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Abstract

Unsupervised discovery of pulmonary emphysema subtypes offers the potential for new
definitions of emphysema on lung computed tomography (CT) that go beyond the standard
subtypes identified on autopsy. Emphysema subtypes can be defined on CT as a variety of textures
with certain spatial prevalence. However, most existing approaches for learning emphysema
subtypes on CT are limited to texture features, which are sub-optimal due to the lack of spatial
information. In this work, we exploit a standardized spatial mapping of the lung and propose a
novel framework for combining spatial and texture information to discover spatially-informed lung
texture patterns (SLTPs). Our spatial mapping is demonstrated to be a powerful tool to study
emphysema spatial locations over different populations. The discovered sLTPs are shown to have
high reproducibility, ability to encode standard emphysema subtypes, and significant associations
with clinical characteristics.

1 Introduction

Pulmonary emphysema overlaps considerably with chronic obstructive pulmonary disease
(COPD), and is traditionally subcategorized into 3 standard subtypes: centrilobular
emphysema (CLE), panlobular emphysema (PLE) and paraseptal emphysema (PSE). These
subtypes were initially defined on autopsy. Radiologists’ labeling of these subtypes on CT is
labor-intensive, with substantial intra- and inter-rater variability [1]. Moreover, pathologists
have disagreements on the very existence of such pure subtypes.
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CT-based automated emphysema labeling has received increasing interest recently, in both
supervised manners for replicating standard subtyping [2,3], and unsupervised manners to
discover new subtypes [4—6]. Preliminary CT-based clinical studies suggest that regional
analysis will be instrumental in advancing the understanding of multiple pulmonary diseases
[7]. Most existing approaches for learning emphysema subtypes on CT are limited to
texture-based features, which are sub-optimal due to the lack of spatial information.
Previous studies [5,6] proposed to generate unsupervised lung texture patterns (LTPs) based
on texture appearance, and to group them based on their spatial co-occurrence. However,
such approaches only account for relative spatial occurrence at the scale of local regions of
interest (ROIs). Also, post-grouping could not guarantee spatial homogeneity of the
generated LTPs. Regarding spatial lung partitioning, using lung lobes leads to coarse spatial
precision while using subdivisions of Cartesian coordinates lacks relative information such
as peripheral versus central positioning which is important in defining PSE. Therefore a
dedicated lung shape spatial mapping is designed in this work that adapts to individual
shapes while enabling cross-subject comparison without registration. We then introduce an
unsupervised framework for combining spatial and texture information to discover localized
emphysematous LTPs, which we call the spatially-informed LTPs (sLTPs). We evaluate our
lung shape spatial mapping for studying emphysema spatial patterns on CLE/PLE/PSE-
predominant populations, and evaluate the discovered sLTPs in terms of reproducibility,
ability to encode standard emphysema subtypes, and association with clinical characteristics.

The pipeline for generating sLTPs, illustrated in Fig. 1, consists of the following three steps:
(1) generate spatial mapping of the lungs; (2) generate LTPs using texture-based features and
augment them with spatial features; (3) discover a distinct set of sLTPs.

2.1 Spatial Mapping of the Lung Shape

We use Poisson distance map (PDM) [8] to encode the shapes of individual lungs V; and
label voxel positions in the range of [0, 1], measuring the “peel to core” distance between a
given voxel and the external lung surface V. Formally, we compute the Poisson solution U
on the binary segmentation V/'using the following diffusion conditions:

AU(z,y,z)=-1, for (z,y,2z) €V
subject toU(z,y,2)=0, for (z,y,2) €9V (1)

where AU= Uyy + U, +U,,. We further compute U as the post-relaxed version of Uto
ensure robustness [8].

