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Abstract

The mitochondrion is the main site of energy production and a
hub of key signaling pathways. It is also central in stress-adaptive
response due to its dynamic morphology and ability to interact
with other organelles. In response to stress, mitochondria fuse
into networks to increase bioenergetic efficiency and protect
against oxidative damage. Mitochondrial damage triggers
segregation of damaged mitochondria from the mitochondrial
network through fission and their proteolytic degradation by
mitophagy. Post-translational modifications of the
mitochondrial proteome and nuclear cross-talk lead to
reprogramming of metabolic gene expression to maintain energy
production and redox balance. Chronic obstructive pulmonary

disease (COPD) is caused by chronic exposure to oxidative
stress arising from inhaled irritants, such as cigarette smoke.
Impaired mitochondrial structure and function, due to
oxidative stress–induced damage, may play a key role in
causing COPD. Deregulated metabolic adaptation may
contribute to the development and persistence of mitochondrial
dysfunction in COPD. We discuss the evidence for deregulated
metabolic adaptation and highlight important areas for
investigation that will allow the identification of molecular
targets for protecting the COPD lung from the effects of
dysfunctional mitochondria.
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Chronic exposure to inhaled irritants, such as
cigarette smoke (CS) and biomass fuels, and
the resulting oxidative stress are major triggers
of chronic obstructive pulmonary disease
(COPD) inflammation and the associated
pathology, which includes emphysema,
chronic bronchitis, and small airways
remodeling (1). Accelerated cellular aging and
senescence are important in the development
of emphysema, fibrosis, and inflammation,
whereas airway smooth muscle (ASM)
thickening contributes to small airways
remodeling (1, 2). There is evidence of
impaired mitochondrial function in the lungs
of patients with COPD, possibly caused by
chronic exposure to oxidative stress (3–8).
Defective metabolic adaptation in COPDmay

lead to the development and persistence of
mitochondrial dysfunction. We review what
is known of the potential mechanisms of
adaptation to mitochondrial dysfunction and
how these may be deregulated in COPD,
while highlighting the areas that require
further investigation.

Mitochondria Are Hubs of
Energy Production,
Biosynthesis, and
Redox Regulation

Mitochondria likely originated from
a-proteobacteria that were engulfed by
primitive eukaryotes, establishing a symbiotic

relationship (9). Their bacterial ancestry is
reflected by their structure, which is
comprised of an outer and an inner
membrane, enclosing the matrix and
intermembrane space, and a small circular
genome. Mitochondrial DNA (mtDNA)
encodes for 13 proteins involved primarily in
mitochondrial respiration. During evolution,
a considerable proportion of the bacterial
genome was transferred to the eukaryotic
nucleus. Thus, the majority of mitochondrial
proteins are encoded by the nuclear genome
(10). Because mitochondria cannot be created
de novo, mitochondrial biogenesis involves
the growth and division of pre-existing
mitochondria. Mitochondria divide by the
process of fission, and subsequently fuse
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together to form networks (11). Mitochondrial
biogenesis is induced in response to changes in
energy demand and environmental cues, by
the key transcription factor, peroxisome
proliferator–activated receptor g coactivators
(PGCs) 1a and b (12).

Mitochondria provide most of the cell’s
energy requirements in the form of ATP
through oxidation of glucose, fatty acids,
and amino acids. Lung mitochondria
primarily use glucose as a substrate;
however, they also oxidize fatty acids,
glutamine, and lactate (13, 14).

Glucose is taken up by the cells via
glucose transporters, and is phosphorylated
by hexokinase to glucose-6-phosphate, which
enters the glycolytic pathway in the
cytoplasm, leading to the production of
pyruvate. Most pyruvate is transported
through the mitochondrial inner membrane
to the mitochondrial matrix, where it is
decarboxylated into acetyl-coenzyme A
(CoA) by pyruvate dehydrogenase (PDH),
whereas a small proportion of it is converted
to lactate in the cytoplasm. PDH is negatively
regulated by PDH kinase, which acts as a
gatekeeper, controlling the flow of pyruvate
into the mitochondrion. Fatty acids are taken
up by the cells via plasma membrane
transporters or they are synthesized de novo.
Fatty acids are activated by acetyl-CoA in
the cytoplasm and associate with carnitine
molecules, forming acylcarnitines that
are transported into the mitochondrion,
where fatty acid oxidation (FAO) occurs,
producing acetyl-CoA (Figure 1) (15).

