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Abstract

Pulmonary emphysema is traditionally subcategorized into three subtypes, which have distinct
radiological appearances on computed tomography (CT) and can help with the diagnosis of
chronic obstructive pulmonary disease (COPD). Automated texture-based quantification of
emphysema subtypes has been successfully implemented via supervised learning of these three
emphysema subtypes. In this work, we demonstrate that unsupervised learning on a large
heterogeneous database of CT scans can generate texture prototypes that are visually
homogeneous and distinct, reproducible across subjects, and capable of predicting accurately the
three standard radiological subtypes. These texture prototypes enable automated labeling of lung
volumes, and open the way to new interpretations of lung CT scans with finer subtyping of
emphysema.

1 Introduction

Chronic obstructive pulmonary disease (COPD), characterized by limitation of airflow, is a
leading cause of morbidity and mortality [1]. Pulmonary emphysema, defined by a loss of
lung tissue in the absence of fibrosis, overlaps considerably with COPD.

Pulmonary emphysema is traditionally subcategorized into three standard subtypes, which
were initially defined at autopsy, and can be visually assessed on computed tomography
(CT), according to the following definitions [2]: centrilobular emphysema (CLE), defined as
focal regions of low attenuation surrounded by normal lung attenuation; panfobular
emphysema (PLE), defined as diffuse regions of low attenuation involving entire secondary
pulmonary lobules; and paraseptal emphysema (PSE), defined as regions of low attenuation
adjacent to visceral pleura (including fissures). Given that these subtypes are associated with
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distinct risk factors and clinical manifestations [3][4], they are therefore likely to represent
different diseases and can help with the diagnosis of COPD.

Radiologists’ interpretation of standard subtypes is labor-intensive, and has modest inter-
rater agreements [2, 5]. Automated texture-based analysis of emphysema offers the potential
of automated COPD diagnosis and catalyzing research (e.g. discovering emphysema
subtypes), and is receiving increasing interest [6-10]. However, most existing approaches
are limited to supervised emphysema subtype classification using manually annotated scans
in local regions of interest (ROIs), which are very costly and time-consuming to obtain.
Furthermore, it is unclear if the supervised classifiers generalize to other datasets with
varying in-plane resolutions and scanner types.

A recent clinical study [2] demonstrated the reliability and clinical significance of global
(rather than local) labeling of lung volumes using the three standard subtypes. Global
labeling generates weakly labeled data that was used for the classification of COPD subjects
with multiple instance learning (MIL) [11]. However, MIL has only been demonstrated so
far for binary labeling of emphysema versus normal tissue, rather than to distinguish the
three subtypes, and can generate unreliable local ROI labeling.

In this work, we present a novel framework to discover unsupervised fine-grained prototypes
that go beyond but still have the power of encoding the three standard emphysema subtypes.
Our method clusters local ROIs of lung volumes into texture prototypes in an unsupervised
manner, and builds signatures of lung volumes with texture prototype histograms. The extent
of standard emphysema subtypes can be predicted from these prototype histograms with a
constrained multivariate regression on global labels. To our knowledge, this is the first study
whereby texture-based predictions are used to globally characterize the standard emphysema
subtypes.

Three types of texture features were tested, extracted from 3D or 2D local ROIs, to generate
the emphysema prototypes: 1) frequency histograms of textons (called texton-based
features), used in [8][9]; 2) soft histograms of intensities and difference of Gaussian (DoG)
responses (called DOG?2 features), used in [12]; and 3) joint histograms of local binary
patterns (LBP) and intensities (called LBP2 features), used in [7].

2.1 Framework Overview

Our framework is divided into a learning stage in an unsupervised sense, and a prediction
stage of radiological emphysema subtypes using globally annotated data. The intensity of
lung voxels, inside lung masks generated using the APOLLO® software (VIDA Diagnostics,
Coralville, lowa), are rescaled from [-1024, —400] HU to [0, 1] via either linear or
sigmoidal mapping in pre-processing.

In the learning stage, texture prototypes are learned and prototype histograms A, are built
for each training lung volume.
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Fig. 1 illustrates the pipeline for generating prototype histograms. Sample points are
randomly extracted uniformly within the lung volumes. 2D or 3D neighborhoods of sampled
points are used as local ROIs, with a size of 25mm?2 or 25mms3, approximating the diameter
of secondary pulmonary lobules. Our target number of sample points per scan is /= (lung
volume)/25mms3. Since we discard ROIs with more that 50% of non-lung field, we adjust the
sample ratio a so that a - N = Nyjscargeqd= V. The value a =5 is suitable for the population
of scans, leading to an average of 1,512 sample points per CT scan. ROIls are characterized
with texture features (texton-based, DOG2 or LBP2), and are clustered into Ktexture
prototypes in an unsupervised manner. For interpretation, prototypes are ordered according
to the average intensity value of training ROIs belonging to each prototype. Each sample
point is labeled with the prototype centroid most similar to its ROI (i.e. with least distance in
feature space). Finally, other voxels within the lung volumes are labeled by assigning the
prototype label of the nearest sample point.

