@° PLOS | ONE

Check for
updates

G OPEN ACCESS

Citation: Taylor TE, Lacalle Muls H, Costello RW,
Reilly RB (2018) Estimation of inhalation flow
profile using audio-based methods to assess
inhaler medication adherence. PLoS ONE 13(1):
€0191330. https://doi.org/10.1371/journal.
pone.0191330

Editor: Yu Ru Kou, National Yang-Ming University,
TAIWAN

Received: February 6, 2017
Accepted: January 3, 2018
Published: January 18, 2018

Copyright: © 2018 Taylor et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper, its Supporting Information file
and the Dryad Digital Repository: https://doi.org/
10.5061/dryad.8310n.

Funding: This research was part funded by an Irish
Research Council (IRC) (http:/www.research.ie/)
Enterprise Partnership Scheme (EPS) scholarship
to TET which was also part funded by Vitalograph
Ireland (Ltd.) (https://vitalograph.ie/), a Health
Research Board (HRB) (http:/www.hrb.ie/home/)
Clinician Scientist Award (CSA) to RWC (CSA/59)

RESEARCH ARTICLE

Estimation of inhalation flow profile using
audio-based methods to assess inhaler
medication adherence

Terence E. Taylor'2*, Helena Lacalle Muls'-3, Richard W. Costello*, Richard B. Reilly"°

1 Trinity Centre for Bioengineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland, 2 School
of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland, 3 Faculty of Medicine,
Universitat de Barcelona, Barcelona, Spain, 4 Department of Medicine, Royal College of Surgeons in Ireland,
Dublin, Ireland, 5 School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland

* taylorte @tcd.ie

Abstract

Asthma and chronic obstructive pulmonary disease (COPD) patients are required to inhale
forcefully and deeply to receive medication when using a dry powder inhaler (DPI). There is a
clinical need to objectively monitor the inhalation flow profile of DPIs in order to remotely mon-
itor patient inhalation technique. Audio-based methods have been previously employed to
accurately estimate flow parameters such as the peak inspiratory flow rate of inhalations,
however, these methods required multiple calibration inhalation audio recordings. In this
study, an audio-based method is presented that accurately estimates inhalation flow profile
using only one calibration inhalation audio recording. Twenty healthy participants were asked
to perform 15 inhalations through a placebo Ellipta™ DPI at a range of inspiratory flow rates.
Inhalation flow signals were recorded using a pneumotachograph spirometer while inhalation
audio signals were recorded simultaneously using the Inhaler Compliance Assessment
device attached to the inhaler. The acoustic (amplitude) envelope was estimated from each
inhalation audio signal. Using only one recording, linear and power law regression models
were employed to determine which model best described the relationship between the inhala-
tion acoustic envelope and flow signal. Each model was then employed to estimate the flow
signals of the remaining 14 inhalation audio recordings. This process repeated until each of
the 15 recordings were employed to calibrate single models while testing on the remaining 14
recordings. It was observed that power law models generated the highest average flow esti-
mation accuracy across all participants (90.89+0.9% for power law models and 76.63+2.38%
for linear models). The method also generated sufficient accuracy in estimating inhalation
parameters such as peak inspiratory flow rate and inspiratory capacity within the presence of
noise. Estimating inhaler inhalation flow profiles using audio based methods may be clinically
beneficial for inhaler technique training and the remote monitoring of patient adherence.

Introduction

Patients with chronic respiratory diseases such as asthma and chronic obstructive pulmonary
disease (COPD) are instructed to perform a forceful, deep inhalation when using dry powder
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inhalers (DPIs) to ensure maximum dose delivery [1]. The peak inspiratory flow rate (PIFR)
and volume or inspiratory capacity (IC) of the inhalation are critical in ensuring maximum
clinical effectiveness from DPIs [2, 3]. It was reported in a study that over 20% of asthma
patients could not generate a sufficient forceful inhalation with a DPI [4]. Furthermore,
patients with advanced COPD generate less forceful inhalations with lower PIFRs [5]. There is
a clinical need to remotely monitor patient inhalation technique during inhaler use so that the
efficacy of inhaler medication is not reduced.

