investigation of
microbicidal responses in COPD AMs.
Moreover, prior studies have varied in
the extent to which they identify a
systemic versus a local alveolar
macrophage defect. Although
confounding effects of smoking and
corticosteroids are important
considerations, we had low rates of
current smokers in the main patient
group studied, and although
corticosteroid inhaler use was more
frequent in the COPD group, the patients
studied by histochemistry included very
few who used corticosteroid inhalers,
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Figure 2. Chronic obstructive pulmonary disease (COPD) alveolar macrophages (AMs) have a
deficiency in apoptosis-associated killing. (A) AMs were collected from healthy donors or patients with
COPD and were challenged with nonopsonized (2) or opsonized (1) serotype 14 Streptococcus

pneumoniae at a multiplicity of infection (MOI) of 10 for 4 hours before extracellular bacteria were killed
and viable intracellular bacteria were measured. Viable bacteria in duplicate wells were measured
again 3 hours later (7 h after infection). *P, 0.05, **P, 0.01 by two-way analysis of variance. (B and
C) Healthy or COPD AMs were challenged with serotype 14 Streptococcus pneumoniae at an MOI of
10 for COPD cells or an MOI of 5 for healthy cells to normalize levels of bacterial internalization. Cells
were analyzed for (B) nuclear fragmentation or condensation and (C) intracellular bacterial CFU at 20
hours after challenge. n = 5–6, *P, 0.05 by Student’s t test (for B) or Mann-Whitney U test (for C).
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arguing against a major confounding
effect of these on Mcl-1 expression.

AMs require additional microbicidal
mechanisms to complement early
phagolysosomal bacterial killing because
they lack myeloperoxidase (37) and the
granule-associated serine proteases
found in neutrophils (30). Moreover,
differentiated macrophages continue to
phagocytose bacteria after conventional
phagolysosomal microbicidal strategies
are exhausted (38). Respiratory pathogens
also express genes enabling their resistance
to microbicidals (10). AMs respond by
activating a delayed phase of intracellular
killing in response to a diverse range of

pathogens, extending from pneumococci to
Mycobacterium tuberculosis (12, 13, 39).
Generation of mROS has emerged as an
important microbicidal strategy used by
macrophages (23), and its production is
increased by caspase 3–mediated inhibition
of complex I (26). Therefore, it is well
positioned to link induction of apoptosis to
bacterial killing. In light of observations
that bacteria such as pneumococci have
adaptions to withstand oxidative stress, it is
likely that mROS reacts to form other,
more potent microbicidals, such as
reactive nitrogen species, to mediate
bacterial killing (10). Our results
suggest that this critical microbicidal

strategy functions ineffectively in
COPD AMs.

Mitochondrial function emerges as a
key determinant of the COPD AM
microbicidal response. In COPD, there is
increasing evidence of mitochondrial
dysfunction involving airway smooth
muscle cells and skeletal muscle (40, 41).
Enhanced mROS production is well
described and is believed to contribute
to COPD pathogenesis by contributing
to the overall oxidative stress, promoting
senescence and inflammation. The
impact of mitochondrial dysfunction on
macrophage innate immune responses is
less appreciated, but our data suggest that
an additional consequence is impaired
macrophage microbicidal responses. These
are likely to be compounded further by
impaired generation of classical
macrophage activation in COPD (33, 34).
Failure to generate classical activation
will reduce succinate generation, an
important driver of acute mROS
production required for microbicidal
responses (42, 43), whereas the chronic
production of mROS can favor alternative
activation with consequences for innate
immune responses (44). Up-regulation
of antioxidant defenses, such as SOD2,
in COPD (27) will further compromise
mitochondrial microbicidal capacity.
Our results suggest that AM adaptions
to chronic mROS generation will
compromise the ability to generate an
acute microbicidal response with mROS
in the phagolysosome.