To uniquely encode 3D voxel positions, we add conformal mapping of the PDM solution
onto a sphere, which we call the Poisson distance conformal map (PDCM). We define r=1
- U', and encode superior versus inferior, anterior versus posterior and medial versus lateral
voxel positioning via latitude and longitude angles (6, ¢) with respect to the PDM core
position (r= 0) and standard image axis.
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2.2 Augmented Lung Texture Patterns

First, voxels are labeled as emphysema if they have intensity values below —950 HU [9] or
are selected by the hidden Markov measure field [10] segmentation method, with parameters
adapted to the scanner type. Then emphysema-specific LTPs are generated on ROIs with
volumetric percentage of emphysema (Y%emp#h) above 1%. We first generate an initial set of
100 LTPs {L 7P} k=1... 100 With texture features, and then augment them iteratively via
spatial regularization as detailed in Algorithm 1. The texture features are texton-histogram
features with pre-learned textons, which were shown to be superior in a similar task in [6].
We follow the parameter settings in [6], with a codebook of 40 textons (defined as centers of
clusters of 3x3x3 pixels patches). ROIs size is set to 25mm3 (approximating the size of

secondary pulmonary lobules). The texture centroid of L7Pyis FTk:ﬁZzeA FT,
where FT,is the texture feature of a ROl x, and A4 denotes the set of ROIs that are labeled
as L7Py

Algorithm 1

Augmenting Lung Texture Patterns

Input : Number of LTPs (Nporp = 100);
Set of training ROIs and their texture/spatial features {z, FT, F'S;}.
Output: LTP feature centroids {FT;*, FS,®}
Procedure:
- Cluster training ROIs {z} into Nprp clusters with {FT,} using K-means, and
initialize {A(”}.
- Compute FT:® and FS,© based on A;O).
-Set t =1 and AS) = 0.
while {A{"} # {4V} do
(1) Update {A,(:'_l)} with {Ag')} following Eq. (2):

{A(I)} —arg mln Z Z { FTL,FT([ 1))

ceAl®
FA-W|[FS, — FSCTY|2 (2)

+’y-ﬂ[ 2(FT,, FT' V) > max | X 2(FTI,,FT,S‘”)}}
CEGA

where W = SSTr/SSTs is the ratio of total sum of squared distance of
texture and spatial features; \ is the spatial regularlzation weight s.t.
(SSWA= — SSW=0)/SSW=° < 1% (SSW2= is the within-cluster
sum of squared distance of texture features when A = «); and v = co is
the penalty weight.

(2) Compute FT.™Y and FSx® based on AS);

B)t=t+1;

end

The spatial centroid of L7P, can be modeled as the average spatial density of ROIs in A
Computationally, we define lung sub-regions by dividing r€ [0, 1], 6€ [0, 2] and ¢ €
[-7/2, /2] into 3, 4 and 3 regular intervals to distinguish core to peel, anterior/medial/
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posterior/lateral, and inferior to superior regions. The spatial feature FS, of a ROl xis a one-
hot vector of length 3x4x3 indicating the sub-region to which xbelongs. The spatial

centroid of L7Pis computed as F—Sk:ﬁZ%MFSz. To augment LTPs with spatial
features, dedicated metrics are used to enforce intra- and inter-class similarity constraints.
The spatial histogram bins are well-aligned given the spatial sub-divisions while the texture
histogram bins are more ambiguous. We therefore propose in Algorithm 1 a mixed y?-2
similarity metric to enforce spatial regularity while preserving textural intra-class
similarities. Spatial regularization will inevitably decrease the textural homogeneity of
individual LTPs. Given no ground-truth justification, we hereby tune a regularization weight
A with an empirically acceptable decrease in texture homogeneity. A penalty term is added
with i = oo to prevent a ROI from being labeled as a spatially preferred but texturally
dissimilar LTP.

