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Abstract

Unsupervised discovery of pulmonary emphysema subtypes offers the potential for new 

definitions of emphysema on lung computed tomography (CT) that go beyond the standard 

subtypes identified on autopsy. Emphysema subtypes can be defined on CT as a variety of textures 

with certain spatial prevalence. However, most existing approaches for learning emphysema 

subtypes on CT are limited to texture features, which are sub-optimal due to the lack of spatial 

information. In this work, we exploit a standardized spatial mapping of the lung and propose a 

novel framework for combining spatial and texture information to discover spatially-informed lung 

texture patterns (sLTPs). Our spatial mapping is demonstrated to be a powerful tool to study 

emphysema spatial locations over different populations. The discovered sLTPs are shown to have 

high reproducibility, ability to encode standard emphysema subtypes, and significant associations 

with clinical characteristics.

1 Introduction

Pulmonary emphysema overlaps considerably with chronic obstructive pulmonary disease 

(COPD), and is traditionally subcategorized into 3 standard subtypes: centrilobular 
emphysema (CLE), panlobular emphysema (PLE) and paraseptal emphysema (PSE). These 

subtypes were initially defined on autopsy. Radiologists’ labeling of these subtypes on CT is 

labor-intensive, with substantial intra- and inter-rater variability [1]. Moreover, pathologists 

have disagreements on the very existence of such pure subtypes.
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CT-based automated emphysema labeling has received increasing interest recently, in both 

supervised manners for replicating standard subtyping [2,3], and unsupervised manners to 

discover new subtypes [4–6]. Preliminary CT-based clinical studies suggest that regional 

analysis will be instrumental in advancing the understanding of multiple pulmonary diseases 

[7]. Most existing approaches for learning emphysema subtypes on CT are limited to 

texture-based features, which are sub-optimal due to the lack of spatial information. 

Previous studies [5,6] proposed to generate unsupervised lung texture patterns (LTPs) based 

on texture appearance, and to group them based on their spatial co-occurrence. However, 

such approaches only account for relative spatial occurrence at the scale of local regions of 

interest (ROIs). Also, post-grouping could not guarantee spatial homogeneity of the 

generated LTPs. Regarding spatial lung partitioning, using lung lobes leads to coarse spatial 

precision while using subdivisions of Cartesian coordinates lacks relative information such 

as peripheral versus central positioning which is important in defining PSE. Therefore a 

dedicated lung shape spatial mapping is designed in this work that adapts to individual 

shapes while enabling cross-subject comparison without registration. We then introduce an 

unsupervised framework for combining spatial and texture information to discover localized 

emphysematous LTPs, which we call the spatially-informed LTPs (sLTPs). We evaluate our 

lung shape spatial mapping for studying emphysema spatial patterns on CLE/PLE/PSE-

predominant populations, and evaluate the discovered sLTPs in terms of reproducibility, 

ability to encode standard emphysema subtypes, and association with clinical characteristics.

2 Method

The pipeline for generating sLTPs, illustrated in Fig. 1, consists of the following three steps: 

(1) generate spatial mapping of the lungs; (2) generate LTPs using texture-based features and 

augment them with spatial features; (3) discover a distinct set of sLTPs.

2.1 Spatial Mapping of the Lung Shape

We use Poisson distance map (PDM) [8] to encode the shapes of individual lungs V, and 

label voxel positions in the range of [0, 1], measuring the “peel to core” distance between a 

given voxel and the external lung surface V. Formally, we compute the Poisson solution U 
on the binary segmentation V using the following diffusion conditions:

(1)

where ΔU = Uxx +Uyy +Uzz. We further compute U* as the post-relaxed version of U to 

ensure robustness [8].

To uniquely encode 3D voxel positions, we add conformal mapping of the PDM solution 

onto a sphere, which we call the Poisson distance conformal map (PDCM). We define r = 1 

− U*, and encode superior versus inferior, anterior versus posterior and medial versus lateral 

voxel positioning via latitude and longitude angles (θ, ϕ) with respect to the PDM core 

position (r = 0) and standard image axis.
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2.2 Augmented Lung Texture Patterns

First, voxels are labeled as emphysema if they have intensity values below −950 HU [9] or 

are selected by the hidden Markov measure field [10] segmentation method, with parameters 

adapted to the scanner type. Then emphysema-specific LTPs are generated on ROIs with 

volumetric percentage of emphysema (%emph) above 1%. We first generate an initial set of 

100 LTPs {LTPk}k=1,..,100 with texture features, and then augment them iteratively via 

spatial regularization as detailed in Algorithm 1. The texture features are texton-histogram 

features with pre-learned textons, which were shown to be superior in a similar task in [6]. 

We follow the parameter settings in [6], with a codebook of 40 textons (defined as centers of 

clusters of 3×3×3 pixels patches). ROIs size is set to 25mm3 (approximating the size of 

secondary pulmonary lobules). The texture centroid of LTPk is 

where FTx is the texture feature of a ROI x, and Λk denotes the set of ROIs that are labeled 

as LTPk.

