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Hyperplastic Mucous cells
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. followed by mucous cell hyperplasia (MCH) that is sustained by the anti-apoptotic protein, Bcl-2. To

. identify inflammatory factor(s) that are responsible for Bcl-2 expression, we established an organ
culture system consisting of airway epithelial tissue from the rat nasal midseptum. The highest Muc5AC

. and Bcl-2 expression was observed when organ cultures were treated with brochoalveolar lavage (BAL)

. fluid harvested from rats 10 h post LPS instillation. Further, because BAL harvested from rats depleted

. of polymorphonuclear cells compared to controls showed increased Bcl-2 expression, analyses of
cytokine levels in lavages identified IL-13 as an inducer of Bcl-2 expression. Ectopic IL-13 treatment of
differentiated airway epithelial cells increased Bcl-2 and MUC5AC expression in the basal and apical

. regions of the cells, respectively. When Bcl-2 was blocked using shRNA or a small molecule inhibitor,

* ABT-263, mucous cell numbers were reduced due to increased apoptosis that disrupted the interaction

. of Bcl-2 with the pro-apoptotic protein, Bik. Furthermore, intranasal instillation of ABT-263 reduced the
LPS-induced MCH in bik*'* but not bik—/— mice, suggesting that Bik mediated apoptosis in hyperplastic
mucous cells. Therefore, blocking Bcl-2 function could be useful in reducing IL-13 induced mucous
hypersecretion.

Bcl-2 is a founding member of a family of proteins that maintain cellular homeostasis by regulating apoptosis.
© Bcl-2 protects cells against a wide range of cell death stimuli"* by stabilizing the mitochondrial membrane and
. preventing permeabilization and release of death mediators®. Bcl-2 is inserted in the outer mitochondrial mem-
. brane and can be inactivated by binding to pro-apoptotic members of the family. While Bcl-2 is classified as an

oncogene because it causes the onset of many cancers including lymphoma, it also sustains the function of thy-

mocyte subpopulations during development*.

Because of its importance in various biological processes and diseases, understanding the regulation of Bcl-2
expression is very critical. Bcl-2 levels are regulated by various cytokines, including IL-13 and IGF-1 in airway

. epithelial cells>®, IL-6 in lymphoblast cells’, IL-7 and IL-21 in T lymphoid cells®®, IL-10 in tumor-associated

* macrophages'?, andIL-22 in renal cortex tissue'!. Many of these cytokines converge into the NF-xkB pathway!>!?

. and other signaling molecules like janus kinase/signal transducer and activator of transcription (JAK/STAT)!*!°

. and phosphatidylinositol 3-kinase (PI3K)/PKB (protein kinase B)!¢! to increase Bcl-2 expression. However,

: the LPS-induced inflammatory mediators that affect Bcl-2 expression in non-hematopoietic and primary
non-cancerous cells have not been extensively studied.

The airway epithelium modulates pulmonary immune responses and is a key player in the pathogenesis of
chronic lung diseases'®". As part of the innate immunity, airway epithelial cells (AECs) produce mucins to trap
and clear inhaled particulates by mucociliary action?*!. In healthy subjects, few mucous cells are present in the
conducting airways, but in subjects with asthma, cystic fibrosis (CF), and chronic obstructive pulmonary disease
(COPD), the number of hyperplastic mucous cells increases leading to mucous hypersecretion and airway plug-
ging?!. MUCS5AC is one of the major secretory polymeric mucins upregulated in hyperplastic mucous cells and
contributes to airway reactivity?»?. Surprisingly, therapeutics to reduce the debilitating mucous hypersecretion
are limited with only few potential drugs currently in preclinical or clinical trials?*.
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Figure 1. LPS exposure increases inflammatory factors in the BAL that augment Muc5AC and Bcl-2
expression. (A) LPS induced mucous cell metaplasia in rat nasal epithelium. Representative micrographs of
nasal epithelia from non-treated (NT) and LPS-instilled rats stained with AB-PAS. Quantification of mucous
cells and volume density of intraepithelial stored mucosubstances (Vs) at 3 d post LPS instillation. Data

shown as mean £ SEM (n=7/group) (B) LPS-induced Bcl-2 expression in mucous cells. A representative

nasal epithelial section from LPS-treated rat showing Bcl-2-immunopositivity (red) among Muc5AC-positive
(green) mucous cells (MCs) and the nuclei are stained with DAPI (blue). (C) MUC5AC mRNA levels in LPS-
treated organ cultures quantified by q-PCR. The fold-change over non-treated controls is shown. (D) Quantity
of the intraepithelial stored mucosubstances (Vs) in LPS-treated organ cultures stained with AB-PAS. (E)
Representative photomicrographs of nasal explants treated with BALF from LPS-instilled rats or with BALF and
100 ug/ml LPS (BALF+LPS), and the quantity of Vs in explants at 24 h following each treatment. Data shown as
mean + SEM (n = 3/group); *p < 0.05; **p < 0.01; ¥**p < 0.001.