2.3 Final Spatially-Informed LTPs

The final set of sLTPs is expected to preserve distinct augmented LTPs and discard
redundant ones. We generate sLTPs by partitioning a weighted undirected graph with
similarity weights G defined as:

Nisj+Njs
Giy=

YoNisk >k Nj—k
. >T - >T
NN, ( N, ) ( N, ) @)

where A, jdenotes |A;| when removing L7}, and ;denotes |A | when all LTPs exist. A
ROI with a texture distance to its alternative LTP label L77exceeding the maximum texture
within-cluster distance of L7P, is not relabeled, which makes (4 N4 )/N;< 1. The
indicator function 1(-) is designed to preserve distinct patterns, and the threshold 7'is set to
0.5. In contrast to previous unsupervised emphysema subtyping algorithms [4-6] that rely on
an arbitrarily pre-defined number of subtypes, we use Infomap [11] for the partition of G.
Infomap is a community detection method that efficiently describes information flow on a
network graph through Huffman coding, and returns a final number of SLTPs with
guaranteed global optimality.

3 Experimental Results

3.1 Data

The data consists of 321 full-lung CT scans from MESA COPD study [1] (4 scans are
discarded due to excessive noise [6]). The global extents of the three standard emphysema
subtypes (%CLE, %PLE and %PSE over the total lung volume per scan) are available,
corresponding to the average of visually assessed scores by four experienced radiologists.
All scans were acquired at full inspiration, using either a Siemens 64-slice scanner or a GE
64-slice scanner, and were reconstructed using B35/Standard kernels. The slice thickness
was 0.625 mm, and isotropic in-plane resolution was in the range [0.58, 0.88] mm.
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3.2 Population Evaluation Using PDCM

We first demonstrate the ability of PDCM to study population-level emphysema spatial
patterns. In Fig. 2(a) the average lung field intensity per angle (6, ¢) is projected onto each
individual PDCM surface, and then averaged on normal subjects without emphysema and
CLE-, PLE-, and PSE-predominant subjects with %emph >5%. Similarly, averaged
intensity across 7 from core to peel are visualized in Fig. 2(b). From Fig. 2(a), attenuation
values for all groups are higher in anterior versus posterior regions, which agrees with the
gravity effect. Maps of CLE- and PSE-predominant subjects appear to have lower
attenuation (more emphysema) in superior versus inferior regions, while this is not obvious
for PLE-predominant subjects. This agrees with the observation in [1] on this dataset that
CLE and PSE severity were greater in higher versus lower lung zones, whereas severity of
PLE did not vary by lung zone. Furthermore, low attenuation regions are more diffused, and
clear regions of normal attenuation (blue) are absent for PLE-predominant subjects, which
agrees with the definition of PLE. From Fig. 2(b), PSE-predominant subjects appear to have
higher attenuation in the core and lower attenuation on the peel than CLE- and PLE-
predominant subjects, which agrees with the definition of PSE. Attenuation values appear to
be higher in the peel versus core, which is likely due to the presence of mediastinal/costal
pleura.

3.3 Qualitative and Quantitative Evaluations of sSLTPs

A random 3/4 of the total dataset is used as training scans (N = 238), while the others (N =
79) are used for testing. An average of 2,726 ROIs are extracted per scan to densely (with
overlap) cover the emphysematous areas. A final set of 12 sLTPs is discovered using the full
training set, and are illustrated in Fig. 2(c). ROIs belonging to the same SLTP appear to be
textually homogeneous, and each sLTP appears to have a distinct pattern, either textually or
spatially. Since we jointly enforce spatial prevalence and textural homogeneity, a SLTP can
have spatial “outliers” that were texturally favored.

Reproducibility—Four training subsets are generated by randomly eliminating 25% of the
training scans. Reproducibility of SLTPs is measured by computing the overlap of test ROI
labels using the Hungarian method for optimal SLTP matching [12], and the SLTPs learned
from the full training set as the ground-truth. We discovered 12, 12, 13, and 13 sLTPs on
training subsets. The average labeling Dice ratio is 0.91, which corresponds to a very high
reproducibility level. The number of discovered sLTPs varies slightly between training
subsets. This can be caused by a large change in the proportion of certain rare LTPs within
the subsets, which modifies the weights of the similarity graph.