Algorithm 1

Augmenting Lung Texture Patterns

The spatial centroid of LTPk can be modeled as the average spatial density of ROIs in Λk. 

Computationally, we define lung sub-regions by dividing r ∈ [0, 1], θ ∈ [0, 2π] and φ ∈ 
[−π/2, π/2] into 3, 4 and 3 regular intervals to distinguish core to peel, anterior/medial/
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posterior/lateral, and inferior to superior regions. The spatial feature FSx of a ROI x is a one-

hot vector of length 3×4×3 indicating the sub-region to which x belongs. The spatial 

centroid of LTPk is computed as . To augment LTPs with spatial 

features, dedicated metrics are used to enforce intra- and inter-class similarity constraints. 

The spatial histogram bins are well-aligned given the spatial sub-divisions while the texture 

histogram bins are more ambiguous. We therefore propose in Algorithm 1 a mixed χ2-ℓ2 

similarity metric to enforce spatial regularity while preserving textural intra-class 

similarities. Spatial regularization will inevitably decrease the textural homogeneity of 

individual LTPs. Given no ground-truth justification, we hereby tune a regularization weight 

λ with an empirically acceptable decrease in texture homogeneity. A penalty term is added 

with γ = ∞ to prevent a ROI from being labeled as a spatially preferred but texturally 

dissimilar LTP.

2.3 Final Spatially-Informed LTPs

The final set of sLTPs is expected to preserve distinct augmented LTPs and discard 

redundant ones. We generate sLTPs by partitioning a weighted undirected graph with 

similarity weights G defined as:

(3)

where Ni→j denotes |Λj | when removing LTPi, and Ni denotes |Λi| when all LTPs exist. A 

ROI with a texture distance to its alternative LTP label LTPk exceeding the maximum texture 

within-cluster distance of LTPk is not relabeled, which makes (Σk Ni→k)/Ni ≤ 1. The 

indicator function 𝟙(·) is designed to preserve distinct patterns, and the threshold T is set to 

0.5. In contrast to previous unsupervised emphysema subtyping algorithms [4–6] that rely on 

an arbitrarily pre-defined number of subtypes, we use Infomap [11] for the partition of G. 

Infomap is a community detection method that efficiently describes information flow on a 

network graph through Huffman coding, and returns a final number of sLTPs with 

guaranteed global optimality.

3 Experimental Results

3.1 Data

The data consists of 321 full-lung CT scans from MESA COPD study [1] (4 scans are 

discarded due to excessive noise [6]). The global extents of the three standard emphysema 

subtypes (%CLE, %PLE and %PSE over the total lung volume per scan) are available, 

corresponding to the average of visually assessed scores by four experienced radiologists. 

All scans were acquired at full inspiration, using either a Siemens 64-slice scanner or a GE 

64-slice scanner, and were reconstructed using B35/Standard kernels. The slice thickness 

was 0.625 mm, and isotropic in-plane resolution was in the range [0.58, 0.88] mm.
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3.2 Population Evaluation Using PDCM

We first demonstrate the ability of PDCM to study population-level emphysema spatial 

patterns. In Fig. 2(a) the average lung field intensity per angle (θ, ϕ) is projected onto each 

individual PDCM surface, and then averaged on normal subjects without emphysema and 

CLE-, PLE-, and PSE-predominant subjects with %emph > 5%. Similarly, averaged 

intensity across r from core to peel are visualized in Fig. 2(b). From Fig. 2(a), attenuation 

values for all groups are higher in anterior versus posterior regions, which agrees with the 

gravity effect. Maps of CLE- and PSE-predominant subjects appear to have lower 

attenuation (more emphysema) in superior versus inferior regions, while this is not obvious 

for PLE-predominant subjects. This agrees with the observation in [1] on this dataset that 

CLE and PSE severity were greater in higher versus lower lung zones, whereas severity of 

PLE did not vary by lung zone. Furthermore, low attenuation regions are more diffused, and 

clear regions of normal attenuation (blue) are absent for PLE-predominant subjects, which 

agrees with the definition of PLE. From Fig. 2(b), PSE-predominant subjects appear to have 

higher attenuation in the core and lower attenuation on the peel than CLE- and PLE-

predominant subjects, which agrees with the definition of PSE. Attenuation values appear to 

be higher in the peel versus core, which is likely due to the presence of mediastinal/costal 

pleura.

3.3 Qualitative and Quantitative Evaluations of sLTPs

A random 3/4 of the total dataset is used as training scans (N = 238), while the others (N = 

79) are used for testing. An average of 2,726 ROIs are extracted per scan to densely (with 

overlap) cover the emphysematous areas. A final set of 12 sLTPs is discovered using the full 

training set, and are illustrated in Fig. 2(c). ROIs belonging to the same sLTP appear to be 

textually homogeneous, and each sLTP appears to have a distinct pattern, either textually or 

spatially. Since we jointly enforce spatial prevalence and textural homogeneity, a sLTP can 

have spatial “outliers” that were texturally favored.