In the prediction stage, sample points and ROIs are extracted from test lung volumes and
ROI texture features are generated. ROIs are labeled by assigning the most similar prototype
centroid. Prototype histograms are then generated for test lung volumes following the same
procedure as in the training stage.

To evaluate our texture prototypes, we regressed their occurrence against global emphysema
labels in [2] on training scans, with a constrained multivariate model. Global labels A,
encode the extent of standard emphysema subtypes referred to as %CLE, %PLE, %PSE. The
residual, denoted %NE, corresponds to tissue without emphysema (but maybe with some
lung diseases).

In the following sections, we detail the texture features, the unsupervised learning of
prototypes and the regression model.

2.2 Texture Features

Texton-based Features—Texton-based features characterize ROIs with the help of a
texton codebook. The texton codebook is formed by the cluster centers of intensity values
(after linear mapping) from small-sized local patches (here 3 voxels in each dimension)
randomly extracted from ROIs in the training set. Clustering is performed with K-means. By
projecting all small-sized patches onto the codebook, the texton-based feature of the ROI is
the normalized histogram of texton frequencies. Targeting 4 classes and 10 textons per class
[8], the feature vector length is set to 40, using a codebook with 40 textons.

Note that our texton prototype histogram uses the bag-of-words (BoW)[13] model on two
scales: 1) building of ROI-level texture features based on a texton dictionary; 2) building
subject-level lung CT signatures based on texture prototypes. To our knowledge, BoW has
not been exploited for subject-level signatures before.

DOG2 Features—The DOG2 feature of a ROI is a concatenation of four normalized soft
histograms: one intensity histogram, and three histograms of DoG responses at three
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octaves. Using 10 bins for each histogram, following the setting in [12], leads to a feature
vector of length 40.

Intensity values in CT scans encode X-ray attenuations in Hounsfield units (HU) and their
range is very large. To focus the texture learning process on the intensity range of interest
(lung parenchyma and air), a sigmoid function is used, as in [12], to map values to the
interval [0 1] with the highest contrast assigned to the range [-1000 —900] HU where
textural characteristics due to emphysema are presumed to be present.

LBP2 Features—The LBP2 feature of a ROl is the joint histogram of LBP codes and
intensity values (after linear mapping) of each voxel within the ROI. The LBP codes are
obtained by thresholding samples in a local neighborhood around center voxel x. Formally:

LBP(z;R, P):Pz_f H(I(z,) — I(x))2*
p=0 Q

where /(x) is the intensity of center voxel, x, are Pvoxels sampled around xat a given radial
distance R, and H(:) is the Heaviside function. Rotational invariance is achieved by rotating
the radial sampling until the lowest possible LBA x; R, P) value is found. We use 10 uniform
rotational invariant LBP codes with R=1 and P=8, and 4 bins for the intensity histogram to
match with other feature length, making the total feature length also 40 (4 x 10).

2.3 Prototype Clustering

The number of prototypes K'should be large enough to handle the diversity of textures
encountered in the lung volumes (i.e. good intra-prototype homogeneity), but small enough
to avoid redundancy (i.e. good inter-prototype differences). Our strategy is to first select an
empirically large number K'so as to generate homogenous prototypes and then trim the set
to a smaller number of sufficient prototypes (number likely different for different texture
features) according to a dedicated metric. We choose K-means for the clustering task
because of its efficiency at dealing with a large number of ROIs over scans.

To trim the number of prototypes, instead of testing smaller K values with K-means, which
tends to decrease all intra-cluster homogeneity, we propose to merge prototypes iteratively
according to their inter-prototype distance and spatial co-occurrence.

The inter-prototype distance is measured by averaging the ;(2 distance (common for
histogram-based features) between each pair in feature space. The spatial co-occurrence of
two prototypes 7and j (/# /) is measured as:

q(i, j)+4q(, %)

S(i,7)=
D= i b+ G ) @)
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where g(/, j) is the frequency of prototypes /and jappearing together in a pre-defined small
neighborhood (here 10 voxels in each dimension).

At each iteration of the pruning process, each pair of prototypes is given a rank 7; ; in inter-
prototype distance (smallest ranks first), and a rank Rfj in spatial similarity (largest ranks

first). The pair of prototypes to merge is the first one according to the rank: Ri,j:Rz{ ‘7-+R,-SJ-.