Acetyl-CoA, from glucose or fatty acid
oxidation, enters the tricarboxylic acid (TCA)
cycle, a series of enzymatic reactions in the
mitochondrial matrix giving rise to the electron
carriers reduced nicotinamide adenine
dinucleotide (NADH) and flavin adenine
dinucleotide (FADH2), which donate electrons
to the electron transport chain (ETC) in the
inner membrane. The ETC is comprised of
four electron-carrier protein complexes (I–IV),
which, through a series of redox reactions,
transfer electrons to oxygen. During this
process, termed oxidative phosphorylation
(OXPHOS), complexes I, III, and IV pump
protons into the intermembrane space,
creating a mitochondrial membrane potential
(DCm). DCm drives the influx of protons
back into the mitochondrial matrix via a
proton channel coupled to the F0F1 ATP
synthase (complex V), which facilitates the
phosphorylation of ADP to ATP (16). In
situations of increased energy demand, such as
in proliferating cells, glutamine is also used as a

mitochondrial respiration fuel by undergoing
glutaminolysis into glutamate, which enters
the TCA cycle (Figure 1) (17, 18).

Leakage of electrons during OXPHOS,
particularly at complexes I and III, leads to
partial reduction of oxygen to produce
reactive oxygen species (ROS). ROS have
also been shown to be produced as a result
of PDH activity, the TCA cycle, and FAO
(19, 20). Mitochondrial ROS are maintained
at low levels through the action of
antioxidants, such as Mn superoxide
dismutase and glutathione. Mitochondrial
ROS at low levels are involved in the
propagation of homeostatic mechanisms,
but, at high levels, lead to damage of
proteins, lipids, and nucleic acids, and
thus cause disease (Figure 1) (16, 19).

Cellular bioenergetic, biosynthetic, and
redox processes are highly coordinated to
produce energy, while maintaining adequate
levels of macromolecules required for
biosynthesis and maintenance of redox
balance. Citrate from the TCA cycle enters
de novo fatty acid synthesis through its
conversion to acetyl-CoA by ATP-citrate
lyase in the cytoplasm, to replenish fatty acid
levels (21). The glycolytic pathway, via
glucose-6-phosphate, branches off into the
anabolic pentose phosphate pathway (PPP),
which produces ribose-5-phosphate, a
precursor of nucleotide biosynthesis, and
reduced nicotinamide adenine dinucleotide
phosphate (NADPH), which is required for
fatty acid biosynthesis and antioxidant
protection (22). Glutaminolysis also provides
nitrogen for nucleotide and protein synthesis,
and glutamate, which is a precursor for
glutathione synthesis (Figure 1) (17).

Mitochondrial Dysfunction
in COPD

There is mounting evidence supporting the
presence of mitochondrial dysfunction in the
lungs of patients with COPD and its role in
the development or progression of the disease
(23). Morphologic abnormalities consistent
with mitochondrial damage, such as elongated
and swollen mitochondria, with poorly
defined cristae were reported in bronchial
epithelial cells of patients with COPD (4, 5).
Impaired mitochondrial function reflected by
loss of DCm, increased mitochondrial ROS,
and reduced mitochondrial respiration was
also reported in ASM cells (ASMCs) and
endobronchial biopsies of patients with
COPD (8). Mitochondrial damage is possibly

caused by oxidative stress as a result of
chronic exposure to CS. This is supported by
studies showing impaired mitochondrial
function in CS- and ozone-induced mouse
models of COPD (3, 7, 8). A recent study has
provided evidence for increased expression of
the iron-responsive element-binding protein 2,
a key protein involved in iron homeostasis,
that could lead to mitochondrial iron
overload and dysfunction in COPD (8, 24).
Impaired mitochondrial function has
been shown to mediate lung cell
apoptosis and senescence and the
development of lung inflammation and
emphysema, indicating a role in disease
pathology (3, 4, 6–8, 25). The effects of
mitochondrial dysfunction in disease may
be mediated by excessive mitochondrial
ROS (3, 4, 6–8) and release of mitochondrial
components from damaged cells, such as
mtDNA and cardiolipin, which act as
danger-associated molecular patterns to
induce inflammatory responses (26–28).