There is a lack of objective methods to monitor inhalation technique in inhalers, specifi-
cally DPIs, outside of the clinical environment. The In-Check Dial™ from Clement Clarke
[Clement Clarke International Ltd, Harlow, UK] is a device used to measure patients’ PIFR
through different simulated resistances that model different inhalers [5]. However, this can-
not be used to remotely monitor inhalation technique in real DPIs. Audio-based methods
have been employed to remotely monitor inhaler inhalation technique in DPIs and pMDIs
[3, 6, 7]. The Inhaler Compliance Assessment (INCA) device is a non-invasive audio
recording device that attaches to a Diskus™ inhaler and has been reported to be accurate at
objectively measuring inhalation technique, specifically PIFR and IC in patients with
asthma and COPD [8-10]. However, the flow-sound models employed to estimate PIFR
and IC from inhalation audio recordings in these studies required numerous inhalation
recordings from a cohort of participants. There is a need to introduce a faster, more efficient
method of calibrating flow-sound models to accurately estimate not just PIFR and IC, but
the entire flow profile of inhaler inhalations. Estimating the entire flow profile would allow
healthcare professionals to monitor if patients can maintain the required flow rate through-
out the inhalation.

Furthermore, changes in patient inhalation flow profiles may relate to physiological changes
in respiratory conditions over time. It was previously reported that COPD patients tend to
have poorer inhalation profiles than asthma patients in terms of PIFR and IC and that inhala-
tion profiles change according to disease severity [5, 11, 12]. It was also reported previously
that inhaler PIFR in COPD patients decreases by an average of approximately 15-18%,
depending on the inhaler resistance, during an acute phase of an exacerbation [13]. In a previ-
ous pilot study, it was reported that a decline in lung function during a bronchial challenge test
caused a decrease in inhaler PIFR which can be objectively measured using audio-based meth-
ods [14]. Therefore, by employing this audio-based method of accurately estimating the inha-
lation flow profile, it may be employed to remotely monitor respiratory health longitudinally
also and possibly predict exacerbations before they occur.

Respiratory flow estimation using audio-based methods has been most thoroughly
researched using microphones placed over the chest wall and trachea [15-17]. It was previ-
ously reported that accurate flow estimation may be achieved from tracheal audio recordings
using only one audio recording with a corresponding flow signal for calibration. Although the
acoustic properties of chest wall and tracheal sounds vary greatly to inhaler inhalation sounds
recorded from a non-contact microphone, accurately modelling the flow-sound relationship
of inhaler inhalations based on one calibration recording has yet to be investigated. If it was
possible to develop an accurate model of monitoring inhalation flow profile based on one cali-
bration inhalation recording, it would have significant clinical impact by allowing healthcare
professionals to remotely monitor patient inhalation technique.

The aim of this study was to develop an accurate audio-based flow estimation model to esti-
mate the inhalation flow profile in the Ellipta™ DPI. The hypothesis was that it was possible to
accurately estimate the inhalation flow profile based on only one calibration inhalation audio
recording.
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Twenty healthy participants were recruited for this study. Written consent was obtained from
study participants. In order to test the proposed method on a wide range of inspiratory flow
rates, it was deemed necessary to recruit participants with healthy lung function. Baseline spi-
rometry according to ATS/ERS standards was performed on each participant [18]. This study
was approved by the Hospital Ethics Committee at Beaumont Hospital, Dublin, Ireland.