Following inflammatory responses to LPS or allergen exposure, Bcl-2 expression is upregulated in airway epi-
thelial cells of animal models of mucous hypersecretion and in patients with cystic fibrosis, asthma, and chronic
bronchitis>**?”. Bcl-2 expression is upregulated in airway mucous cells to sustain hyperplastic mucous cells in
animal models with acute and chronic inflammatory settings?>?*%°. Therefore, the goal of the present study was to
understand the pathways responsible for the coordinated induction of Bcl-2 and MUC5AC in AECs and help to
identify novel intervention strategies to control mucous cell hyperplasia.

In the present study, we identified IL-13 as an important inflammatory factor that induces Bcl-2 and MUC5AC
expression in response to a neutrophilic inflammation induced by LPS. When Bcl-2 function was suppressed, the
role of IL-13 was switched from causing proliferation® to inducing cell death in AECs in differentiated airway
cultures in vitro and in hyperplastic mucous cells in vivo in a Bik-dependent manner. The small molecule BH3
domain mimetic compounds targeting the hydrophobic groove of Bcl-2 has been very successful strategy against
cancer using ABT-737°! and it’s orally bioavailable derivative ABT-263 or navitoclax®?. We further found that
ABT-263 at very low doses alleviated LPS-induced mucous cell hyperplasia (MCH).

Results

LPS-induced BAL potentiates mucous cell hyperplasia and Bcl-2 expression.  To identify inflam-
matory factors that induce Bcl-2 in hyperplastic mucous cells, we established a nasal epithelial explant organ
culture system. We used the nasal explant culture to identify the inflammatory factors regulating Bcl-2 expression
in mucous cells, because we previously have shown that nasal epithelium undergoes mucous cell hyperplasia in
response to LPS injury with concomitant epithelial expression of Bcl-2%. The nasal explant culture avoids any
alteration to the cells present in vivo. In addition, several studies have shown that the mucociliary epithelium of
the nose has many properties that resemble the respiratory epithelium of the lung*. Similar to what is observed
in the lung epithelium®, intranasal instillation of LPS caused MCH in the rat nasal distal midseptal epithelium
(Fig. 1A) and the mucous cells showed increased Bcl-2 expression (Fig. 1B). Rat midseptal nasal explants when
cultured on an air-liquid interface and treated with 1, 10, or 100 ug/ml LPS for 24 h and analyzed after an addi-
tional 48 h in LPS-free medium showed a dose-dependent increase in the Muc5AC mRNA (Fig. 1C) and in the
amount of stored mucosubstances or V, (Fig. 1D). However, because the quantity of stored mucosubstances was
much lower than that observed in vivo (Fig. 1A) we postulated that inflammatory factors in the bronchoalveolar
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Figure 2. Identification of LPS-induced inflammatory factors that are required for Muc5AC and Bcl-2
expression. (A) Representative photomicrographs of nasal explants treated with media only or with the BAL
supernatant harvested 10 h after LPS instillation showing Muc5AC- (green) and Bcl-2- (red) positivity with
DAPI-stained nuclei (blue). The number of Bcl-2-positive mucous cells per mm basal lamina in the organ
cultures treated with LPS-induced BAL collected at 10 h post instillation. BAL was used as Whole (BAL fluid
and lavaged cells), Sup (the cell-free supernatant), or Memb (the membrane fraction prepared by lysing
lavaged cells). Data shown as mean &= SEM (n = 3/group) (B) Rats were injected IP with anti-PMN or NRS
24 h before LPS-instillation and BAL was collected 10 h post LPS challenge. The numbers of neutrophils
(PMN:s), lymphocytes (Lymphs) and macrophages (Mac) in the BAL was quantified from cytospins stained
with Wright-Giemsa. (C) Quantitation of Bcl-2-positive mucous cells in the nasal organ cultures treated with
BAL supernatant from NRS- or anti-PMN treated rats collected at 10 h post LPS-instillation. Data shown

as mean + SEM (n = 5/group for NRS and n = 7/group for anti-PMN) (D) Inflammatory factors measured
in the BAL supernatant at 10h post LPS challenge from rats treated with NRS or anti-PMN. Data shown as
mean + SEM (n =n = 5/group for NRS and n=7/group for anti-PMN /group); *p < 0.05.

lavage (BAL) may potentiate the extent of MCH. Therefore, in addition to the 100 ug/ml LPS, explant cultures
were treated with BAL fluid harvested at 24 h post LPS instillation, which results in amount of stored mucosub-
stances similar to that observed in vivo (Fig. 1E). At 24h post LPS instillation, LPS activity in the BAL fluid was
reduced drastically to 1% of the instilled amount, suggesting little contribution of the initially instilled LPS in
inducing mucosubstances (Supplemental Fig. S1).