2.4 Constrained Multivariate Regression

The probability of voxel x belonging to a lung tissue class can be modeled as:

K
P(L(z)=C;)=)_ P(L(z)=C;|F(x)=py,) P(F (x)=ps) -
k=1

where L(X) is the label of voxel xas C; € {CLE, PLE, PSE, NE}, and A(X) is the voxel
prototype label p,with K€ 1, ..., K If prototypes are homogeneous, AL(X) = CI{HX) = py)
can be assumed to be consistent throughout ROIs and subjects. We therefore infer the
relation as:

Y, ..,.=X A

Nx4— “*NxK

i (4)

where Nis the number of training scans. Each row in Y'is the global label Hj, = [AL(X) =
CLE), AL(X) = PSE), AL(x) = PLE), AL(x) = NE)] for one scan, each row in Xis the
prototype histogram Hj, = [AAX) = p1), ..., ARX) = pr)] for the same scan, and A is the
matrix of regression coefficients with Ay ;= AL(X) = CIAX) = pg), =1, ..., 4and k=1,
..., K. We propose to learn A with the following constrained multivariate regression model:

4
argmin , || XrainA — Yirain|lo, subject to 0<Ay ;<1 and ZAk,izl
i=1 (5)

3 Results and Discussions

3.1 Data

The dataset includes 321 full-lung CT scans from the Multi-Ethnic Study of Atherosclerosis
(MESA) COPD Study [2], among which 4 scans are discarded due to excessive motion
artifact or incomplete lung field of view. All CT scans were acquired at full inspiration with
either a Siemens 64-slice scanner or a GE 64-slice scanner, and reconstructed using B35/
Standard kernels with axial resolutions within the range [0.58, 0.88]mm, and 0.625mm slice
thickness. All scans were acquired at 120 kVp, 0.5 seconds, with milliamperes (mA) set by
body mass index following the SPIROMICS protocol [14].
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Global labels of standard emphysema subtypes are available for each scan, corresponding to
the average of visually assessed scores by four experienced radiologists [2]. Inter-rater
intraclass correlations, evaluated on 40 random scans, are reported in Fig. 2. The clinically-
evaluated prevalence of emphysema in this dataset is 27%, with 14% CLE-predominance,
9% PSE-predominance, and 4% PLE-predominance.

3.2 Quality of Predictions

The quality of the predictions is evaluated using intraclass correlation (ICC) with ground
truth global labels. To achieve a balance between the number of training scans (large enough
to learn lung textures) and the number of test scans (large enough so that the prediction
performance is not biased by extreme points), we used a 4-fold cross validation setup, with
3/4 of scans used for training, and 1/4 used for testing. All features were computed within
3D ROIs. Texton-based features were also extracted in 2D ROIs for comparison. We select
K'=100 as our benchmark value, from which we iteratively merge prototypes. We report the
evolution of prediction capabilities as K'is reduced in Fig. 2 (all p-values < 0.01).

Overall, texton-based and DOG2 features give robust prediction that out-perform the intra-
rater agreement, while LBP2 features have poor to modest prediction capabilities. One
reason might be that intensity information in LBP2 is compressed with our current feature
length, while intensities improved the discriminative capability of the original LBP code in
[7]. However, we observed that a feature length over 50 decreases the robustness and
drastically increases the convergence time for unsupervised prototype clustering. This makes
LBP2 less favorable in our unsupervised learning context.

The comparison of 2D versus 3D ROIs with texton-based features indicates that the richer
information in 3D neighborhood is helpful for modeling emphysema subtypes, at the price
of additional computational cost for feature extraction.

Regarding the effect of prototype merging, ICC values remain steady when K> 60 for
texton-based features. Merging is capable of reducing model complexity with little sacrifice
in prediction performance. For DOG2 features, the performance begins to decrease only
after K< 50. For LBP2 features, however, the performance degrades immediately after
merging, which may be because the LBP2-based prototypes are not sufficiently
homogeneous from the beginning.

Note that using a high number of K, much larger than the number of standard emphysema
subtypes or than required for predictive power of these subtypes, is driven by our goal to be
able to discover finer emphysema subtypes. The current arbitrary number K= 100 will be
further trimmed with an optimization metric incorporating respiratory symptoms and
generalization capabilities to other datasets, which is ongoing work of our study.