Inhaler audio recording setup

Fig 1 shows the inhaler recording setup for this study. A placebo Ellipta™ DPI [GlaxoSmithK-
line, London, UK] was placed inside a custom built airtight container. An aperture was cut
where a custom mouthpiece was inserted in order to give participants a better mouth seal
when inhaling through the inhaler. An additional aperture was cut which allowed the INCA
device to be placed directly onto the inhaler, as it would be in a clinical setting. This setup has
been reported to give accurate audio-based measurements of flow rate in previous inhaler
acoustics studies [3, 9]. A final aperture was cut to connect a Vitalograph Pneumotrac™ pneu-
motachograph spirometer [Vitalograph Ltd., Co. Clare, Ireland] to the airtight container. The
spirometer was connected to a data acquisition laptop which allowed for reference measure-
ments of PIFR and IC of inhalations using the Vitalograph Spirotrac® V software.

An audio signal was obtained directly from the INCA device and connected to a National
Instruments USB-6211 DAQ system [National Instruments, Texas, USA]. The microphone
used inside the INCA device is a Knowles SPU0414HR5H-SB microelectromechanical systems
(MEMS) microphone [Knowles Acoustics, Illinois, USA]. The flow signal from the Pneumo-
trac™ pneumotachograph spirometer was obtained and connected to the DAQ also to record
the inhalation flow profile signal. A custom designed LabVIEW Virtual Instrument [National
Instruments, Texas, USA] was developed in order to record inhaler audio and flow signals
simultaneously. Both audio and flow signals were sampled at 48 kHz and digitized at 16 bits
per sample. Recordings took place in a designated recording office room. The recording room
was not soundproof and so was not a completely noise-free environment. However, the
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Fig 1. Inhaler recording setup.

https://doi.org/10.1371/journal.pone.0191330.9001
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recording environment was suitable to record inhalation audio signals with a sufficient signal
to noise ratio to investigate the relationship between the audio and flow signals.

Participant recording protocol

Each participant was instructed to exhale to functional residual capacity before inhaling force-
fully through the mouthpiece of the Ellipta™ inhaler at maximal flow rate for as long as possi-
ble. This was then followed by a two to three second breath hold. This was repeated until five
inhalation recordings were obtained at maximal inspiratory flow rate. All participants were
able to inhale at 70 L/min or above at maximum effort. These five recordings were categorized
as a High flow range group. A reference measurement of PIFR was checked using Vitalograph
Spirotrac® V software to give participants feedback on their inspiratory flow rate after each
inhalation recording. Participants were then asked to reduce their inspiratory flow rate for five
recordings between 50-70 L/min (Medium flow range) and a final five recordings between
25-50 L/min (Low flow range). This gave a total of 15 inhalation recordings per participant.

Audio and flow signal pre-processing

The DC component was removed from audio signals by subtracting the mean value of each signal
from itself. Audio signals were high pass filtered with a cut off frequency of 200 Hz using a second
order Butterworth filter to remove low frequency noise. Flow signals were low pass filtered with a
cut off frequency of 4 Hz using a second order Butterworth filter. It was observed that a cut off
frequency of 4 Hz could capture the rapid change in flow at the onset of inhalation while remov-
ing unwanted noise that did not represent the inspiratory flow. As the flow signals were originally
recorded as voltage signals, the raw flow voltage (V) signals were converted to flow rate (L/min)
using linear regression between the recorded reference PIFR on the Spirotrac® V software and
the peak voltage in the flow signal over 20 recordings for each participant (15 recordings used in
the audio analyses and an additional five training recordings used for flow signal calibration).
This was calibrated for each participant. The average R” value for converting the flow voltage sig-
nal to flow rate was 0.95+0.03 (+ standard error) (p<0.0001) across all participants.

As this study only focused on the inhalation event, all exhalations and other respiratory
sounds such as coughs were discarded in the audio and flow signals. Inhalations were seg-
mented by determining the onset and offset points of the inhalation in the flow signal audio
signal. A threshold of 5 L/min was chosen to segment inhalations to remove baseline noise
being included in the flow signal. If the Virtual Instrument started recording data after the
onset of an inhalation or if recording ceased towards the end of the inhalation, then the onset
and offset thresholds were adjusted accordingly. However, this was only necessary in few
recordings (7% of recordings).