Identification of BAL inflammatory factors that augment Bcl-2 positivity in mucous cells. To
identify the inflammatory factor(s) responsible for induction of Bcl-2 in mucous cells, BAL was harvested at 3,
10, and 24 h post LPS instillation and fractionated into cell-free supernatant and cell membrane-bound fractions.
Our previously published studies have extensively characterized the mucous cell hyperplasia and Bcl-2 expression
when rats are instilled with 1000 pg/ml LPS>2%, In addition, the detailed kinetics of the inflammatory response
and mucous cell hyperplasia was followed over 90 days post instillation of 1000 pug LPS and reported®. Therefore,
we used 1000 ug LPS to identify the inflammatory cytokines that induce Bcl-2 expression. Treatment of organ cul-
tures with the supernatant fraction of BAL harvested at 10 h post LPS instillation compared to the media-treated
controls induced maximal Bcl-2-positivity and mucous cells (MCs)/mm basal lamina (BL) (Fig. 2A), while the
BAL collected at 3h post LPS instillation 15% of the LPS remaining (Supplemental Fig. S1) showed no effect
(data not shown). Because we have previously observed that depletion of polymorphonuclear cells (PMNs) leads
to increased Bcl-2 positivity in hyperplastic mucous cells in vivo’’, we treated the explants with BAL harvested
at 10h post LPS instillation from PMN-depleted and non-depleted controls injected with normal rabbit serum
(NRS) (Fig. 2B). Consistent with Bcl-2 expression in rats depleted of PMNs*, explant cultures treated with BAL
from PMN-depleted rats compared with controls showed increased Bcl-2 positivity (Fig. 2C). Multiplex analysis
of cytokines showed increased levels of IL-13, IL-6, TNFa and IL-13 in BAL samples from LPS- compared to
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Figure 3. IL-13 induces MUC5AC and Bcl-2 expression in human airway epithelial cells (HAECs). (A)
Cytometric analysis of Bcl-2 (red) and MUC5AC (green) positivity in HAECs treated with IL-13 (10 ng/

ml) or media for 48 h as shown in representative micrographs in top panels with DAPI-stained nuclei (blue).
Approximately 300 cells from each treatment were analyzed to calculate the percentage of Bcl-2-positive (Bcl-
2-pos) and MUC5AC-positive (MUC5AC-pos) cells. Data shown as mean £ SEM (n = 10/group)***p < 0.001.
(B) Representative micrographs of differentiated cells treated with IL-13 or left untreated (NT). Differentiated
HAECs were treated with IL-13 or left untreated and were co-immunostained for Bcl-2 (red) and MUC5AC
(green) and analyzed by laser-scanning confocal microscopy. A 2-D image rendering of lateral views of
differentiated cells treated with IL-13 showing using transparent-rendering (left-panel) and surface-rendering
(right panel) algorithms. A 3-D image rendering of differentiated cells treated with IL-13 showing apical and
basal views of a rotated image of the differentiated culture mount. (C) Suppression of Bcl-2 expression and

the effect on MUC5AC expression levels in cells transfected with shBcl-2 or shCTRL, and treated with IL-13.
Representative micrographs of HAECs transfected with shBcl-2 or shCTRL, and treated with IL-13 showing
Bcl-2 (red) and MUC5AC (green) immunostaining and DAPI-stained nuclei (blue). Bcl-2- and MUC5AC-
positive cells were quantified. Data shown as mean = SEM with n =3 per treatment group. ***p < 0.001. (D)
Analysis of apoptotic cells recovered after IL-13 treatment of untransfected (UT) or shCTRL- or shBcl-2-
transfected cells. The cells were stained with Annexin V (AnnV) and propidium iodide (PI) to analyze apoptotic
cells by FACS analysis. Early (AnnV) and late (AnnV+PI) apoptotic cells were increased by 4-5-fold. Data
shown are representative of 3 experiments.

saline-instilled rats, but only IL-103 and IL-13 were significantly higher in the BAL from PMN-depleted com-
pared to NRS-injected rats (Fig. 2D). Levels of MCP-2 and GRO-KC were not affected by PMN depletion (Suppl.
Fig. S2). Together, these findings suggested that IL-13 and IL-13 were the main inducers of Bcl-2 expression in
hyperplastic mucous cells.

IL-13 induces Bcl-2 and MUC5AC in human airway epithelial cells (HAECs).  Our previous study
had demonstrated the role of IL-103 in inducing Bcl-2 expression as discovered by microarray analyses’. Therefore,
the present study focused on investigating the physiological importance of IL-13 in mediating Bcl-2 and mucin
(MUCS5AC) expression. In primary HAECs, IL-13 treatment increased the number of cells that immunostained
positive for Bcl-2 and MUC5AC expression (Fig. 3A). In differentiated HAEC, Bcl-2 was localized around perinu-
clear and basal regions while MUC5AC was localized in the apical regions, as analyzed by 3-D imaging (Fig. 3B,
middle panels) and lateral 2-D image algorithms (Fig. 3B, right panels).

Suppression of Bcl-2 reduces MUC5AC expression by inducing apoptosis. To investigate the role
of Bcl-2 in mucin expression, we blocked Bcl-2 expression using retroviral siRNA expression vector (shBcl-
2). Both Bcl-2- and MUC5AC-positivity were significantly reduced in shBcl-2 compared with shCTRL cells
(Fig. 3C). This reduction was due to apoptotic death of cells in shBcl-2-transfected cells at 24 h post treatment
reduction as shown by Annexin V staining (Fig. 3D).