The molecular regulation of mROS
production involves Mcl-1. CD68.hMcl-11

transgene expression increased markers of
oxidative phosphorylation and mROS
generation in mock-infected macrophages,
so its up-regulation could theoretically
drive chronic mROS production in COPD
AMs. The production of mROS is
influenced by more than the basal and
maximal OCRs, however, and how COPD
influences hydrogen ion leak and the
function of uncoupling proteins in AMs
in COPD is unknown (24). Mcl-1 can exist
as a form that localizes to the outer
mitochondrial membrane and regulates
apoptosis and as another form that
localizes to the mitochondrial matrix and
enhances oxidative phosphorylation while
limiting mROS generation (45). This
suggests that if Mcl-1 is to contribute
to enhanced mROS expression in COPD
AMs, either the expression of the
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matrix-localized form must be altered or
there must be additional factors modulating
proton leak to result in greater mROS
production. An additional implication of
this is that the reduced induction of mROS
we documented after pneumococcal

challenge in association with maintenance
of Mcl-1 expression may be a consequence
of not just reduced caspase activation
(and therefore inhibition of complex
I [26]) but also preservation of the
matrix-localized form of Mcl-1 (45).

Regardless of these considerations, there is
still potential to overwhelm Mcl-1 in COPD
AMs and reengage both induction of mROS
and microbicidal capacity, as evidenced by
the capacity of a complex I inhibitor to
enhance bacterial clearance.
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Our findings are based exclusively
on experiments with the pneumococcus,
but they are likely to have broad impact
in COPD, even though other bacteria

such as nontypeable H. influenzae are
frequently implicated as colonizers of the
COPD airway and drive inflammation
(46). Pneumococci are the second most

frequent bacterial colonizer in the lower
airway in patients with COPD (46). They
are likely to exert both direct effects on
the frequency of COPD exacerbations
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Figure 5. (Continued). rotenone (Rot), or antimycin A (AntiA) at the indicated concentrations. Using the kinetic data (B), basal oxygen consumption rate
(OCR) (C), maximum respiration capacity (D), ATP-linked OCR (E), and proton leak (F) were calculated. n = 6 per group; *P, 0.05, **P, 0.01 by two-way
analysis of variance (ANOVA). (G) MI Wt and Tg BMDMs were stained with MitoSOX Red to measure baseline mROS production. (H and I) Wt or Tg
BMDMs (H) or human monocyte-derived macrophages (I) were MI or challenged with D39 in the presence of the pan-caspase inhibitor zVAD or control
zFA. At 20 hours after challenge, cells were stained for mROS and caspase 3/7 activity. MitoSOX Red staining was assessed for the whole-cell
populations (histograms) showing forward scatter (FSC-H) versus caspase 3/7. Representative plots are shown, with collated data graphed. n = 4; *P,
0.01 by two-way ANOVA (for H) or one-way ANOVA (for I). MFI =mean fluorescence intensity; zFA = benzyl N-[1-[(4-fluoro-3-oxobutan-2-yl)amino]-1-oxo-
3-phenylpropan-2-yl]carbamate; zVAD = carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone.
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and decline in FEV1 (colonization
with a monoculture of pneumococci
specifically increased the risk of
acute exacerbation in one study [20]) and
indirect effects because there is evidence
that pneumococcal colonization can
promote H. influenzae or M. catarrhalis
growth in the upper airway or promote
mixed H. influenzae and S. pneumoniae
biofilms (47, 48). Pneumococci can
also synergize with H. influenzae to
promote proinflammatory cytokine
responses in epithelial cells (49). In
addition, they are the leading cause of
CAP in patients with COPD (7). However,

the induction of apoptosis-associated
bacterial killing against a range of
pathogens is important (10), and the
specific defect in mitochondrial
microbicidal responses is therefore
likely to have consequences for other
pathogens in COPD beyond its effect
on pneumococci.

Although several defects in innate
immune function have been identified in
COPD, the identification of a critical defect
in the late phase of mitochondrial
microbicidal killing in COPD AMs
represents a new therapeutic target.
Manipulation of mitochondrial

homeostasis, metabolism, or inhibition of
Mcl-1 all represent potential approaches by
which this critical defect could be
modified. n
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