Audio feature extraction

An estimation of the acoustic envelope (amplitude envelope of the audio signal) of each inhaler
inhalation was obtained using the Hilbert Transform (HT). This method has been employed
in previous acoustical flow estimation studies [19, 20]. The estimate of the acoustic envelope,
Xemy» Was computed as the absolute value of the analytic signal, x,,, which is a complex signal
consisting of a summation of the inhalation audio signal with a 90° phase shifted version of
itself (HT) [21]. The analytic signal is given by

X, =x+jx (1)

Where x is the original inhaler inhalation audio signal and x is the HT of the original signal.
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Fig 2. Example of inhaler inhalation audio and flow signals. (A) inhaler inhalation audio signal with estimated acoustic envelope and (B) corresponding flow
signal.

https://doi.org/10.1371/journal.pone.0191330.g002

The HT is usually most effective when applied to amplitude modulated narrow band sig-
nals. However, inhaler inhalation sounds recorded from a non-contact microphone (non-
contact meaning not in contact or attached to the user) are composed of a broad spectrum
of frequencies [6, 7]. Consequently, the absolute value of x, follows high frequency changes
in amplitude that distort the envelope estimation. The absolute value of the analytic signal,
X, was therefore low pass filtered with a cut off frequency of 4 Hz similar to the flow signal
using a second order Butterworth filter. An example of the inhalation audio signal with the
estimated acoustic envelope along with the corresponding flow signal after low pass filtering
is presented in Fig 2. Data available from Dryad Digital Repository (https://doi.org/10.5061/
dryad.8310n).

Flow-sound regression model

Previous studies have reported the use of linear models to estimate flow rate using audio-based
features [3, 6]. Other studies have reported that amplitude of sound and flow rate are related
through a power law model [15, 22]. In order to investigate the relationship between the inha-
lation acoustic envelope and its corresponding flow signal, both linear and power law regres-
sion models were employed. A power law model may be calculated as a linear regression
model in a logarithmic scale. The linear and power law regression models employed can be
represented as

Fest = y : xenv + Z (2)
log( est) =a- lOg (xem/) + b (3)
where F,q; is the estimated flow signal and x,,,, is the acoustic envelope of the inhaler

inhalation.

For each participant, one recording was used to calibrate a flow-sound regression model by
computing the model coefficients (y and z for linear, a and b for power law) using the selected
flow and audio signals. This model was then tested on the remaining 14 recordings for this
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participant to estimate the flow profiles from the remaining 14 audio signals. This process was
repeated until each inhalation recording was used to calibrate a separate flow-sound regression
model. In this way, a range of flow rates could be employed as single calibration recordings
and then tested on a range of inspiratory flow rates to model real life patient inhaler use. This
resulted in 210 tests (14 x 15 tests) being performed for each participant. Any data used to cali-
brate a model was not subsequently used to test the same resulting model as this may have
introduced an over fitting bias. Once F,; was calculated using the model coefficients, a moving
average window of 200 ms was also applied to the estimated flow signal from the time point at
which 80% of PIFR was reached onwards to further remove noise from the estimated flow sig-
nal. The absolute average flow estimation error (absolute error between actual flow profile and
estimated flow profile) was computed at each point and was then averaged. The average flow
estimation error (Average.,,,) over the entire inhalation signal was calculated using the follow-
ing equation;

|Fest(i) — Fact(i)|

1 4
Fact(i 8 OO ( )

Average,,,, (%) = %ZL
Where F,,, is the estimated flow rate at the i point of the signal

F,.; is the actual flow rate at the i point of the signal

N is the length of the actual and estimated flow signals.

Flow parameters that were calculated from the flow profile included PIFR, IC and the inha-
lation ramp time (Tr) which was pre-defined as the time taken to reach 80% of PIFR. PIFR was
calculated as the peak flow point of the inhalation flow profile curve. The IC parameter was
calculated as the area under the inhalation flow profile curve which equates to the total volume
of air inhaled in liters. This was calculated using trapezoidal numerical integration of the flow
and estimated flow signals. The Tr was calculated as the time at which the flow profile reached
80% of its maximum flow rate rather than the time taken to reach PIFR to avoid erroneous
measurement due to small deviations when the flow profile plateaued.