The dynamic nature of the mitochondria
and their ability to move and communicate
with other organelles enables them to adapt to
oxidative stress, changes in energy and
nutrient levels, and even damage. Loss of
these adaptive responses, due to chronic
exposure to high levels of oxidative stress or
due to inherent defects, may lead to prolonged
mitochondrial dysfunction in COPD.

Metabolic Adaptation to Stress
and Mitochondrial Dysfunction

Mitochondria not only act as sensors, but are
also regulators of metabolic activity. Changes
in energy status are signaled by changes in
intermediates, such as the ratios of oxidized
to reduced NAD (NAD1/NADH) and
AMP/ATP, and acetyl-CoA levels (29).
These signals are detected by molecular
sensors, such as hormones, transcription
factors, and kinases, that act to restore
metabolic and cellular homeostasis (30).
Acute responses to stress, mitochondrial
dysfunction, or altered nutrient supply
involve changes in mitochondrial
morphology, movement and quality control,
and post-translational modifications of
mitochondrial proteins. Furthermore,
retrograde signaling between the
mitochondrion and nucleus triggers
transcriptional changes that lead to more
lasting metabolic changes, termed
“metabolic reprogramming” (30, 31).
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Figure 1. Central role of mitochondria in energy production, biosynthesis, and redox regulation. Mitochondria integrate energy metabolism, biosynthesis,
and redox balance. (1) Glucose is phosphorylated by hexokinase (HK) to glucose-6-phosphate (Glucose-6-P), which undergoes glycolysis in the
cytoplasm to produce pyruvate. Under normal, aerobic conditions, most of the pyruvate that enters is converted to acetyl-coenzyme A (CoA) by the
pyruvate dehydrogenase (PDH) complex in the mitochondrial matrix, whereas a small proportion of it is converted to lactate by lactate dehydrogenase
(LDH). Glycolytic intermediates also feed into biosynthetic pathways. Glucose-6-phosphate is redirected into the pentose phosphate pathway to produce
the nucleotide precursor, ribose-5-phosphate, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) required for the maintenance of
reduced glutathione (GSH) levels. (2) Fatty acids are transported into the mitochondrion after their conjugation to carnitine by carnitine palmitoyltransferase
1 (CPT1), to undergo fatty acid oxidation, leading to acetyl-CoA production. (3) Acetyl-CoA combines with oxaloacetate (OAA) to form citrate, which
enters the tricarboxylic acid (TCA) cycle in the mitochondrial matrix, generating electron carriers, nicotinamide adenine dinucleotide (NADH) and flavin
adenine dinucleotide (FADH2). Citrate produced by the TCA cycle is converted, by ATP-citrate lyase (ACL), to cytoplasmic acetyl-CoA, which is required
for fatty acid synthesis. (4) Cells with increased energy demands, such as rapidly proliferating cells, use glutamine for energy production. Glutamine is
converted to glutamate by glutaminolysis through the action of glutaminase (GLS). Glutamate acts as a precursor for glutathione synthesis, but can also
be converted, by glutamate dehydrogenase (GLDH), into a-ketoglutarate, which feeds into the TCA cycle. Glutamine also provides nitrogen for amino
acid and nucleotide synthesis. (5) Electrons (e2) are transferred from NADH and FADH2 to molecular oxygen (O2) through redox reactions facilitated by a
series of electron carrier protein complexes (I–IV) located in the inner mitochondrial membrane (IMM), a process termed “oxidative phosphorylation”
(OXPHOS). The energy released by the electron flow drives the movement of protons into the intermembrane space (IMS) creating a membrane potential
(DCm). DCm drives the influx of protons back into the mitochondrial matrix via the ATP synthase complex (complex V), which phosphorylates ADP to ATP.
Electron leakage during OXPHOS leads to univalent reduction of oxygen to form superoxide anion (O2