ABT-263 treatment reduces MCH in the mouse model of LPS exposure. We further investigated
the therapeutic effect of blocking Bcl-2 using the small molecule BH3 mimetic, ABT-263, in the mouse model of
LPS-induced inflammation and MCH®¥. The number of MCs/mm BL was significantly reduced in mice intra-
nasally treated with ABT-263 (2 mg/kg body weight) for 2 consecutive days starting 6 d post instillation of mice
with 50 pug of LPS (as illustrated in Fig. 4A) compared with mice instilled with vehicle (Fig. 4B). Because we failed
to detect dying MUC5AC-positive mucous cells, we used Scgb1A1, a secretoglobulin detected in secretory Club
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Figure 4. ABT-263 reduces endotoxin-induced mucous cell hyperplasia in vivo in a Bik-dependent manner.
(A) Experimental outline for testing therapeutic efficacy of ABT-263 in LPS-induced MCH in mice. (B)
Representative micrographs of lung tissue sections stained with Alcian-Blue (AB) and H&E from LPS-
challenged mice treated with vehicle or ABT-263 (2 mg/Kg) are shown. Quantification of mucous cell numbers
per mm BL. (C) Representative micrographs showing activated (cleaved) caspase 3 or Ac-Casp3 (green)
among Scgblal-positive (red) secretory cells in mouse axial airways. The relative fold-change in the number
of ac-Casp3+ secretory cells in LPS-challenged mice treated with vehicle or ABT-263. (D) Representative
micrographs showing TUNEL-positivity (green) in Scgblal+ (red) secretory cells in mouse axial airways
treated with ABT-263 and DAPI-stained nuclei (blue). The relative fold-change in the number of TUNEL+
secretory cells in mice challenged with LPS and treated with vehicle or ABT-263. (E) STAT-1 phosphorylation
in HAECs following 0, 15, and 60 minutes of IL-13 treatment. Cropped Western blots are displayed. (F) Bik
and Bcl-2 mRNA levels in IL-13 treated STAT1~/~ and STATI*/* MEFs compared with the respective non-
treated cells. (G) Immunoprecipitation with anti-Bcl-2 antibodies of proteins extracted from HAECs treated
with nothing or ABT-263. Bik levels are reduced in the pull-down while increased in the flow-through of
HAEC:s treated with ABT-263 compared with non-treated controls. Cropped Western blots are displayed.

(H) Representative micrographs of lung tissue sections from LPS-challenged mice stained with AB-H&E and
quantification of mucous cell numbers per mm BL in mice treated with vehicle or ABT-263 (2 mg/Kg) following
LPS challenge. Scale =20 uM; Data shown as mean &= SEM (n = 5-10 mice/group); *p < 0.05; **p < 0.01;

kD < 0,001,

cells®, as an alternative to identify dying secretory epithelial cells. The number of cells positive for active (cleaved)
caspase 3 (Ac-Casp3) (Fig. 4C) and TUNEL (Fig. 4D) were increased among Scgb1A1-positive secretory cells in
ABT-263- compared to vehicle-treated mice.

Our previous studies have established that Bik expression causes cell death in airway epithelial cells, and cells
from bik~'~ mice are resistant to IFN~-induced cell death®. Therefore, we investigated whether IL-13 increases
Bik expression. IL-13 activates signal transduction and transactivator 1 (STAT1) in several cell types*, a tran-
scription factor responsible for Bik induction®. We found that IL-13 in HAECs phosphorylated STAT1 at 15 and
60 min of treatment (Fig. 4E) and thereby increased Bik expression, because STAT1~/~ compared with STAT1*/*+
mouse embryonic fibroblasts (MEFs) when treated with murine IL-13 showed significantly lower Bik mRNA
levels, while Bcl-2 levels remained unaffected (Fig. 4F). In addition, the amount of Bik protein that immunopre-
cipitated by Bcl-2 antibodies was significantly reduced by ABT-263 and remained in the input of ABT-263-treated
cell extracts (Fig. 4G), suggesting that ABT-263 disrupted Bik/Bcl-2 interaction. The importance of Bik in the res-
olution of LPS-induced MCH was assessed by exposing bik™'* and bik~/~ mice to ABT-263 or vehicle following
LPS challenge. ABT-263 treatment suppressed the MCH in bik ™+ but not in bik~'~ mice (Fig. 4H) confirming the
role of Bik in causing cell death in hyperplastic mucous cells when Bcl-2 is blocked with ABT-263.

Discussion

Our previous studies showed that exposure of rodent lungs to LPS causes extensive neutrophilic inflammation
and mucous cell hyperplasia that is sustained by Bcl-2 expression in epithelial mucous cells?®?7-**353¢41, By using
BAL fluid from rats depleted of PMNG, the current studies identify IL-13 as the factor that induce MUC5AC and
Bcl-2 expression in airway cells. Because Bcl-2 sustains hyperplastic mucous cells, targeted inactivation of Bcl-2
using the BH3 mimetic, ABT-263, suppresses LPS-induced mucous cell hyperplasia in a Bik-dependent cell death
pathway.