Ability to Encode Standard Subtypes—We expect the 12 learned sLTPs to be able to
encode the standard emphysema subtypes. We evaluate here the prediction ability using a
constrained multivariate regression [6], and compare our method with two previous
algorithms [5,6] (implemented with our training data, and setting the numbers of LTPs to 12
for comparison with a constant number of CT-based predictors). Intraclass correlation (ICC)
values between predicted standard emphysema subtype scores and ground truth on the full
dataset (N = 317), computed in a 4-fold cross validation manner, are reported in Table 1. Our
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SLTP model returns comparable ICC values and even higher for CLE and PSE standard
subtypes.

Clinical Significance—Spearman’s partial correlations between sLTP percentage within
the lung and clinical characteristics [1] after adjusting for demographical factors (age, race,
gender, height and weight) are visualized in Fig. 3. Correlation values for MRC dyspnea
scale, post six minute walk test (6MWT) breathlessness and fatigue are flipped so that a
negative correlation always corresponds to more symptoms. Strong partial correlations were
present for FEV1, 6MWT total distance, MRC dyspnea scale, and pre (baseline) and post
6MWT oxygen saturation. While sSLTP 7 and sLTP 8 seem to be associated with healthier
subjects (positive correlations), the other sLTPs are present often together with symptoms
(negative correlations). We then additionally adjusted for %emph_gsg in the partial
correlation (not shown in the figure), and found that 12 sLTPs, 7 SLTPs, 6 sSLTPs, and 5
sLTPs remain significantly correlated with FEV1, 6MWT total distance, post 6MWT oxygen
saturation and MRC dyspnea scale respectively. These results indicate that the clinical
relevance captured by the sLTPs would not be available when using the standard measure of
%emph-gsp.

4 Discussions and Conclusions

In this work, we exploit a conformal spatial mapping of the lung shape to uniquely encode
3D voxel position in unregistered CT scans. We propose an unsupervised learning
framework for discovering lung texture patterns of emphysema that incorporates spatial
information. Algorithmic designs include an original similarity metric of spatio-textural
features combining y?- distances, data-driven weight parameters, and Infomap graph
partitioning. Lung shape spatial mapping enables straightforward population-wide discovery
of emphysema spatial patterns in CLE/PLE/PSE-predominant subjects. Spatially-informed
emphysema lung texture patterns (SLTPs) generated in this study are reproducible, able to
encode standard emphysema subtypes, and have significant correlations with clinical
characteristics. In the future, the proposed method will be applied on a cohort of COPD
patients for longitudinal progression analysis.
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Fig. 1.
Framework overview: (a) Poisson distance maps (PDMs) and conformal mapping are used

to generate spatial maps (PDCMs) of the lungs; (b) Lung texture patterns (LTPs) are
generated using texture and spatial features from emphysematous training ROISs; (c) Final set
of spatially-informed LTPs (SLTPs) is generated via graph partitioning on LTP similarity.
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Fig. 2.
(a) Average intensity (HU) mapped onto PDCM surfaces for no-emphysema, CLE-, PLE-

and PSE-predominant subjects (N = 205, 37, 12 and 10 respectively). (b) Core to peel
average intensity for the same population. (¢) Random ROI samples (axial cut) and sagittal
spatial scatter plots of 12 sLTPs learned on the full training set.
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Fig. 3.
Partial correlations between %sLTP and clinical measures (shaded: statistically significant
with p < .05).
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ICC and 95% confidence interval between predicted standard emphysema subtype scores and ground truth.

Table 1

CLE PLE PSE
51 | 0.87[0.84,0.90] | 0.73[0.66,0.78] | 0.58 [0.48,0.66]
6] | 0.86[0.83,0.89] | 0.69[0.62,0.75] | 0.72[0.65,0.77]
SLTP | 0.89[0.86,0.91] | 0.72[0.65,0.78] | 0.76 [0.69,0.80]
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