3.3 Reproducibility of Prototypes

Reproducibility of prototypes is measured by computing the overlap of prototype labeling
with two distinct training sets (by randomly dividing the subjects into two groups), in a
manner similar to [15]. Formally, we measure:

Med Comput Vis Bayesian Graph Models Biomed Imaging (2016). Author manuscript; available in PMC 2017 November 30.
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K
R(L, L y=maey 2 3 (L(Xi)=n (L' (X)) o
k=1

where L and L’ are prototype labeling with two different training sets, 1 is the 0-1 loss
function, X} denotes ROIs labeled with prototype &, and 7z denotes the permutations of the
K prototypes using the Hungarian method [15] for optimal matching.

Fig. 3 (a) plots /R versus number of prototypes. For K< 50, reproducibility is high (R > 0.7)
for all types of features. When K> 60, 3D texton-based prototypes are more reproducible (R
> 0.6 with K'as large as 100).

3.4 Visualization of Sample Prototypes

Visual examples of prototypes generated with three different types of features using 3D
ROIs are provided in Fig. 3 (b). Texton and DOG2-based prototypes have high intra-class
similarity and show clearly distinct lung tissue patterns, while LBP2-based prototypes have
lower intra-class homogeneity, which agrees with the poorer prediction results.

We also provide in Fig. 4 visual examples of prototypes that are likely to encode
emphysematous lung tissues.

First, subjects in the dataset were separated into two groups: disease (visually assessed
extent of emphysema [2] larger than 0) and normal (visually assessed extent of emphysema
equals to 0).

Out of the K = 100 benchmark prototypes, we selected the ones for which occurrence within
the disease population was 3 times higher than in the normal population. This lead to subsets
of n=16, 17, 4 disease prototypes when using respectively texton-based, DOG2 and LBP2
features, in 3D ROIs. These subsets are illustrated in Fig. 4 on group of 9 patches of size of
50mm3 from random disease subjects. The large patch size (twice the length of the ROIs
used for prototype generation) is used to reveal the presence of nearby lung borders.

4 Conclusions

In this work, we presented a novel framework to generate unsupervised lung texture
prototypes that can be used to predict the overall extent of standard emphysema subtypes
from a heterogeneous database of lung CT scans, using standard radiological global labels as
the ground truth. We cluster unlabeled local ROIs into texture prototypes, and encode lung
CT scans with prototype histograms. Labeling of ROIs is tested in 2D or 3D, and using three
types of features.

The intraclass correlations between prediction and ground truth labeling indicate that texton
and DOG2 features are capable of learning homogenous prototypes and lead to very robust
predictions of standard emphysema labels that outperform the inter-rater agreement, while
LBP2 feature is less discriminative (at least with similar feature vector length).

Med Comput Vis Bayesian Graph Models Biomed Imaging (2016). Author manuscript; available in PMC 2017 November 30.
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We tested model reduction via prototype merging based on inter-prototype distance and
spatial co-occurrence. Results show that robust prediction can be achieved with at least
K=60 merged prototypes for texton-based features and K=50 for DOG2 features.
Reproducibility of texton-based prototypes is superior when K> 60. These homogeneous
and reproducible texture prototypes show potential in new interpretations of lung CT scans
with finer subtyping. Since texture prototypes link image analysis-based discovery with
radiological prior knowledge, and enable automated labeling of lung volumes and generation
of scan signatures, they can be used for multiple tasks such as correlation with omic
measures, sub-phenotyping of emphysema or image indexing and retrieval. Our future work
will focus on two aspects: 1) As texton-based feature and DOG2 feature both demonstrated
good capability at discovering lung texture prototypes, we would like to explore their
combination to boost robustness and discovery power, which can be achieved by either
feature concatenation followed by feature dimension reduction (to reduce the computational
complexity, as in [9]), or post-clustering ensembling [16]; 2) The number of prototype K
will be further trimmed to find clinically significant sub-categories of emphysema, with an
optimization metric incorporating clinical data and generalization capability.
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Illustration of the pipeline for generating texture prototype histograms.
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Intraclass correlation (ICC) between predicted global labels and ground truth versus number

of merged prototypes (dashed line: 95% confidence interval).
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(a)g Reproducibility metric versus number of merged prototypes. (b) Examples of axial cuts
from ROls in six prototypes with three feature types. The texton-based prototypes are
selected as the 1, 5% 20% 40%, 80% and 95 benchmark prototypes. The DOG2 and
LBP2-based prototypes are those having the most overlap with texton-based prototypes for
ROI labeling. Window level: [-1000, -700] HU.
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Fig.4.
Axial cuts of 3D ROIs from subsets of prototypes generated with either texton-based, DOG2

or LBP2 features and that have higher occurrence in subjects with emphysema than in
normals. Window level: [-1000 —700] HU.
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