LPS-induced inflammation is characterized by an initial influx of large number of PMNs over the first 3-8 h
followed by macrophages and lymphocytes over 6-12h post LPS instillation®. The inflammatory factors derived
from these cells affect the airway epithelium to establish mucous cell hyperplasia over 48-72h post instilla-
tion®”442, We were able to replicate the extent of MCH observed in the nasal midseptum in vivo, when treating
the organ culture system with BAL fluid harvested from 10h post LPS instillation. However, the whole BAL that
included lavaged cells did not induce Bcl-2 expression, suggesting that the inflammatory cells released contents
that inhibit Bcl-2 expression. The effect of additional LPS from the BAL fluid is minimal, given that we had
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already added 100 pg/ml LPS to the explant culture. If higher LPS levels was causing Bcl-2 positivity, BAL fluid
collected at 3h post LPS-instillation that had even higher levels of LPS would be expected to induce Bcl-2 expres-
sion, but showed no significant change in Bcl-2 expression. These findings suggest that the Bcl-2-inducing IL-13
and IL-1f3 reach maximum levels at 10 h post instillation, because BAL fluid harvest at 3 or 24 h was not effective
in inducing Bcl-2 expression. Significant neutrophilic inflammation sets in within 3 hour of LPS exposure in
rodents as well as in humans®**. However, the effect of neutrophils on other cell types is highly complex, given
that the lung consists of many cell types. Our previous study demonstrated that depletion of PMNs caused an
increase in Bcl-2-positive mucous cells in vivo>. The ex vivo midseptum culture also showed increased Bcl-2 pos-
itivity when treated with BAL from rats depleted of PM N, suggesting that the organ culture system reliably repli-
cated the in vivo findings. Analyses of cytokines that are differentially increased in BAL fluid from PMN-depleted
compared to non-depleted controls allowed us to identify IL-13 as one of the inflammatory factors responsible for
Bcl-2 expression in mucous cells. While LPS-induced inflammation is primarily known to increase the cytokines
IL-1B3, IL-6, TNF-o*” and IL-18%, macrophages from various rat strains, when stimulated with anti-CD8 antibody
in vitro, also produce IL-13*. Many studies have shown that IL-13 is expressed by several inflammatory cells
including T helper 2 (Ty2) cells, type 2 innate lymphoid cells (ILC2s), invariant natural-killer T (iNKT) cells,
eosinophils, or alternatively activated macrophages**. However, while T cells are found in the BAL of LPS-instilled
rats*, these T cells do not produce Ty2 cytokines. Rather other cell types, including endothelial cells and epithe-
lial cells produce IL-13 when rats are challenged with LPS%4_ Further, LPS at low concentrations induces IL-13
production from mast cells by activating TLR2 and TLR4 receptors*’~*. Therefore, depletion of neutrophils may
have enriched for the IL-13 detected in the BAL of LPS-instilled rats and facilitated increased expression of Bcl-2
in hyperplastic mucous cells.

IL-13 plays an important role in proliferation and repair of airway epithelial cells and promotes mucous cell
hyperplasia®->? by inducing expression of the Sam pointed domain-containing ETS transcription factor (SPDEF)
in Club cells through a STAT6-dependent mechanism. Because Bcl-2 and MUC5AC expression have repeatedly
been observed to occur within the same cells??*%, it is likely that IL-13 may activate the same pathways to induce
expression of these two genes. Similar to MUC5AC®?, induction of Bcl-2 expression is mediated through trans-
activation of EGFR pathway’, and EGFR activation is necessary for IL-13-mediated MCH?>*>*, IL-13 indirectly
activates EGFR via production of TGF-a*¢, HB-EGF®, or epigen®’. IL-13-induced TACE and release of TGF-«
is also directly implicated in the airway epithelial hyperproliferation®. Therefore, airway IL-13 levels may be
critical for normal cellular homeostasis in the setting of airway epithelial injury because it coordinates the prolif-
erative and cytoprotective activity. Similarly, IL-13 when co-incubated with IL-9 is protective against spontane-
ous or corticosteroid-induced apoptosis by upregulating Bcl-2°%. Unfortunately, therapeutic targeting of IL-13
results in adverse events because this cytokine also elicits immunoregulatory functions®. For instance, IL-13
suppresses Th17 cytokine production in an IL-10-dependent manner® and thereby may play an important role in
Th17-associated autoimmune diseases like multiple sclerosis, rheumatoid arthritis, and colitis®!. Consequently,
IL-13-targeted therapeutics result in significant adverse events involving the musculoskeletal diseases that are
associated with Th17 cytokines®. Therefore, targeting of Bcl-2 function to reduce MCH by a Bik-mediated cell
death is an approach that is more specific to mucous cells and likely to have less side effects.