2). O2
2 is converted to the less reactive oxidant,

hydrogen peroxide (H2O2), which is eliminated through the action of catalase and GSH. (6) In response to oxidative stress and/or mitochondrial
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Mitochondrial Morphology,
Movement, and Quality Control
Mitochondria have a very dynamic
morphology, and can be found segregated or
linked together into linear or branched
networks as a result of continuous cycles
of fission and fusion, mediated by
multidomain dynamin-related GTPases
(30). Mitochondrial fission and fusion are
pivotal in the ability of cells to survive
under conditions of stress (32).

Mitochondrial fusion is induced in the
initial stages of cellular stress. The membrane-
anchored proteins, mitofusin (Mfn)-1 and -2,
facilitate the fusion of the outer membranes,
whereas optic atrophy (Opa) 1 mediates the
fusion of the inner membranes and controls
cristae formation, leading to the formation of
networks of elongated mitochondria (33).
This leads to complementation between
mitochondria through sharing of mtDNA,
lipids, and proteins, limiting detrimental
mutations and mitochondrial damage.
Moreover, fusion maintains OXPHOS
efficiency through the formation of ETC
super complexes, preventing the proteolytic
degradation of mitochondria and facilitating
interactions between mitochondria and
endoplasmic reticulum (ER) (11).
Mitochondrial–ER interactions are important
stress response mechanisms in that they allow
the movement of Ca21 that triggers
mitochondrial biogenesis as well as transport
of essential mitochondrial lipids, such as
cardiolipin (34, 35). The proteolytic processing
of Opa1 is pivotal in the regulation of
mitochondrial dynamics. Under normal
conditions, processing by the mitochondrial
quality control proteases, ATPases associated
with diverse cellular activities proteins,
maintains Opa1 in long transmembrane and
short, soluble isoforms (36, 37). Under
conditions of stress, stomatin-like protein 2,
a prohibitin-related scaffolding protein
expressed in the mitochondrial inner
membrane, maintains Opa1 in the long
conformation, promoting mitochondrial
hyperfusion (32). Acute exposure to oxidative
stress can induce mitochondrial hyperfusion,
which possibly acts as a first line of defense
against ROS by minimizing cellular damage

and increasing metabolic efficiency (38, 39).
Thus, mitochondrial hyperfusion has been
linked to increased survival and apoptosis
resistance (32).

Mitochondrial fission is induced by
more prolonged stress and mitochondrial
dysfunction. Fission is mediated by the
cytosolic dynamin, Drp1, recruited to the
fission sites by mitochondrial dynamics
factors 49 and 51 or mitochondrial fission
factor 1 (33). The fission sites are determined
by sites where ER tubules interact with
mitochondria in a process termed “ER-
associated mitochondrial division” (40).
Drp1 forms spiral structures around the
mitochondrion, which constricts to split the
inner and outer membranes (41). Segregation
of mitochondria is required not only for cell
division, but also for degradation of damaged
mitochondria and induction of apoptosis (11,
30, 33). Loss of DCm leads to Opa1 cleavage
into small and inactive isoforms by the
metalloprotease, overlapping activity with
m–ATPases associated with diverse cellular
activities protease 1 (Oma1), halting fusion
and allowing the defective mitochondrion to
be segregated from the network through
fission to allow its efficient removal (36).
Defective mitochondria are removed by
autophagic degradation, a process termed
“mitophagy.” Mitophagy is activated by
prolonged reduction in DCm which triggers
the recruitment of the serine/threonine
kinase, phosphatase and tensin homolog–
induced putative kinase 1 (PINK1), from the
intermembrane space to the surface of the
mitochondria, where it recruits the E3
ubiquitin ligase, Parkin. Parkin ubiquitinates
outer membrane proteins, including Mfn-1
and Mfn-2, leading to inhibition of
mitochondrial fusion and initiating the
formation of autophagosomes, which are
degraded by fusing with lysosomes (36, 42, 43).