Reproducibility—Four training subsets are generated by randomly eliminating 25% of the 

training scans. Reproducibility of sLTPs is measured by computing the overlap of test ROI 

labels using the Hungarian method for optimal sLTP matching [12], and the sLTPs learned 

from the full training set as the ground-truth. We discovered 12, 12, 13, and 13 sLTPs on 

training subsets. The average labeling Dice ratio is 0.91, which corresponds to a very high 

reproducibility level. The number of discovered sLTPs varies slightly between training 

subsets. This can be caused by a large change in the proportion of certain rare LTPs within 

the subsets, which modifies the weights of the similarity graph.

Ability to Encode Standard Subtypes—We expect the 12 learned sLTPs to be able to 

encode the standard emphysema subtypes. We evaluate here the prediction ability using a 

constrained multivariate regression [6], and compare our method with two previous 

algorithms [5,6] (implemented with our training data, and setting the numbers of LTPs to 12 

for comparison with a constant number of CT-based predictors). Intraclass correlation (ICC) 

values between predicted standard emphysema subtype scores and ground truth on the full 

dataset (N = 317), computed in a 4-fold cross validation manner, are reported in Table 1. Our 
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sLTP model returns comparable ICC values and even higher for CLE and PSE standard 

subtypes.

Clinical Significance—Spearman’s partial correlations between sLTP percentage within 

the lung and clinical characteristics [1] after adjusting for demographical factors (age, race, 

gender, height and weight) are visualized in Fig. 3. Correlation values for MRC dyspnea 

scale, post six minute walk test (6MWT) breathlessness and fatigue are flipped so that a 

negative correlation always corresponds to more symptoms. Strong partial correlations were 

present for FEV1, 6MWT total distance, MRC dyspnea scale, and pre (baseline) and post 

6MWT oxygen saturation. While sLTP 7 and sLTP 8 seem to be associated with healthier 

subjects (positive correlations), the other sLTPs are present often together with symptoms 

(negative correlations). We then additionally adjusted for %emph−950 in the partial 

correlation (not shown in the figure), and found that 12 sLTPs, 7 sLTPs, 6 sLTPs, and 5 

sLTPs remain significantly correlated with FEV1, 6MWT total distance, post 6MWT oxygen 

saturation and MRC dyspnea scale respectively. These results indicate that the clinical 

relevance captured by the sLTPs would not be available when using the standard measure of 

%emph−950.

4 Discussions and Conclusions

In this work, we exploit a conformal spatial mapping of the lung shape to uniquely encode 

3D voxel position in unregistered CT scans. We propose an unsupervised learning 

framework for discovering lung texture patterns of emphysema that incorporates spatial 

information. Algorithmic designs include an original similarity metric of spatio-textural 

features combining χ2-ℓ2 distances, data-driven weight parameters, and Infomap graph 

partitioning. Lung shape spatial mapping enables straightforward population-wide discovery 

of emphysema spatial patterns in CLE/PLE/PSE-predominant subjects. Spatially-informed 

emphysema lung texture patterns (sLTPs) generated in this study are reproducible, able to 

encode standard emphysema subtypes, and have significant correlations with clinical 

characteristics. In the future, the proposed method will be applied on a cohort of COPD 

patients for longitudinal progression analysis.
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Fig. 1. 
Framework overview: (a) Poisson distance maps (PDMs) and conformal mapping are used 

to generate spatial maps (PDCMs) of the lungs; (b) Lung texture patterns (LTPs) are 

generated using texture and spatial features from emphysematous training ROIs; (c) Final set 

of spatially-informed LTPs (sLTPs) is generated via graph partitioning on LTP similarity.
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Fig. 2. 
(a) Average intensity (HU) mapped onto PDCM surfaces for no-emphysema, CLE-, PLE- 

and PSE-predominant subjects (N = 205, 37, 12 and 10 respectively). (b) Core to peel 

average intensity for the same population. (c) Random ROI samples (axial cut) and sagittal 

spatial scatter plots of 12 sLTPs learned on the full training set.
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Fig. 3. 
Partial correlations between %sLTP and clinical measures (shaded: statistically significant 

with p < .05).
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Table 1

ICC and 95% confidence interval between predicted standard emphysema subtype scores and ground truth.

CLE PLE PSE

[5] 0.87 [0.84,0.90] 0.73 [0.66,0.78] 0.58 [0.48,0.66]

[6] 0.86 [0.83,0.89] 0.69 [0.62,0.75] 0.72 [0.65,0.77]

sLTP 0.89 [0.86,0.91] 0.72 [0.65,0.78] 0.76 [0.69,0.80]
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