Bcl-2 has been found in the nucleus, as well as associated with the ER®® or mitochondria®. However, in differ-
entiated HAECs of Bcl-2 was localized in the basal and peri-nculear areas while MUC5AC was enriched in the
epical region as previously reported®>. Although we have reported that suppression of Bcl-2 causes reduction of
mucous cells?, the inducer of cell death when the anti-apoptotic Bcl-2 was downregulated, had not been identi-
fied. The present study demonstrates that IL-13 increased expression of Bcl-2 and Bik to alter the airway epithelial
cell fate and that the pro-apoptotic Bik is required for ABT-263 mediated suppression of LPS-induced MCH. Our
previous studies have established that Bik expression causes cell death in airway epithelial cells as bik™'* but not
bik~'~ mice resolve MCH during prolonged exposure to allergen, and bik =~ cells are resistant to IFN~-induced
cell death®. In addition, clinical findings show that Bik mRNA levels are significantly reduced in airway cells of
asthmatics® and chronic bronchitics®” compared to non-diseased controls. Most importantly, Bik expression
causes cell death only in proliferating airway epithelial cells®” but not in other cell types, such as hematopoietic
and endothelial cells®®. ABT-263 has been successfully used in Phase II clinical trials for cancer treatment*>*. The
dose used for cancer patients is 250 mg/d over 21 days. In contrast, we found efficacy in reducing LPS-induced
MCH at doses that are a 100-fold lower. Therefore, the small molecule Bcl-2 inhibitors, when delivered directly to
the lung, may provide better treatment options against mucous hypersecretion.

The utility of rat nasal organ culture to identify the regulatory mechanisms underlying MCH and Bcl-2 expres-
sion in the lower airways supports the recent findings that cells of the upper airways strongly resemble the airway
cells lining the lung airways’®**. The upper and lower airway diseases may display different manifestations of the
same inflammatory process’". Therefore, suppression of Bcl-2 expression or blocking Bcl-2 function as shown in
this study may also have beneficial effects in rhinosinusitis in the context of chronic mucus hypersecretion.

The present studies provide a novel paradigm to primarily target hyperplastic mucous cells by suppressing
Bcl-2 function and thereby switching the proliferative function of IL-13 into an efficient suppressor of MCH.
These findings support the development and use of the small molecule Bcl-2 inhibitors as a novel treatment
modality for patients with cystic fibrosis and chronic bronchitis when delivered directly to the lung. ABT-263
is currently being tested for cancer therapy, specifically in lymphomas and leukemia, and for senescent stem
cells”?. Together with the previous findings in a mouse model of asthma’’, the findings suggest that this com-
pound may also represent an effective treatment for targeting hyperplastic mucous cells. Whether blocking Bcl-2
may have therapeutic effects in chronic diseases other than LPS- and allergen-induced mucus hypersecretion that
are mediated by IL-13 needs to be explored in the future.
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Methods

Laboratory Animals.  Specific pathogen-free F344/NCrR male rats, 6-8 wk of age, were obtained from NCI
(Frederick, MD) and were housed until 8-10 weeks of age. Rats were housed in pairs and were provided food and
water ad libitum, a 12-h light/dark cycle at 22.2 °C, and 30-40% humidity. The bik~/~ mice on C57BL/6 were made
available by Dr. Andreas Strasser (Walter and Eliza Hall Institute) and bred at the Lovelace Respiratory Research
Institute (LRRI) and genotyped as described®®. Pathogen-free wild-type C57BL/6] mice were purchased from
The Jackson Laboratory or from in-house breeding. Rodents were housed in isolated cages under specific patho-
gen-free conditions. All experiments were approved by the LRRI Institutional Animal Care and Use Committee
and were performed in accordance with relevant guidelines and regulations at LRRI. LRRI is a facility approved
by the Association for the Assessment and Accreditation for Laboratory Animal Care International.

LPS Challenge. F344/NCrR male rats (NCI, Frederick, MD) of 6-8 wk of age were briefly anesthetized
with 5% isoflurane in oxygen and instilled intratracheally with 1000 pg of LPS (Pseudomonas aeruginosa sero-
type 10, Sigma, St. Louis, MO) in 0.5ml of 0.9% pyrogen-free saline. Control rats were instilled with 0.5 ml of
0.9% pyrogen-free saline. Rats were sacrificed at 72 h post LPS-instillation for lung tissue analysis and BAL was
collected at various time-points post LPS-instillation as described below. Similarly, C57BL/6 mice (both male
and female) at 6-8 wks of age were briefly anesthetized with 5% isoflurane in oxygen and instilled intranasally
with 50 ug of LPS (P. aeruginosa serotype 10, lot 31K4122, 3,000,000 LPS units (EU)/mg, Sigma, St. Louis, MO)
in 0.05ml of 0.9% pyrogen-free saline. One group of mice received ABT-263 (0.05 mg/Kg in 0.05ml of 0.9%
pyrogen-free saline) intranasally on day 5 and 6 after LPS challenge. Control mice were instilled with 0.05 ml
of 0.9% pyrogen-free saline. Mice were sacrificed 24 h post last exposure and lung tissues were processed and
analyzed.