Another aspect of the dynamic nature
of mitochondria is their ability to move across
the cell, along microtubules, to interact with
other organelles. This process is facilitated by
the outer membrane–localized guanosine
triphosphatases (GTPases), mitochondrial
Rho GTPase 1 and mitochondrial Rho
GTPase 2, which interact with the kinesin

and dynein motor proteins via adaptor
proteins to transport mitochondria toward
the cell membrane or the nucleus (44).
Perinuclear clustering of mitochondria plays
a key role in hypoxia-inducible factor
(HIF)-1a–mediated gene activation, and
thus to adaptive responses to hypoxia (45).

Acute exposure of alveolar epithelial
cells to nontoxic concentrations of CS
extract induces elongation and fusion of
mitochondria, which appears to be
protective, as these cells show increased
oxygen consumption and DCm and low
mitochondrial ROS levels, suggesting
increased mitochondrial respiration
efficiency (46). Prolonged exposure (6 mo)
of bronchial epithelial cells to CS extract,
however, leads to swollen mitochondria
with poorly defined cristae, which show
both branching and fragmentation.
Intriguingly, all these structural changes,
apart from fragmentation, persisted after
withdrawal of CS extract, indicating that
mitochondrial hyperfusion may be a
maladaptive mechanism triggered by
chronic CS exposure (5). Importantly, a
similar morphology, which is characteristic
of aging mitochondria (47), was also
observed in bronchial epithelial cells of
ex-smoking patients with COPD (5).
Prohibitin 1, an inner-membrane
scaffolding protein that is important in the
proteolytic processing of Opa1, was found
to be reduced in COPD lungs, suggesting a
possible mechanism underlying the
impaired morphology and cristae
formation (48). A different study in
bronchial epithelial cells from patients
with COPD reported swollen and
cristae-depleted mitochondria, which,
however, showed a fragmented morphology
(4). The discrepancy in the morphology
reported by these studies may be due to
differences in cell culturing conditions.
Studies of mitochondrial morphology in
lung tissue from patients with COPD would
therefore be of value.

The hyperfused mitochondrial
morphology is a key feature of cells
undergoing senescence, and has been
attributed to loss of Drp1 activity or fission

Figure 1. (Continued). dysfunction, adaptive metabolic reprogramming, involving increased glycolysis, fatty acid oxidation, and glutaminolysis, ensures
maintenance of ATP production, biosynthesis, and redox balance required for cell survival and normal function. Impaired metabolic reprogramming in
chronic obstructive pulmonary disease may lead to prolonged mitochondrial dysfunction and an inability of cells to respond to stress, leading to cell
senescence and death. Conversely, extensive metabolic reprogramming, due to overadaptation to hypoxia or inflammation, could lead to increased
survival and proliferation of airway smooth muscle cells and myofibroblast activation. MnSOD=manganese superoxide dismutase.
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factor 1 expression (49, 50). Induction of
mitochondrial fragmentation by Opa1
knockdown protects HeLa cells from
cellular senescence, indicating that fusion/
fission imbalance is an important driver of
senescence (51). Although studies in
epithelial cells have reported changes in
fusion/fission protein expression (5, 46)
and localization in response to CS exposure
(4), no differences have been reported in
cells of COPD. Furthermore, the
mechanisms linking deregulated
mitochondrial morphology and function
with cellular dysfunction in COPD are
unclear.

The presence of elongated and
dysfunctional mitochondria in close
proximity to the nuclei of lung fibroblasts
exposed to CS extract may provide an
important link between mitochondrial
dysfunction and cellular senescence (3).
Prolonged perinuclear accumulation of
damaged mitochondria, which could be a
result of impaired mitochondrial mobility
mechanisms (52) or prolonged exposure to
hypoxic conditions (45), is likely to lead to
direct ROS-induced DNA damage (3) or
to induce epigenetic modifications in the
nucleus (53), ultimately leading to the
cellular senescence seen in COPD.