Eq 5 details how the PIFR flow parameter estimation error was calculated. The IC and Tr
estimation errors were also calculated using the same method accordingly.

|PIFR, — PIFR |
PIFR,,, (%) = e atl 1 5
error ( A)) PIFREC! 00 ( )

All analyses were performed within participants and then results were averaged across
participants.

In order to determine if the model coefficients remained unchanged according to calibra-
tion flow rate, a 2-sample t-test was performed to statistically compare regression model coeffi-
cients across inhalation flow ranges. These statistical tests were corrected for multiple
comparisons using Bonferroni correction.

Effect of noise on flow estimation

As inhalers are used by patients in different environments (both clinical and domestic), it is
important to investigate the influence of noise on audio-based flow estimation. In order to
investigate the effect of noise on this method of estimating the inhalation flow profile, Gauss-
ian white noise was added to each inhalation audio signal. The method was tested on all audio
signals at signal to noise ratio (SNR) levels of 0 dB, 5 dB, 10 dB, 15 dB, 20 dB and 25 dB. The
accuracy of each parameter (Average, PIFR, IC and T,) was then calculated at each SNR level
and averaged across all flow ranges and then averaged across all participants.
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Results

Participant information and baseline lung function is presented in Table 1. A total of 300
Ellipta™ inhaler inhalation recordings were obtained from 20 participants in this study. Thir-
teen recordings were discarded due to corrupt audio and flow signals leaving 287 recordings
for analysis with 3,856 flow estimation tests being performed. Table 2 presents the average
flow parameter values across the different flow ranges. This shows that the method was tested
on a wide range of PIFR, IC and Tr values. The average flow parameters for each participant
are presented in S1, S2 and S3 Tables.

It was observed that the power law models were superior over the linear models at estimat-
ing the inhalation flow profile using the acoustic envelope. The average flow estimation accu-
racy (which was calculated as 100-Average..,,,,) was 90.891£0.9% (+ standard error) for power
law and 76.63£2.38% for linear models. Therefore, detailed results of the power law models are
discussed from this point onwards in the study. Average flow parameter estimation errors
were divided according to calibration and test flow ranges. The overall Average..,,,, for the
power law models was 9.4+0.92% for High flow range, 8.65+1.67% for Medium flow range and
9.29+2.44% for Low flow range (+ standard error). This gave an average estimation error of
9.11+0.9% across all participants. Fig 3 presents examples of the estimated flow signals for
high, medium and low flow inhalations.

Fig 4 shows the Average .;,or» PIFR ¢rvor, IC 110y and T ., values averaged across all partici-
pants. The average flow estimation accuracy for each participant across all flow ranges is pre-
sented in S1 Fig.

The acoustic envelope of the inhalation audio signal was strongly significantly linearly cor-
related with the flow signal in a logarithmic scale. The average (+ standard error) R” values of
the flow-sound regression models created during calibration were 0.9791+0.0027 for High
flow range, 0.98+0.0023 for Medium flow range and 0.9778+0.0019 for Low flow range
(p<0.0001). Although this is not a measurement of flow estimation accuracy, it is important to
note the statistical correlation between the audio envelope and the flow signal.

It was observed that the a and b model coefficients at the High flow range were statistically
significantly higher than those in the Medium (p<0.05 for a coefficient, p<0.01 for b coeffi-
cient) and Low (p<0.01 for both a and b coefficients) flow ranges. This suggests that the

Table 1. Participant information and baseline lung function (mean + standard deviation).