Preparation and treatment of rat nasal epithelial organ cultures. The preparation and LPS treat-
ment of explant cultures from rat nasal midsepta was essentially as described previously’*. Briefly, following
exsanguination, after removing the lower jaw the head was split in half longitudinally and the nasal midsep-
tum and maxilloturbinates removed by microdissection using a Leica MZ 7.5 stereo zoom microscope (Leica
Microsystems, Inc., Bannockburn, IL). The septum was cut into three sections, one proximal and two distal. The
explants were cultured for 72 h by placing them epithelium side-up in transwell dishes (Corning, Incorporated
Life Sciences., Acton, MA), and cultured in supplemented Ham’s/F-12 media (HyClone, Logan, UT). The nasal
explants were treated with LPS for 24 h and replenished with fresh media for maintaining cultures over 48h. We
selected this time-point based on our previous studies showing that Bcl-2 expressing hyperplastic mucous cells
by LPS in vivo peaks at 48 h post instillation®. Following treatments, explant cultures were fixed in zinc formalin
for a minimum of 24 h, embedded in paraffin, and processed for microscopy.

Neutrophil depletion and bronchoalveolar lavage fractionation. Rats were intraperitoneally (i.p.)
injected with 1 ml of rabbit anti-rat polymorphonuclear neutrophil (PMN) antiserum or with normal rabbit
serum (NRS) as control (#AIAD11540, Accurate Chemical Corp., Westbury, NY) 24 h before LPS-instillation.
Rats were sacrificed at 3, 10, and 24 h post-instillation with an injection of pentobarbital sodium and exsan-
guinated through the renal artery. Lungs were removed with cannulated trachea, placed in ice-cold saline for
3 min, and then lavaged three times with 5ml of Ham’s F-12 media. BAL for treatment of organ cultures was
used immediately after collection and fractionation, or was stored in 0.2-ml aliquots at —80 °C until further use.
For fractionation, BAL was centrifuged at 1000 x g for 10 min at 4°C, the supernatant was separated from the
cell pellets and kept at —80 °C until needed. To isolate the cell membrane fraction, cells were lysed in cold (4°C)
sterile milli-Q-filtered water, centrifuged, and the supernatant from the lysed cells was discarded. The lysis was
repeated twice to achieve complete lysis and culture medium was added to the membrane fraction to obtain the
original volume of the BAL.

LPS quantification. The amount of LPS recovered in the BAL fluid at 3, 10, and 24 h post instillation was
assayed using the Cambrex LAL Limulus Amoebocyte Assay (Walkersville, MD) according to package directions.
Values are expressed as percentage of 1000 pg initially instilled intratracheally.

Histological Analysis. Histochemical staining for Alcian Blue and periodic acid Schiff (AB-PAS) was car-
ried out as previously described®. Airway epithelial cell and mucous cell numbers per mm basal lamina (BL) were
measured by counting the number of nuclei and mucous cells, respectively, and dividing by the length of the BL.
Images were taken using a light microscope (Eclipse E600W; Nikon) with a Plan Fluor 60x NA 0.85 objective
and a digital camera (DXM1200F; Nikon) with ACT-1 acquisition software (version 2.621 Nikon). In all cases,
the VisioMorph system (Visiopham A/S, Horsholm, Denmark) was used for morphometry by a person unaware
of slide identity.

Luminex Analysis. The levels of cytokines and chemokines (IL-183, IL-6, IL-13, TNFcq, Gro/KC, and MCP-1)
in BAL fluid were determined using a multiplex assay kit (Lincoplex panel, Linco Research, Inc., St. Charles, MO)
according to the manufacturer’s instructions. Briefly, the BALF was filtered to remove cells and debris, then beads
were incubated with diluted standards, or BALF overnight followed by a detector antibody cocktail for 60 min
each at room temperature. After two washes in PBS supplemented with 0.02% Tween 20, 0.1% BSA, and 0.02%
NaN3, the beads were incubated for 30 min with fluorescent dye-conjugated streptavidin. Cytokine levels were
measured using a flow cytometer and were analyzed with Flowmetrix software (Luminex, Ausitn, TX). Standard
curves for each cytokine and chemokine were generated on a log-log plot for each assay, and the concentrations
in each sample were calculated from the corresponding curve-fitting equations.
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Immunofluorescence analysis. Tissue sections were deparaffinized, hydrated in graded ethanol and
deionized water, then washed in 0.05% v Brij-35 in Dulbecco’s PBS (pH 7.4). The antigens were unmasked by
treating with Digest-All kit (Zymed Laboratories, San Francisco, CA) at a 1:3 dilution of trypsin to diluent at
37°C for 10 min. Sections were then blocked using 0.2% Triton X-100 with 0.2% Saponin in a blocking solution
containing 3% IgG-free BSA, 1% Gelatin and 2% normal donkey serum followed by incubation with anti-Bcl-2
(#sc-492, Santa Cruz Biotech, CA), anti-MUC5AC (#MAB2011, Millipore Inc.), anti-active Caspase 3 (#9661,
Cell Signaling Technologies, CA) or isotype controls (Cell Signaling Technologies, CA). The immunolabeled cells
were detected using F(ab),-fragments of respective secondary antibodies conjugated to either Dylight™-549 or
DylightTM-649 (Jackson Immunoresearch, West Grove, PA) and mounted with 4/,6-diamidino-2-phenylindole
(DAPI) containing Fluormount-G™ (SouthernBiotech, Birmingham, AL) for nuclear staining.