Mitochondrial dysfunction in COPD
epithelium may be precipitated by
deregulated quality control. Hyperfused
mitochondria are spared from mitophagic
degradation, possibly due to their large size
(54). Indeed, elongated and fused
mitochondria were associated with
impaired mitophagy, due to suppressed
mitochondrial translocation of Parkin-1 by
p53, in the lungs of cigarette-exposed mice
and of healthy smokers and patients with
COPD. Impaired mitophagy was shown to
contribute to the development of epithelial
cell and fibroblast senescence and
emphysema in CS-exposed mice (3).
Reduced Parkin expression has also been
linked to defective mitophagy in lung tissue
from patients with COPD (6). In contrast,
another study reported swollen, but
increasingly fragmented, mitochondria
associated with PINK1-dependent
mitophagy in pulmonary epithelial cells
exposed to CS extract. The same study
reported increased Drp1 and PINK1 in
COPD, and demonstrated a role of
mitophagy amplifying the mitochondrial
damage and contributing to necroptosis of
lung epithelial cells and the development of
emphysema in a CS-induced mouse

model (7). The discrepancy in the findings
regarding mitochondrial dynamics and
quality in in vitro and in vivo model control
may stem from differences in experimental
conditions, such as the levels of CS used.
A more in-depth study of mechanisms of
mitochondrial morphology and mitophagy
in cells and lung tissue from patients with
COPD is required to understand how these
mechanisms are deregulated in disease.

Mitochondrial dysfunction and ER
stress are evident in the lungs in response to
aging and CS exposure (55, 56). Under
conditions of ER stress, ER–mitochondrial
coupling is facilitated by Mfn-2 (57). ER
stress was shown to contribute to
mitochondrial fusion and impaired
mitophagy, leading to mitochondrial
dysfunction in alveolar epithelial type II
cells from aged mice (55). The mechanisms
underlying ER-mediated mitochondrial
dysfunction are unclear; however, increased
Ca21 flux may play a role. These findings
highlight the importance of investigating
mitochondrial–ER cross-talk as a possible
mechanism of defective metabolic function
in COPD.

Post-Translational Modification of
Mitochondrial Proteins: Sirtuins
A large proportion of mitochondrial
proteins are acetylated, including TCA cycle
enzymes and proteins involved in fatty acid,
carbohydrate, amino acid, and nucleotide
metabolism (58). Protein acetylation acts as
a metabolic sensor, detecting acute changes
in the cellular bioenergetic status and
translating them into adaptive changes in
mitochondrial function (31). Acetyl-CoA,
produced from glucose or fatty acid
oxidation, mediates mitochondrial protein
acetylation, whereas, conversely, NAD1,
accumulating in conditions of reduced
energy, is required as a cofactor for the
NAD1-dependent lysine deacetylases,
sirtuins. Sirtuins orchestrate stress
responses, maintenance of metabolic
homeostasis, and antiaging effects (59).
Sirtuin (Sirt) 3 is the predominant
deacetylase in the mitochondria, where it
prevents hyperacetylation of ETC
complexes I, II, and V, maintaining
OXPHOS and ATP production (60–63).
Under conditions of oxidative stress, Sirt3
triggers an adaptive response by driving
mitochondrial fusion through deacetylation
of Opa1 (64) and mtDNA repair by
increasing the stability of the mtDNA
repair enzyme, 8-oxoguanine-DNA

glycosylase 1 (65). Sirt3 also enhances
mitochondrial respiration under conditions
of metabolic stress by promoting FAO
through activation of long-chain acyl CoA
dehydrogenase (66) and glutaminolysis by
glutamate dehydrogenase activation (67).
Sirt3 also promotes mitochondrial redox
balance by contributing to the regeneration
of reduced glutathione by promoting
NADPH production (68) and activation of
Mn superoxide dismutase (69).