Parameter Value
Age (years) 24+2.5 (20-29)
Gender (M/F) 10/10
Height (cm) 171.95+8.75 (158-190)
Weight (kg) 67+13.18 (48-95)
BMI* (kg/m?) 21.39+2.12 (19.2-25.9)
FEV1® (L) 3.75+0.67 (2.79-5.12)
FEV1 Predicted % 97.65+13.04 (80-127)
FVC* (L) 4.68+0.95 (3.38-6.73)
FEV1/FVC Ratio 0.82+0.06 (0.72-0.91)

PIFRY (L/min)

* BMI-body mass index

329.35493.3 (193-485)

P FEV1 -forced expiratory volume in one second
€ FVC-forced vital capacity
4 PIFR-peak inspiratory flow (during spirometry, not inhaler usage)

https://doi.org/10.1371/journal.pone.0191330.t001
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Table 2. Mean (+ standard deviation) of flow parameter values from recorded inhalation flow signals averaged
across all participants.

Flow Range PIFR (L/min) IC (L) Tr (ms)
High (>70 L/min) 109+21 (70-142) 2.81+0.7 (1.82-4.09) 317+145 (134-597)
Medium (50-70 L/min) 6015 (52-66) 1.7740.5 (1.18-2.98) 3174136 (155-770)
Low (25-50 L/min) 39+4 (32-44) 1.33+0.5 (0.71-2.48) 3234107 (146-562)

https://doi.org/10.1371/journal.pone.0191330.t002

relationship between the flow and acoustic envelope may not be constant at all calibration flow
rates. Fig 5 shows boxplots of the model coefficients across all participants in the High,
Medium and Low flow ranges.

=Actual Flow

A =Estimated Flow B
; ; 60 . ;

a
o

B
o

Flow rate (L/min)
S 8

-
o

40

w
o

N
o

Y
o

Flow rate (L/m

0 L L L " L L
0 0.5 1 1.5 2 2.5 3
Time (s)
Fig 3. Examples of actual and estimated inhaler inhalation flow profiles. (A) High, (B) Medium and (C) Low flow rates. The vertical lines represent the actual

and estimated Tr values.

https://doi.org/10.1371/journal.pone.0191330.g003
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Fig 6 presents the average accuracy of estimating different inhalation parameters at a range
of SNR levels (0-25 dB in increments of 5dB). It can be observed from Fig 6 that PIFR, IC and
T, achieve high accuracy above 80% even at very low SNR levels. The Average flow estimation
accuracy decreases with lower SNR levels but remains above 70% at 10 dB.

Discussion

It was observed that the acoustic envelope of the inhalation audio signal and its corresponding
flow signal followed a power law relationship which can be estimated as a linear model in a log-
arithmic scale. This agrees with previous studies that employed power and amplitude based
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features to estimate respiratory flow [15, 22]. Power law models generated an average flow esti-
mation accuracy of over 10% higher than linear models (90.89% for power law models vs.
76.63% for linear models). By estimating the acoustic envelope of the inhalation audio signal,
it was possible to accurately estimate the inhaler inhalation flow profile. This may allow health-
care professionals to objectively assess patient inhalation technique and medication adherence
in future clinical applications.

When the calibration and test recordings were from the same flow range, this generated the
smallest error which would be expected. The largest error in estimating flow parameters was
observed when the calibration recording was obtained from a low flow inhalation and was
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Fig 6. Average accuracy (%) of inhalation flow profile parameter estimation across all flow rates at different SNR
levels.

https://doi.org/10.1371/journal.pone.0191330.g006
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used to estimate a high flow inhalation. This would also be expected as one can see from Fig 5
that the model coefficients change at higher flow rates compared to lower flow rates. There-
fore, the relationship between flow and sound may not be constant at all flow rates. Further-
more, the difference in model coefficients across flow ranges did not greatly impair flow
estimation in inhaler inhalations in this study. The High flow range had much higher flow
rates than the Medium and Low flow ranges. It was noted that the T, values were not signifi-
cantly different across flow range groups also. This may suggest that the acceleration of inhala-
tions may have influenced the model coefficients also. Therefore, it could be argued that the
model coefficients change most significantly at high flow rates with faster acceleration.