For cytometry, cells were grown on Lab-Tek-II 8-chamber slides (Nalgene Nunc International, Rochester,
NY) and treated with 10 ng/ml of IL-13 or were left untreated and were fixed using 3% paraformaldehyde with
3% sucrose in PBS and processed for immunostaining as described above. Micrographs were captured using
either Zeiss LSM 510 Meta confocal microscope (Carl Zeiss Microlmaging, Inc, Thornwood, NY) or using the
Axioplan 2 fluorescent imaging system (Carl Zeiss, Thornwood, NY) equipped with a charge-coupled device
camera (ORCA-ER; Hamamatsu Photonics, Iwata City, Japan) and SlideBook 6 acquisition software (Intelligent
Imaging Innovations, Denver, CO). Quantification of Bcl-2-positive and MUC5AC-positve cells per mm of basal
lamina was performed using the VisioMorph system (Visiopham A/S, Horsholm, Denmark) or NIH Image]
(http://imagej.nih.gov/ij/) software. Cells cultured in air-liquid interface were also immunostained for Bcl-2 and
MUCS5AC similarly.

TUNEL Assay. For detection of apoptotic cells, deparaffinized lung sections were stained using TACS® 2
TdT Fluorescein Kit (Trevigen Inc., Gaithersburg, MD) and fluorescent TUNEL-positive cells were detected as
described earlier for fluorescent staining. In all cases, quantification of TUNEL-positivity was carried out by a
person unaware of slide identity.

Cell culture. The human airway epithelial cells (HAECs) were maintained in bronchial epithelial growth
medium (BEGM, Lonza, Walkersville, MD). Primary HAECs were purchased from Clontech (Walkersville, HD).
For air-liquid interface culture primary HAECs were seeded on Transwell membranes and differentiated for 14
days. Following treatments, the membrane quarters were used for QRT-PCR and membrane halves embedded in
paraffin for immunostaining. Cell viability was determined by trypan blue exclusion.

Immunoprecipitation and Western blot analysis. Protein was extracted from cells or tissues by homog-
enization in RIPA buffer (10 mM Tris, pH 7.4, 150 mM NaCl, 1% Triton X-100, 1% deoxycholate, 0.1% SDS, and
5mM EDTA) supplemented with a protease inhibitor cocktail (Sigma Chemical Co., St. Louis, MO). Protein
concentration was determined using the BCA kit (Pierce, Thermo Fisher Scientific, Rockford, IL) and 50-100 pg
of protein lysate was analyzed by Western blotting. For immunoprecipitation using the Pierce Crosslink IP Kit
(# 26147, Thermo Fisher Scientific), cells were rinsed twice with cold PBS, scraped into cold PBS plus protease
inhibitors and analyzed per manufacturer’s instructions. The Bcl-2 (#sc-7382) antibody was from Santa Cruz
Biotechnology Inc., CA) and antibodies to Bik (#4592), p-STAT1 (#9167) and STAT1 (#9172) were from Cell
Signaling Technologies (Boston, MA). The proteins were detected using appropriate peroxidase-conjugated sec-
ondary antibodies and visualized by chemiluminescence (Perkin Elmer, Waltham, MA) using the FujiFilm Image
Reader LAS-4000 (Valhalla, NY).

Quantitative RT-PCR. RNA was isolated from the snap-frozen right lungs of animals using TRIzol as
described previously® whereas RNA from cultured cells was extracted using the RNeasy kit (Qiagen, Valencia,
CA) and concentration was determined using the Thermo Scientific Nanodrop 1000 Spectrophotometer (Thermo
Fisher Scientific, Waltham, MA). The primer/probe sets for MUC5AC and CDKNIB were obtained from Life
Technologies (Carlsbad, CA) and were amplified by quantitative real-time PCR using RT-PCR Master Mix (Life
Technologies (Carlsbad, CA)) in the ABIPRISM 7900HT Real-Time PCR System. Relative quantities were calcu-
lated by normalizing averaged C; values to CDKNIB to obtain ACt, and the relative standard curve method was
used for determining the fold change as described previously”.

Blocking Bcl-2 with retroviral transfection and ABT-263. HAECs were transfected with Bcl-2 shRNA
containing retroviral vectors or control vectors (Origene Technologies, Inc., Rockville, MD) as per manufacturer’s
instructions. After infection with Bcl-2 or control shRNAs, cells were treated with 10 ng/ml human IL-13, and
48h later cells were assessed for Bcl-2 expression by immunofluorescence or Western blotting.

Statistical analysis. Grouped results were expressed as means & SEM. Data were analyzed using GraphPad
Prism Software (GraphPad Software, Inc., San Diego, CA). Grouped results were analyzed using analysis of var-
iance. We performed the Kruskal-Wallis 2-sample non-parametric H test to compare the NRS and anti-PMN
groups for the sample comparisons of unequal sample size. When significant main effects were detected
(P<0.05), Fishers least significant difference test was used to determine differences between groups. In addition,
data were log transformed to correct for possible heteroscedasticity and reanalyzed for statistical differences. For
all analyses the results remained unchanged.
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