Reduced Sirt3 expression has been
reported in the lungs of aged mice and
in an elastase-induced mouse model of
emphysema (70). Sirt3-deficient mice have
been shown to demonstrate exaggerated
bleomycin-dependent pulmonary fibrosis,
inflammation, and mucus production
(70–72). Moreover, transforming growth
factor-b, a major driver of COPD
pathology, inhibits Sirt3 expression in lung
fibroblasts, leading to oxidative stress,
mtDNA damage, and myofibroblast
differentiation (70–72). Thus, defective
mitochondrial sirtuin function and
deregulated mitochondrial protein
acetylation could be key contributors to
poor metabolic adaptation to stress and
susceptibility to premature aging and
COPD, and merit further study.

Metabolic Reprogramming
The communication between the
mitochondrion and nucleus allows the
sensing and transmission of metabolic
signals, in the form of altered metabolic
intermediates, to reprogram metabolic gene
expression and induce adaptive metabolic
and redox changes.

The two key molecular sensors for
metabolic adaptation are AMP-activated
protein kinase (AMPK) and the sirtuin,
Sirt1 (30). AMPK is activated by increased
AMP:ATP ratio and increased ADP levels
resulting from ATP depletion (73), and also
by oxidative stress (74) and mitochondrial
ROS due to mitochondrial dysfunction
(75, 76). Activation of AMPK leads to
inhibition of biosynthetic processes and
activation of catabolic metabolism to
increase energy production (29). AMPK
increases mitochondrial biogenesis
through PGC-1a activation (30). At the
same time, it promotes production of
acetyl-CoA required for mitochondrial
respiration by activating FAO via PGC-1a
activation, and glycolysis through
phosphofructokinase-2 and hexokinase
activation (74, 77). Inhibition of the
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mechanistic target of rapamycin (mTOR)
pathway by AMPK also ensures the
availability of nutrients and respiration
substrates by increasing mitophagy (78).
Moreover, AMPK-dependent activation of
the cytoprotective transcription factors,
nuclear factor E2–related factor 2 and
Forkhead box O3 (FoxO3), leads to
increased antioxidant gene expression
(79, 80), whereas induction of PPP activity
provides NADPH required for redox balance
(81). AMPK-mediated NAD1 levels activate
Sirt1, which induces PGC-1a and FoxO3
activity through deacetylation, to promote
catabolic metabolism, ATP production, and
antioxidant protection (82).

HIF-1 is another important molecular
sensor that mediates adaptive metabolic
changes in response to hypoxic conditions
(83). Hypoxic cells show an HIF-1–dependent
up-regulation of PDH kinase 1 that diverts
pyruvate away frommitochondrial respiration
and toward glycolysis (84). At the same time,
increased expression of glucose transporters
and glycolytic enzymes ensure a shift from
OXPHOS to glycolysis and the PPP,
maintaining ATP production and low ROS
levels under hypoxic conditions (83, 85). This
switch would lead to reduced flow of acetyl-
CoA into the TCA cycle and fatty acid
synthesis. Increased glutaminolysis, in
response to HIF-1 activation, provides
a-ketoglutarate for the TCA cycle and,
consequently, citrate for fatty acid synthesis
(85, 86)

A reduction in glycolytic flux in
type II alveolar epithelial cells of mice
exposed to CS for 4–8 weeks is
accompanied by increased ETC complex
protein activity and FAO (87). At the same
time, induction of PPP activity provides
NADPH for maintaining redox balance
(87). These metabolic changes are reversed
upon cessation of CS exposure (87, 88).
A more recent study by Cloonan and
colleagues (24) also demonstrates that
CS-induced OXPHOS impairment in mice
is accompanied by a shift toward glycolysis.
Thus, CS-mediated stress triggers adaptive
changes that allow increased mitochondrial
efficiency and activation of alternative
pathways to preserve energy and antioxidant
levels, and thus cell survival. AMPK
activation may facilitate these processes (89).
Indeed, AMPK activation has been reported
in human bronchial epithelial cells and
macrophages, and mouse lungs after CS
exposure, in a ROS-dependent manner (90,
91). Nonetheless, the involvement of AMPK

in metabolic regulation was not investigated
in those studies.