There were some limitations to this study. Healthy participants were recruited in order to
investigate the accuracy of this method on a wide range of flow rates. This may not have been
possible with patients suffering from impaired respiratory function. In addition, asking
patients to inhale at a range of different flow rates may confuse patients on how to correctly
use a DPI. Consequently, patients were not recruited for this study, however, the efficacy of
this audio-based method in estimating inhalation flow profiles has been presented. The airtight
container may have affected inhaler inhalation audio-based features, particularly spectral fea-
tures. However, recording directly from the surface of the inhaler and not inside the airtight
container, as well as using an energy based feature such as the acoustic envelope would mini-
mize this effect. The airtight container also ensured accurate measurement of flow rate without
the need for sensors within the inhaler device. Flow sensors placed within the inhaler may
have changed the resistance within the inhaler and would affect flow measurement.

Recordings took place in a designated recording room to reduce background noise in the
audio recordings which may not replicate real life clinical environments. In order to fully
understand the relationship between audio and flow signals, it was essential to reduce back-
ground noise. The microphone in the INCA device was situated very close (approximately 2
cm) to the grill at the Ellipta™ mouthpiece where the inhalation sound is mostly generated. Fur-
thermore, the SNR was high (13.9-23 dB) in low to high flow inhalations even with ambient
background noise present in the recording room. Furthermore, this method was tested on a
range of SNR levels and generated sufficient accuracy in estimating parameters such as PIFR
IC and T, even within lower SNR levels. This shows the robustness of this flow estimation
method in noisy environments. As would be expected, the average flow estimation accuracy
decreased at lower SNR levels. However, as the microphone is positioned within the device
casing directly beside the inhaler mouthpiece, this should generate sufficient SNR levels even
in real clinical environments. Future research will test this method in clinical and domestic
environments.

Future research should also focus on the automatic detection of Ellipta™ inhalation sounds
from noisy environments. Once the inhalation sounds are accurately detected, one can apply
the methods presented in this study to accurately assess patient inhaler inhalation technique.
The flow signal was used in this study to segment inhalations to investigate the relationship
between the audio and flow signals. Previous studies by Holmes et al developed an accurate
method of detecting patient inhalation sounds recorded from the INCA device attached to a
Diskus DPI during inhaler use in real clinical and domestic environments [23, 24]. However,
there is a clinical need for further audio-based classification methods to accurately detect inha-
lations from Ellipta™ DPI as well as testing the accuracy of the presented method on estimating
low, medium and high inspiratory flow rates within noisy real-life environments.

The presented audio-based flow estimation method could be implemented into the clinical
setting by obtaining one recording of an inhaler inhalation during a patient’s consultation
with a healthcare professional. As the patient is trained on their inhaler, an inhalation could be
recorded using INCA and used to calibrate a model to estimate the inhaler inhalation flow
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profile remotely. When the patient returns for a consultation, the patient may obtain objective
feedback on their inhalation technique and can be trained on how to improve their inhaler
technique and their disease control as a result. Monitoring inhalation flow parameters
remotely using acoustics provides a non-invasive, accurate method of monitoring inhaler user
technique and potentially the respiratory health of asthma and COPD patients.

Conclusions

This study presented a method of accurately estimating the flow profile of inhaler inhalations
based on the logarithmic relationship between the acoustic envelope of the inhalation sound
and flow signal. Using only one inhalation recording for model calibration, an average flow
estimation accuracy of over 90% was observed. This method may be employed to remotely
monitor patient inhalation technique and help train patients to improve their inhaler tech-
nique by introducing more personalized treatments in respiratory medicine. Future research
will investigate employing audio-based classification methods to segment inhalation sounds in
noisy clinical and domestic environments. Other future research will apply the presented flow
estimation method to other DPIs to remotely monitor patient adherence across a range of dif-
ferent inhaler devices.
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