Metabolomic analysis of basal cells
from long-term smokers reveals reduced
acetyl-CoA levels, reflecting defective
glycolysis and/or FAO, and a deficit in
succinate, NADH, and FADH2, indicative
of reduced TCA cycle activity (92).
Moreover, in a model of elastase-induced
emphysema, which simulates progressive
disease, alveolar epithelial cell senescence
and apoptosis were accompanied by a
reduction in L-carnitine levels, possibly
reflecting impaired FAO. L-carnitine
supplementation reduced alveolar epithelial
apoptosis and protected from emphysema
development (93). This suggests that
prolonged exposure to oxidative stress may
lead to loss of metabolic flexibility in
epithelial cells, rendering them unable to
respond to the bioenergetic demands of
stress, and thus leading to senescence,
apoptosis, and impaired regenerative
capacity in the COPD epithelium (94–96).
This effect may be a result of deregulated
nutrient sensing. Sirt1 (97, 98) and FoxO3
(90, 99, 100) are reduced in the lungs of
patients with COPD as a result of chronic
exposure to CS, suggesting an impairment
of the AMPK–Sirt1–FoxO axis, with
potentially detrimental effects on the ability
of the cells to reprogram their metabolism
and respond to stress. A number of studies
have demonstrated a protective role for
these pathways against the development of
emphysema and inflammation in mouse
models of COPD (76, 89, 97–99); however,
their role in metabolic function in the lungs
is still elusive. Conversely, prolonged
activation of adaptive mechanisms could
also drive pathogenic processes.
CS-induced up-regulation of FAO, via a
family with sequence similarity 13 member
A (FAM13A)/Sirt1–dependent pathway,
was shown to promote lung epithelial cell
apoptosis through increased ROS
production (101). AMPK has been shown
to promote inflammation through NF-kB
activation in CS-exposed mice and human
macrophages (89–91), and to induce cell
senescence (102, 103).

On the other hand, extensive
metabolic reprogramming resulting from
overadaptation to hypoxia, exposure to
inflammatory mediators, or disease-
specific differences in metabolic
regulation may also lead to aberrant
cellular function. In cancer and
pulmonary hypertension, a shift from

OXPHOS to the use of glycolysis and
glutaminolysis as energy sources leads
to the production of intermediates for
synthesis of lipids, amino acids,
nucleotides, and antioxidants required for
maintaining proliferation and survival
(104, 105). We have demonstrated
mitochondrial dysfunction and impaired
OXPHOS in ASMCs from patients with
COPD (8). Preliminary data in our
laboratory suggest that COPD ASMCs
do not show senescence, but, rather,
increased proliferation in response to
growth factors (unpublished data),
suggesting that a similar maladaptive
metabolic reprogramming may contribute
to ASMC hyperplasia. Moreover, increased
glycolysis in response to HIF-1 activation
drives myofibroblast differentiation and
contractility in lung fibrosis (106, 107).
Recent studies have demonstrated an
integral role of metabolic reprogramming
in T cell activation (108) and macrophage
phenotype switching (109). Metabolic
reprogramming may, therefore, provide
another level of regulation of airway
inflammation and remodeling in COPD.

Concluding Remarks and
Future Directions

Cells respond to stress and
mitochondrial dysfunction through
immediate changes in their morphology
and localization, but also through post-
translational modifications of nuclear and
mitochondrial proteins and transcriptional
changes leading to metabolic
reprogramming. These responses are now
recognized to be integrally linked and
regulated in a coordinated manner
(110, 111). Defective metabolic adaptation
leads to increased susceptibility to
mitochondrial damage in COPD, and may
be associated with accelerated aging and
disease pathogenesis. Detailed studies on
the regulation of mitochondrial dynamics
and movement, mitochondrial–ER cross-
talk, as well as the mitochondrial proteome
and metabolome in cells and lung tissue
of COPD will allow us to gain a more
complete picture of metabolic adaptation
in COPD. This will allow the identification
of molecular targets for protecting
mitochondria in disease. n
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